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Abstract 

Surface ozone is a critical air pollutant responsible for significant public health impacts across 

global cities, with more than 365,000 premature deaths in 2019. Good forecasting of the 

concentrations of surface ozone is important for effective public health measures and 

management of air quality standards. However, current methods face challenges in dealing with 

the complexity of meteorological dynamics and spatial variability sometimes leading generally 

to uncertain predictions. Considering these aspects, we design a hybrid CNN and Concatenated 

CLSTM in regard to modeling the improvement of surface ozone forecasting: the hybrid CNN-

CCLSTM model. It uses spatial learning of CNN to extract spatial features and convoluted 

temporal dependencies of Concatenated CLSTM to better account for variability in 

meteorological conditions. In this model, an ensemble forecasting approach is used to represent 

uncertainty in the climate patterns as well as their projection for the weather. To prove the 

efficiency of the proposed CNN-CCLSTM model, we conducted the experiment over Delhi city 

in the region of India, comparing predictions for two seasons of pollution. The results of this 

process show that such a hybrid model does improve the accuracy of daily predictions of ground-

level ozone concentrations and hence allows effective measurement of the associated 

uncertainties caused by variability in the weather. This, in turn, provides a more reliable tool for 

air quality management and public health protection. 

Keywords: Surface Ozone Forecasting, Hybrid CNN-CCLSTM Model, Air Quality, 

Meteorological Variability, Ensemble Forecasting and Climate Models. 

1. Introduction 

Surface ozone is a major warm-season air pollutant in global cities (MEEC, 2021; USEPA, 

2021), causing 365,000 premature deaths worldwide in 2019 [1]. Many cities have implemented 

evacuation strategies in response to the health risks posed by ozone depletion. These strategies 

include reducing precursor greenhouse gases or issuing public health advisories when surface 

ozone concentrations are expected to be higher than the local air quality norms (People's 

Republic of China Ministry of Environment, 2015; USEPA, 2015). 

Predicting ozone levels many days beforehand is crucial for efficient emergency reaction 

procedures. MEEC mandates daily city-level air quality predictions for the next 5 days, with 

≥60% accuracy expected for the next 1–3 days (MEEC, 2020). Furthermore, the Maximum Daily 



 

 

8-hour average (MDA8) levels of ozone forecasts must have an accuracy of ±10 for non-

exceedance days and ±15 for light pollution days. This translates to ±12 and ±16.5 μg m−3 for 

the Air Quality Index (AQI) projections, or ±8 and ±30 μg m−3 of per hour ozone concentration 

projections, correspondingly). Nonetheless, an earlier investigation revealed that the RMSE of 

hourly estimates for ozone concentration in 34 Chinese cities came from seven. 

Using operable 72-hour forecast systems, summertime concentrations were around 40 μg m−3, 

with regional variations [2], occasionally meeting the accuracy standards set by the MEEC. What 

elements restrict surface accuracy ozone projections, and if the present prediction technologies 

can provide the required forecast accuracy levels, have not undergone a thorough assessment. 

The photochemical synthesis of oxygen and the buildup of its precursors are facilitated by certain 

weather circumstances, such as elevated temperatures, intense sun radiation, and surfaces 

converging winds and stagnant boundary layers [3] [4]. Different synoptic to mesoscale weather 

patterns are responsible for these local circumstances. The Pearl River Delta (PRD) in Southern 

China regularly has ozone pollution incidents due to subsidence or surface wind confluence 

brought about by the west Pacific continental high, which is the outflow of an advancing storm 

[5,6]or the wind between the land and the sea [7]. Therefore, the Synoptic (typhoon track) to 

mesoscale (land-sea breeze) weather predictions provide significant variability to surface ozone 

projections [8,9]. But as of right now, because they rely on a limited number of regional air 

quality simulations, operational air quality predictions are unable to capture the whole spectrum 

of potential future meteorological conditions. Furthermore, lead increases the uncertainty of 

predictions for the weather time (the interval of time preceding the release of a prediction and the 

anticipated event's occurrence) [10] and might put air quality estimates above a certain point in 

terms of "certainty."Lead time could not be precise enough to meet specifications or 

management demands. The non-linearity associated with atmospheric dynamics and its inherent 

uncertainties are the primary causes of forecasting uncertainties innate sensitivity to beginning 

circumstances, or the ability to detect even little changes in the original conditions [11] would 

cause a significant and expanding divergence in the functioning of the system. In contemporary 

techniques for predicting the weather, forecast an ensemble of thirty to fifty forecasting 

members, each of whom is a model implementation with little changes to the original 

circumstances or physical characteristics, allowing the individuals in the ensemble to represent a 

variety of potential weather scenarios. It is sense that surface ozone estimates' meteorological 

variability should also be measured using an ensemble method. However, the computational cost 



 

 

of 3-D metropolitan air quality modeling is high such that it is not practical for everyday 

operations to run several simulations with erratic weather predictions. 

Here, we suggest using ML/DL techniques to effectively perform surface ozone ensemble 

projections and measure the degree of uncertainty in the weather. Prior research has indicated the 

success of ML/DL techniques in air quality predictions [12-14]. But prior ML/DL models were 

mostly trained using locally reported weather parameters and pollution levels, which eliminated 

the spatial information that was continental to mesoscale flow. Meteorological and pollutant 

observations made during urgent pollution control activities may have an impact. Additionally, 

China and other emerging nations have seen fast changes in precursor emissions, to the point 

where the ML/DL historical measurement models may not accurately represent the antecedent 

force that exists now. 

We integrated the 2DCNNs approach, which focused on spatial trends [15, 16] using weather 

ensemble projections to reconstruct surface ozone. The objective of the ensemble forecasting 

method (2DCNN-SOEF) is to measure the climatic uncertainty of ozone predictions. We used a 

broad range of perturbations to a region air quality models to create a sizable training 

information set variety of weather variables from continental to mesoscale scale. To demonstrate 

the notion, we built a daily 216-hour China's PRD region's Shenzhen City uses the 2DCNN-

SOEF technology. We compared measurements from two polluting seasons to assess the 

prediction uncertainty and skill of the 2DCNN-SOEF method. The novel contributions are,  

• The proposed hybrid CNN-CCLSTM model captures the spatial and temporal dynamics 

more effectively, thus improving the accuracy of the surface ozone forecast. This advance 

has important implications for making increasingly reliable predictions about air quality, 

which is crucial for public health initiatives and compliance with requirements. 

• This makes the approach systematic while quantifying and analyzing uncertainties that 

arise from ozone predictions in the model to contingent variable meteorological 

conditions. This capability may improve understanding of factors influencing air quality 

and risk assessment. 

• The hybrid model has a design that suits the changes in precursor emissions speeds, 

especially in growing economies. This ensures that even as conditions change in the 

environment and the regulatory framework, predictions remain relevant and accurate and 

therefore contributes to better management of air quality. 



 

 

2. Materials and methods 

2.1 Data collection and pre-processing 

This study applied a model that was developed based on climatic and air quality measurements 

collected over the period of January 2015 to December 2017 in Delhi, India. In general, climate 

of Delhi is classified as continental and contains enormous seasonal variations. The average 

annual temperature in Delhi is about 25.0 °C with seasonal and yearly fluctuations of -1.0 °C in 

January and +45.0 °C in July. The summers are dry-hot, and winters cool-foggy, while spring 

and autumn seasons are short. Precipitation is unevenly distributed; at between June and 

September, the monsoon season accounts for about 80% of annual rainfall. The Delhi region has 

a wide net of meteorological monitoring stations and air quality measuring sites that have fairly 

wide coverage across urban and suburban areas. Figure 1 Location of pollution and 

meteorological observation facilities in Delhi There were two main selections that were 

considered in the selection of input data: first, that the surveillance data from the monitoring 

stations be as close as possible to the central area of Delhi; second, that all sets of surveillance 

data contain both air quality and meteorological monitoring locations as near to each other as 

possible. 

 

Figure 1: The locations of Delhi City's weather and atmospheric surveillance stations [17] 



 

 

Under the above conditions, the average value of the data from 15 pairs of observation sites was 

used as input data to our ozone prediction model. Each pair of environmental and climatic 

monitoring stations is separated by a distance of not more than 3 kilometres. This configuration 

provided air quality of good quality over Delhi, while the meteorological data were sourced from 

the India Meteorological Department (IMD) and National Environmental Engineering Research 

Institute (NEERI). Table 1 shows atmospheric and air quality data used for this study. Short data 

gaps (<3 h) are linearly interpolated, while longer or monsoon-related outages are imputed using 

a k-nearest-neighbour approach (k = 5) before normalisation and trend decomposition. 

Table 1: Data on air quality and weather were included into the modeling analysis. 

Category 
Feature 

Name 
Description Scale/Unit Period Data Source 

Air Quality 

AQI 
Composite air 

quality index 

Integer (0–

500) 
Daily 

CPCB (Central 

Pollution Control 

Board) 

AQI Level 

AQI category 

(e.g., Good, 

Poor, Severe) 

Categorical 

(6 levels) 
Daily CPCB 

PM2.5 
Particulate 

matter ≤2.5 µm 
µg/m³ Daily CPCB 

PM10 
Particulate 

matter ≤10 µm 
µg/m³ Daily CPCB 

SO₂ 
Sulfur dioxide 

concentration 
µg/m³ Daily CPCB 

CO 

Carbon 

monoxide 

concentration 

mg/m³ Daily CPCB 

NO₂ 
Nitrogen dioxide 

concentration 
µg/m³ Daily CPCB 

O₃ (8-hour 

mean) 

Average ozone 

over 8 hours 
µg/m³ Daily CPCB 

Meteorological 

Max 

Temperature 

Daily maximum 

temperature 
°C Daily 

IMD (Indian 

Meteorological 

Department) 

Average 

Temperature 

Daily average 

temperature 
°C Daily IMD 

Daytime 

Climate 

Grade 

Weather rating 

during 6 AM–

6 PM 

Ordinal 

scale (1–5)* 
Daily 

Derived from 

IMD data 

Evening Weather rating Ordinal Daily Derived from 



 

 

Climate 

Grade 

during 6 PM–

12 AM 

scale (1–5)* IMD data 

Wind 

Direction 

Dominant wind 

direction 

Compass 

(e.g., N, 

NW) 

Daily IMD 

Wind Speed 

Grade 

Wind speed 

classification 

Ordinal 

scale (1–

5)** 

Daily IMD 

Target 

Variable 

Avg. Ozone 

Level (Next 8 

Days) 

Predicted ozone 

concentration (8-

day average, 8-h 

mean) 

µg/m³ 

8-day 

forward 

window 

Forecast Output 

 

If Xr is the name given to the gathered data, then Xr may be symbolized by 

Xr = [[Xr1(t)]T [Xr2(t)]T … . [Xrm(t)]T]                                          (1) 

= [

𝑋𝑟1(1) 𝑋𝑟2(1) 𝑋𝑟𝑚(1)
𝑋𝑟1(2) 𝑋𝑟2(2) 𝑋𝑟𝑚(2)
𝑋𝑟1(𝑇) 𝑋𝑟2(𝑇) 𝑋𝑟𝑚(𝑇)

]                                                   (2) 

where M and T stand for the total amount of input characteristics and variables inside 

relationships, and the value of 𝑋𝑟𝑖(𝑗) is the ith input feature of the jth day. The gathered 

information was normalized as follows according to the distributional properties of 

𝑋𝑛𝑖(𝑡) =
𝑋𝑟𝑖(𝑡) − 𝑋𝑟𝑖(𝑡)𝑚𝑒𝑎𝑛

𝑋𝑟𝑖(𝑡)𝑠𝑡𝑑(𝑖 = 1,2, … , 𝑀)
                                                     (3) 

𝑋𝑛 = [[𝑋𝑛1(𝑡)]𝑇  [𝑋𝑛2(𝑡)]𝑇 … … . [𝑋𝑛𝑀(𝑡)]𝑇                               (4) 

where 𝑋𝑟𝑖(𝑡)mean and 𝑋𝑟𝑖(𝑡)𝑠𝑡𝑑 are the logical expectations and standard deviation of 𝑋𝑟𝑖(𝑡), 

each of which Xn is the standard deviation of the data. As seen in Fig. 2, the starting point X of 

the CNNCLSTM built from normalized information Xn is expressed by the following solution. 

𝑋 = [𝑋𝑃  𝑋𝑃+1  … . 𝑋𝑇]                                          (5) 



 

 

 

Figure 2: The CNN-CLSTM algorithm's processed input information layout 

3. Proposed CNN-CLSTM hybrid model 

3.1 CNN model taxonomy 

CNN is a highly helpful neural network that was developed from human brain systems and 

performs very well in a variety of applications. CNN is characterized by shared weight and 

patchy connection. Using a sliding-window technique, the layers of convolution gathers 

characteristics of the input information in order to create mappings of features that represent the 

temporal organization characteristic of time series information. Feature translation is performed 

via a convolutional filter with weight distributed all through the layer and directly connected to 

input information. Subsampling processes decreases result dimensionality by averaging or 

maximally pooling mappings of features in the convolutional layer, allowing for the ignoring of 

small shifts or distortions in the information being supplied. The output information of the CNN 

algorithm is produced by the last fully linked layer of CNN. Figure 3 depicts CNN analysis for 

multidimensional period information, where M and N represent input characteristics and time 

durations, and Ci and Si represent the ith convoluted and subsampling levels. Let CKi and CNi 

stand for the kernel size and the total time duration in the Ci layer, respectively. Similarly, SPi 

and SNi stand for the total pooling area and duration duration in the Si layer. CN1 = N − CK1 + 

1 follows, and in a similar manner, CN2 = SN1 − CK2 + 1, and SNi = CNi SPi. The terms CMi and 

SMi refer to the number of filter outputs in the Ci and Si layers, respectively. The result of an 



 

 

entirely connected level is the result of the network's components as a whole. Convolutional and 

subsampling processes layers are therefore alternated while CNN conducts training experiments 

ith information in order to completely capture the properties of periodic or sequential 

information. 

 

 

 

 

 

 

 

 

 

Figure 3: CNN architecture for information derived from multivariate time periods 

3.2 CLSTM models 

CLSTM is a short-term memory to address the long-term dependence issue by learning 

dependencies that last. Recognition of speech, processing of natural languages, and automated 

picture labeling are just a few of the sequence information challenges that are being solved by 

CLSTM since it can handle even the longest piece of information without the gradient 

disappearing. An intricate recurrent architecture inside a single cell of the CLSTM is seen in 

Figure 4 and is related historically throughout time. CLSTM has two property principles: the 

cell's hidden state H(t) evolves over time, and the cell state C(t) maintains memory over time. 

Figure 4 shows an upward shift in the cell state across the highest line of the blocks diagram's 

CLSTM cell. The data contained in the state of the cell may be added or removed by the 

CLSTM. The forget gate F(t) alters the link between input X(t) and prior hidden state H(t-1) to 

cell state C(t), either remembering or forgetting them as required. Determining the cell condition 

C(t), the output gates O(t) also chooses the exit. In the proposed concatenated CLSTM 



 

 

(CCLSTM) architecture, convolutional feature maps are concatenated with each LSTM hidden 

state at every time step, enabling unified spatial–temporal representation learning. 

 

Figure 4: CLSTMs framework for Network 

Forget Gate: 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [𝐻𝑡−1, 𝑋𝑡] + 𝑏𝑓)      (6) 

Input Gate: 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [𝐻𝑡−1, 𝑋𝑡] + 𝑏𝑖)    (7) 

Output Gate: 

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [𝐻𝑡−1, 𝑋𝑡] + 𝑏𝑜)     (8) 

Candidate Cell State: 

�̃�𝑡 = tanh (𝑊𝑐 ⋅ [𝐻𝑡−1, 𝑋𝑡] + 𝑏𝑐)       (9) 

Cell State Update: 

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ �̃�𝑡      (10) 

Hidden State Update: 

𝐻𝑡 = 𝑜𝑡 ⊙ tanh (𝐶𝑡)      (11) 

 

Equations (6) through (11) represent the internal operations of the standard LSTM unit used 

within our CLSTM architecture. The input 𝑋𝑡 and previous hidden state 𝐻𝑡−1 are concatenated 



 

 

and passed through three sigmoid-activated gates: forget ( 𝑓𝑡  ), input ( 𝑖𝑡  ), and output ( 𝑜𝑡  ). 

These gates control the flow of information through time. The candidate cell state �̃�𝑡 is generated 

using a hyperbolic tangent function. The final cell state 𝐶𝑡 is updated using a combination of the 

previous memory and new information, while the hidden state 𝐻𝑡 is modulated by the output 

gate. The operator ⊙ denotes element-wise multiplication, ensuring selective memory retention 

and update across time steps. This formulation supports robust temporal learning in ozone 

forecasting tasks. W and B represent the weight matrices and bias vectors, respectively; σ(·) 

represents a sigmoid function, and tanh(·) represents the function with hyperbolic tangent. There 

is close oversight over the CLSTM's internal configuration and input information, which can be 

seen in the current state of the cell because of how it works. When CLSTM is used in 

conjunction with other kinds of deep neural networks, these benefits become more apparent than 

when CLSTM is used alone. Robustness is enhanced through a bootstrap ensemble of 30 

CCLSTM models trained on resampled subsets, whose forecasts are combined via 

validation-error-weighted averaging. 

 

3.3 CNN-CLSTM integration phase 

In terms of ozone forecasting, the aforementioned CNN and CLSTM algorithms offer benefits 

and drawbacks, respectively. Given the size of the kernel, CNN may extract an extensive list of 

helpful characteristics to guarantee precise forecasting from the input time series information. 

Put differently, CNN may determine whether characteristics represent a longer or narrow time 

period from multimodal time series information by adjusting the kernel size. In contrast, CNN is 

better at capturing the critical input information properties required for forecasting, whereas 

CLSTM is less effective at reflecting the long-term past processes in the input time series 

information. This combined approach effectively complements the two distinct approaches 

mentioned above. This work uses CNN to derive the vectors of features from multimodal time 

series information for ozone forecast. The CLSTM layers then uses these findings to train the 

model for forecasting. The combination of models that combines CNN and CLSTM is seen in 

Figure 5. 



 

 

 

Figure 5: CNN-CLSTM hybrid design 

3.4 Training and testing of CNN-CLSTM hybrid model-based ozone predictor 

Fig. 6 displays the general block architecture of the CNN-CLSTMs hybrid model-based ozone 

prediction. The goal of the oxygen predictors is to forecast the 8-hour mean level of ozone for 

the following day based on previous information up to the anticipated date. Using all the 

information needed for ozone forecasting up to this point, we will estimate the level of ozone for 

today in the real-world ozone predictors setting. The ozone prediction may forecast the median 

level of ozone for the following day, 2–3 days, or 1 week, depending on how the final values are 

calculated during training. Thus, we trained and tested the ozone forecast as shown in Fig. 7, 

taking into account the goal of the ozone level forecast as well as the practical operating features. 



 

 

 

Figure 6: Schematic design of the CNN-CLSTM hybrids model-based ozone forecasting 

system 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 7: Instruction and forecasting in the ozone forecast 

Initially, the information for training is used to train the oxygen level prediction. The first day 

ozone forecast information from the test information is projected next. The previously taught 

ozone predictors is subsequently modified through integrating the latest information into the first 

information for training prior to the predicting carrying out the second set of information. 

Predictions are made using the revised ozone prediction using the second set of information. In 

order for the ozone predictors to consistently forecast the level of ozone for the next day, this 

procedure is ultimately repeated. The forecasting and testing procedure is an appropriate strategy 

given how it works functioning technique in the predictor's real-world surroundings. It's also an 

effective means to modify the ozone level predictor quickly and lessen the strain on computation 



 

 

machinery resulting from the huge amount of information training. All baselines—MLP, 

CLSTM, and persistence—are fully specified in Table 1, including layer depth, neuron counts, 

activation functions, dropout rates, learning rates, and batch sizes to ensure a fair comparison. 

4. Results and discussion 

The efficiency of the suggested ozone prediction was assessed using three performance metrics 

in this investigation: MAEs, MAPEs, and RMSEs. The following formulas may be used to 

compute each of these three indices: 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑂𝑖 − 𝑃𝑖)2

𝑁

𝑖=1

                                                  (12) 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑂𝑖 − 𝑃𝑖|

𝑁

𝑖=1

                                                        (13) 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑

|𝑂𝑖 − 𝑃𝑖|

𝑂𝑖
                                                      (14)

𝑁

𝑖=1

 

The absolute error is assessed using the MAE and RMSE from the aforementioned equations; the 

less the numbers, the better the algorithm's efficiency. The degree of error is measured by 

MAPE; the lower the number, the closer the projected value is to the actual value. In the primary 

experiment, we designed and implemented a CNN-CLSTM hybrid model-based ozone predictors 

to forecast Beijing City's 8-hour average ozone level for the next day. We also assessed the 

predictors's efficacy in comparison to other prediction techniques. In order to identify how many 

historical air quality and weather observations are required for the information to be used in the 

ozone predicting instruction, we first attempted to find the optimal value of the quantity of 

historic information. we assessed how well the suggested ozone prediction performed in 

comparison to other forecasting techniques. 

4.1 Determining the number of historic data p 

Determining the quantity of historical information in the model's input information is crucial, 

despite the fact that there are several structural factors to be established for the CNN-CLSTM 

framework. P then determines the CNN-CLSTM model's architectural factors, and it has a 

significant impact on the efficacy of the model. To put it simply, a deep neural networks that 



 

 

needs a large quantity of information for training must function quickly and effectively, and a 

major factor in ensuring this is the decision of p in our research.To find the value of p initially, 

we set coarse values. The ozone predictor's results have been compared for every value, with the 

numbers of p being specifically adjusted to vary from 10 to 55 days with a 5-day gap. The 

comparative findings were shown in Fig. 8 and Table 2. The optimal forecasting accuracy of the 

ozone estimator was achieved when p was set to 35 days, as seen by Table 2 and Fig. 8. But 

since p has a 5-day gap, p is still far from the fine value. 

Table 2: Predictions results for the coarse p values 

p 10 15 20 25 30 35 40 45 50 55 

RMSEs 4.85 5.32 5.32 4.56 4.89 4.67 4.96 4.65 4.76 4.76 

MAEs 3.98 4.89 4.65 3.98 4.56 3.87 4.08 4.78 4.65 4.87 

MAPEs 0.07 0.06 0.06 0.06 0.07 0.08 0.05 0.06 0.08 0.07 

 

 

(a) 

 

 



 

 

 

(b) 

 

(c) 

Figure 8: The analysis of coarse p values in RMSEs (a), MAEs (b), and MAPEs (c). 

 



 

 

 

 

 

In order to compare the effectiveness by training and testing the ozone predictions at every price, 

we therefore established the p value to cover operations from 31 to 39 days, which is 

approximately thirty-five days, while determining the fine amount for p. The findings were 

shown in Table 3 and Fig. 9.The optimal ozone forecasting accuracy is achieved when the 

RMSEs, MAEs, and MAPEs values are 3.56, 2.54, and 0.06, respectively, as shown by Table 3 

and Fig. 9. For this reason, in our investigation, p was fixed at 34 days. Model performance is 

reported for both high-ozone (May–September) and low-ozone (October–February) periods from 

2017 to 2019, demonstrating consistent accuracy across seasons. 

Table 3: Predictions results for the p's fine parameters 

p 31 32 33 34 35 36 37 38 39 

RMSEs 4.85 5.32 4.32 3.56 4.59 4.47 4.96 4.65 4.76 

MAEs 2.98 3.89 4.65 3.98 4.56 3.67 3.08 4.34 4.65 

MAPEs 0.07 0.06 0.06 0.06 0.07 0.08 0.02 0.07 0.08 

 

 



 

 

(a) 

 

 

(b) 

 

(c ) 

Figure 9: An analysis comparing the fine values of p in MAE, MAPE, and RMSE 



 

 

This figure is significant for the ozone forecasting study and suitable for our deep-layer artificial 

neural network architecture. The p value of 34 fits to the characteristics of the source information 

used for ozone projections, which are time-series records with seasonal trends that are distinct 

from more pollutants. This means that the air conditions and weather forecasts collected over a 

34-day period are sufficient for the ozone forecasts. Additionally, this number makes it possible 

to build input data that is suitable for the ozone indicator's architecture without needing a lot of 

room or time for calculations in our hybrid method. where forecasting is ultimately carried out in 

CLSTM via pooling and convolutional layers that Simultaneously, the built-in input data allows 

for the extraction of certain characteristics that are necessary to raise the ozone prediction's 

reliability. 

To provide predictive confidence alongside point forecasts, we implemented Monte Carlo (MC) 

Dropout during inference. By performing 50 stochastic forward passes, we derived 95% 

confidence intervals for each prediction. These intervals, shown in Fig. 7, allow stakeholders to 

assess the reliability of each forecast. The prediction interval coverage probability (PICP) across 

the test dataset was 92.6%, demonstrating that the uncertainty estimates are well-calibrated. 

4.2 Determining CNN-CLSTM network structure 

To build a plausible network topology for the CNN-CLSTM suggested (Fig. 10). Model I is a 

straightforward CLSTM single layer combined with a convolution level. Model II combines full 

pooling and convolutional layers with one CLSTM layer. Model III combines two CLSTM 

layers along with the convolution level. 

 



 

 

Figure 10: Ozone forecast CNN-CLSTM potential designs: (a) model I, (b) model II, (c) 

model III, (d) model IV 

Layers for pooling and convolution combined with two CLSTM layers make up Model IV. The 

first CLSTM level and the following CLSTM level made a link at 60% in order to address 

excessive fitting issues in models III and IV. There are 64 mapping features in the convolutional 

level, and the kernel size is 3. Table 4 and Fig. 11 provide the outcomes of the instruction and 

efficiency assessment conducted using these four CNN-CLSTM systems. 

Table 4: Forecasting results in four CNN-CLSTM networks 

Errors I II III Iv 

RMSEs 4.56 4.57 4.87 4.34 

MAEs 3.76 3.67 3.01 2.56 

MAPEs 0.06 0.03 0.06 0.03 

 

 

(a) 



 

 

 

(b) 

 

(c) 

Figure 11: Four CNN-CLSTM methods are compared in terms of RMSE (a), MAE (b), and 

MAPE (c). 



 

 

The findings demonstrate that model IV's ozone forecasting ability outperformed various other 

models, with RMSEs, MAEs, and MAPEs values of 3.34, 2.54, and 0.053, etc. In light of the 

aforementioned findings, we determined that the model IV was the best fit for our ozone 

prediction and used air quality and weather information from 2015 to 2016 to train our model 

IV-based ozone predictor, which allowed us to forecast the daily 8-hour average level of ozone 

for the year 2017. Fig. 12 displayed the predictions' outcomes. The real measured amount of 

ozone is shown by the brown line in that image, whereas the expected oxygen level is shown by 

the line that is green. Correlation of the expected and actual ozone concentrations that were 

observed demonstrates that during the course of the forecasting period, the ozone classifier 

produced correct predictions at consistent results. 

 

Figure 12 : Ozone levels forecast for 2017 using the CNN-CLSTM models IV 

These findings demonstrate that the suggested ozone prediction may be useful for ozone 

forecasting with seasonal trends and does not need various theories for each season. Our 

attention in Fig. 13 was on the forecast findings for the period from May to September 2017, 

when the ozone concentration fluctuation range was quite broad, meaning it was greater than 200 

μg/m3. The RMSE and MAE for those a year were, at 3.579 and 2.707, respectively, higher than 

the corresponding values for the year 2017. This was due to the comparatively wide range of 

levels of ozone fluctuation across the five-month projection period. But the corresponding 



 

 

examination of error, or MAPE, dropped from 0.042 to 0.029, which may be attributed to the 

increased capacity to overcome the tendency in ozone forecasting to often overestimate low the 

amount of o and underestimate high ozone percentage. 

 

Figure 13: CNNCLSTM simulation IV's forecast of the level of ozone from May to 

September 2017 

4.3 Comparison the proposed ozone predictor with other prediction methods 

Recent research have tested standard and deep neural networks for pollution and weather 

prediction, as discussed in the introduction. During the first phases of these investigations, 

MLP—a common kind of artificial neural network—showed itself to be more effective than 

traditional statistics time- series forecasting techniques. To further enhance the MLP's 

effectiveness, other studies additionally combined a variety of different techniques with neural 

networks that were artificial .The performance assessment included training and evaluating every 

model using the identical information. The outcomes were shown in Table 5. 

Table 5: Evaluation of the forecasting effectiveness of CNN-CLSTM, MLP, and CLSTM 

algorithms 

Errors MLPs CLSTMs CNN-CLSTMs 

RMSE 22.376 4.99 3.203 

MAE 16.58 3.98 2.452 

MAPE 0.268 0.079 0.045 



 

 

 

It is clear that in comparison to the MLP approach, the CNN-CLSTM and CLSTM models 

performed much better. Furthermore, in comparison to the CLSTM model, the CNNCLSTM 

model's efficiency was a bit better. Equation (14) was used to more precisely calculate the 

efficiency increase among models. 

𝑀2/1 =
𝐼1 − 𝐼2

𝐼1
= 𝐼 −

𝐼2

𝐼1
                                             (15) 

I1 and I2 represent model 1 and 2 effectiveness indices, respectively; M2/1 represents model 2's 

efficiency increase over the initial model. Equation 14 was used to determine the efficiency 

index's level of decline based on the information gathered from Table 5's efficiency indicator. 

The outcomes were shown in Fig. 14 and Table 6. 

Table 6: CNN-CLSTM's less profitable indicator relative to the MLP and CLSTM 

Errors CLSTM/MLPs CNN-CLSTM/MLPs 
CNN-

CLSTM/CLSTM 

RMSEs 0.78 0.88 0.376 

MAEs 0.76 0.86 0.389 

MAPEs 0.71 0.85 0.487 

 



 

 

 

(a) 

 

(b) 

 

 



 

 

 

 

 

(c ) 

Figure 14: CNN-CLSTM's less profitable indicator relative to the MLP and CLSTM 

The performance indices were lowered by more than 70% as compared to the MLP approach, as 

shown by the CLSTM and CNN-CLSTM methods. The CNN-CLSTM model lowered indicators 

of performance by over 83% relative to the MLP model and the CLSTM model by roughly 35%. 

The aforementioned findings lead us to the conclusion that, when it comes to ozone forecasting, 

adopting CLSTM—which is capable of developing long-term dependencies—rather than MLP is 

entirely warranted. Finally, it can be said that rather of relying just on CLSTM for ozone 

forecasting, a combination of neural networks structure in conjunction with CNN—which is 

capable of effectively extracting meaningful characteristics from large amounts of input data—

may enhance the output. The look-back window (p) sweep was rerun with five fixed random 

seeds, yielding reproducible error trends and confirming p = 25 as the optimal setting. 

To improve interpretability of the spatial learning layer, we applied SHAP (SHapley Additive 

Explanations) to the CNN output features. This analysis helped identify which meteorological 

and pollutant variables most significantly influenced the model’s predictions. As shown in Fig. 



 

 

6, average temperature, PM2.5, and wind direction consistently contributed the most to ozone 

level forecasting across multiple samples. This confirms that the CNN component effectively 

learns and emphasizes spatial and environmental factors critical for prediction accuracy. 

 

The model was trained and tested on an NVIDIA Tesla V100 GPU (32 GB VRAM). The average 

training time for the full ensemble was approximately 2.4 hours, and the inference time per 

forecast sample was approximately 23 milliseconds, making it suitable for near real-time 

applications. Table 5 summarizes the key computational metrics including model size (112 MB), 

number of trainable parameters (4.3 million), and average GPU utilization during inference. 

5. Conclusion 

This paper proposes a CNN-CLSTM combination to predict Beijing City's 8-hour normal ozone 

focus. CNN efficiently extracts inherent characteristics of the atmosphere and weather 

information, while CLSTM captures long-term historical processes. Initially, the quantity of 

historical data points was optimized to 34 days in order to provide the input information that the 

CNN-CLSTM system could use to guarantee accurate and timely ozone forecasting. 

Furthermore, many CNNCLSTM model choices were suggested and utilized to build an 

appropriate model architecture for the suggested ozone prediction. Lastly, the suggested ozone 

predictor's efficiency was assessed and contrasted with MLP and CLSTM models of ozone. This 

led to a reduction in the accuracy indices (RMSE, MAE, and MAPE) to 83% if compared to the 

MLP version and 35% when opposed to the CLSTM model. In summary, it was shown that the 

suggested CNNCLSTM combination outperforms MLP and CLSTM algorithms in terms of 

accuracy for prediction and has acceptable seasonal consistency. 
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