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Abstract 

Flooding in coastal regions of smart cities poses significant 
challenges, including infrastructure damage, economic 
losses, and threats to public safety. Traditional flood 
prediction models often suffer from data privacy 
concerns, limited spatial-temporal generalisation, and 
computational inefficiencies. To address these challenges, 
this study proposes an advanced Federated Learning (FL) 
and CNN-LSTM-based predictive framework for flood 
forecasting in coastal urban regions. The FL paradigm 
enables decentralised model training across multiple 
locations while ensuring data privacy. Convolutional 
Neural Networks (CNNs) extract spatial flood-related 
features, while Long Short-Term Memory (LSTM) 
networks capture temporal dependencies in 
hydrometeorological data. Various sensors, IoT devices 
and geospatial equipment are deployed to monitor and 
record flood-related environmental factors in different 
coastal regions in smart cities. The generated data is 
analysed by CNN and LSTM models to predict the flood 
levels based on the flood-influencing factors estimated. 
The proposed FL-CNN-LSTM model is implemented and 
experimented with in Python, and the prediction 
efficiency is verified. It is also compared with the other 
earlier methods and evaluates performance. It shows that 

the FL-CNN-LSTM provides more accuracy and promising 
quality services like dependency reduction in centralised 
data storage, adaptiveness, and privacy preservation in 
flood forecasting systems. Most importantly, it provides a 
proactive natural disaster mitigation model, making it 
suitable for real-time coastal regions in smart cities. 

Keywords: Smart cities, flood prediction, federated 
learning, CNN-LSTM, coastal resilience, machine learning, 
hydrometeorological forecasting 

1. Introduction 

Floods are natural geohazards that occur due to heavy 
and continuous rain. It is a natural phenomenon that 
causes a lot of damage to property and gross domestic 
product T. Ashizawa et al. (2022). One of the most 
destructive natural disasters is floods. With increasing 
urbanisation, climate changes, and extreme weather 
conditions, coastal regions are becoming more vulnerable 
to storms, sea level rise, and floods, K. A. Oladapo et al. 
(2020). Smart cities are equipped with advanced 
technologies, devices, and data analytics to provide novel 
pathways for improving flood resilience. In contrast, the 
earlier methods used for flood predictions were not 
equipped with data privacy, did not have scalability, and 
were inadequate in prediction accuracy. Also, they are not 
efficient and suitable for real-time applications. To solve 
this kind of challenge, this paper proposed a novel FL-
CNN-LSTM model to improve the efficiency of flood 
prediction with privacy preservation in data transmission 
among various coastal regions of smart cities. The 
federated learning model helps to train the data sources 
available in multiple locations without sharing the original 
image, preventing privacy issues and problems. The deep 
learning algorithms CNN and LSTM involved in the 
proposed model efficiently extract the spatial and 
temporal features indicating the flood patterns to 
improve the prediction accuracy. The main objective of 
this research is to design and implement an efficient 
learning model for effective flood prediction in the coastal 
region of smart cities.  
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Recently, new datasets have been generated and used to 
detect natural disasters. Most of the datasets are 
generated from sensors, IoT devices, and geospatial 
devices that can generate numerical and alphanumerical 
data from the air, temperature, and other sources related 
to the environment and climate of a particular region. 
These datasets are either temporal or spatial, Gupta et al. 
(2019). Deep learning algorithms proved their efficiency in 
obtaining semantic information on the land cover and 
behaviours from these datasets. The temporal features 
are unavailable in the dataset, which cannot provide areas 
the cloud covers. They were moved to analyse the SAR 
images since they can provide cloud cover. The new 
version of satellite images obtained from Sentinel-1 offers 
a highly useful and large volume of data, including time-
frequency and area information. Machine learning 
algorithms can be applied to these optical and radar 
images for disaster analysis.  

There are various kinds of floods, such as coastal, flash, 
ponding, and river floods. The monsoon is also classified 
as the Northwest Monsoon and the Southeast Monsoon 
based on the season. Various kinds of datasets are used to 
predict different types of floods. Time series data are used 
in a wide range of longitudinal research modelling, Zerara 
(2021). It involves computing similar measures in a 
periodical interval over more amount of data. Time-series 
data forecasts the pattern based on the historical data in 
the analysis since it includes the time domain and other 
properties. Thus, time series data is used for flood 
prediction and showed an excellent output globally (W. 
Wu et al. (2020). Various earlier research works, like Shen 
et al. (2024), have used deep learning algorithms, like 
RNN, ANN, LSTM and other models for time-series 
analysis. The frequency analysis and rational and empirical 
methods are unsuitable for large-scale flood prediction 
but can only be used in small river flow prediction. Thus, 
an advanced deep learning-based approach is required to 
overcome these issues. Hence, this paper is motivated to 
implement a deep learning-based approach for flood 
prediction. Recent research works have shown excellent 
output using CNN and LSTM algorithms for forecasting 
applications using time-series data. In that sense, this 
paper aims to use the CNN-LSTM model to analyse 
satellite images for flood prediction obtained from 
different coastal regions. It used satellite images and 
sensor data to predict flooding more accurately. This 
paper contributes the following key points to improve the 
prediction accuracy and overall efficacy.  

• A novel architecture is created to interconnect 
federated learning and deep learning models for data 
analytics. 

• A federative learning model is created to interconnect 
the coastal regions of multiple smart cities, sharing 
their flood data with security and providing a 
decentralized storage and prediction model. 

• Using spatial features, the CNN model is implemented 
to analyse and predict flood conditions in satellite 
images.  

• The LSTM model uses temporal features to analyse 
and predict flood conditions in satellite images.  

• An efficient hybrid deep learning model, CNN-LSTM, is 
used to analyse and predict flood conditions using 
spatiotemporal features.  

• Integrating federated and deep learning models 
increases predictive accuracy and secures data privacy.  

Following the introduction, Section 2 discusses the 
literature review; Section 3 explains the problem 
statement and the proposed methodology. Section 4 
demonstrates the results and discussion with the dataset 
and experimental setup information. Finally, Section 5 
provides the work's conclusion and future scope. 

2. Literature survey 

In recent years, modern coastal cities have focused on 
flood prediction, leading to various developments, such as 
multiple approaches and models developed to improve 
flood prediction resilience and overall accuracy. The 
research shares information about some current studies 
that integrate advanced machine learning methods such 
as convolutional neural networks (CNNs), Federated 
Learning (FL), and long short-term memory (LSTM) 
networks. For example, Rao and Supraja (2024) have 
proposed an advanced flood prediction model. It uses the 
hybrid model, combining the CNN and federated learning 
models for remote-sensing applications. The main 
advantage of this approach is that it maintains the 
confidentiality and security of data since each local model 
is trained locally. To evaluate the model’s efficiency in 
flood prediction, this proposed model was tested on the 
historical flood data. The result shows that this proposed 
hybrid model has achieved an accuracy rate of 84% while 
predicting historical floods. Kabir et al. (2020) have 
proposed another deep learning (DL) model: a deep 
convolutional neural network (DCNN) model for rapid 
fluvial flood prediction. The model was calibrated using 
data from a 2D hydraulic model and provided accurate 
results regarding the flooded areas, and it can be useful in 
real-time flood prediction. Giezendanner et al. (2023) 
have proposed a hybrid model that combines a CNN 
model with the LST model (CNN-LSTM) for Historical 
Inundation Mapping. To evaluate the efficiency of the 
proposed hybrid model, it was tested on various historical 
flood data. The result shows that this proposed hybrid 
CNN-LSTM model has outperformed the other traditional 
methods in flood prediction. It is also able to analyse and 
capture the temporal flood and spatial flood patterns 
more effectively.  

Nasir & Atal (2023) have presented a federated learning 
model for analysing and predicting floods by analysing the 
data. It works on a novel flood forecasting framework of a 
five-day lead time based on the federated learning of 
locally trained models from different clients to provide a 
prediction. The model kept the data private and had high 
accuracy in forecasts. Nahak et al. (2024) have presented 
an investigation on the current challenges that occur 
while predicting floods and also provide an advanced 
flood prediction model by using an advanced federated 
learning model. Flood forecasting is a complex topic that 
has received attention from scholars in the past years. It 
integrated many models at the different stations to 
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forecast future flood occurrences, providing alerts with 
five-day advance notice and help in precaution. A hybrid 
flood-predicting system using CNN and LSTM was 
proposed in an IEEE conference held in 2023 to predict 
floods in Kerala. The model incorporated spatial and 
temporal properties of the structural object and helped 
increase the prediction accuracy. One of the summarized 
articles from Reuters in 2024 was titled have presented an 
investigation on the various role of AI in improving 
weather forecasts, flood prediction and other natural 
disasters and it explained how AI helped the authorities to 
predict an actual urban flood. Such systems are good at 
processing large historical databases of various features, 
as well as at finding the patterns in them. 

The article in The Times (2024) has presented an 
investigation on the concept of the ‘Sponge city’ idea 
standard as a natural-based practice that helps control the 
heavy rainfall in urban areas. Several other elements are 
also used for reducing the risk of floods, such as gardens, 
stormwater parks, and pavements with a permeable 
design to help facilitate the collection of excess rainwater 
and help absorb and redirect the rainwater, reducing the 
risk of floods. The article Guardian, published in 2024, 
conducted a report which investigates how artificial 
intelligence (AI) should be used to predict various flood 
impacts that climate change is expected to influence 
different communities in the United States over the next 
75 years. Such images are vivid and generated by artificial 
intelligence, suggesting local risk and stressing the 
cunning of preparing for possible floods. Nasir and Atal 
(2023) have proposed a hybrid model for predicting 
floods. It combines the federated learning model with the 
feed-forward neural networks. To evaluate the overall 
efficiency of the model, it was compared to various 
traditional models. The result shows that this proposed 
hybrid model has achieved an accuracy rate of 84% in 
predicting previous floods and also provides data privacy 
for the collected data. In 2024, researcher architectures 
proposed a flood predictive system based on federated 
learning, a set of locally trained models by multiple clients 
to predict flood occurrence with 5-day ahead of time. The 
model ensured the privacy of the data collected and had a 
high predictive power. Giezendanner et al. (2023) have 
proposed a hybrid model for flood prediction. This model 
combines a CNN model with the LSTM model (CNN-LSTM) 
that fuses satellite data. It also improved the analyses and 
modelling of spatial and temporal variations of floods 
when compared to conventional methods. The result also 
shows that this proposed hybrid model outperformed all 
the traditional models in accuracy. Artificial intelligence 
was used in weather forecasting and provided accurate 
and enhanced prediction results of environmental or 
meteorological events such as urban flooding, as noted by 
Reuters in 2024. AI systems benefit from analysing large 
data sets with historical factors and can identify different 
patterns. All these studies have highlighted the 
advancement of various models in flood prediction. It 
comprises multiple techniques, such as DL and federated 
learning models, to improve overall efficiency and 
accuracy. At the same time, it also maintained data 

privacy and security. The application of the hybrid model 
for predicting flood combines the CNN model with the 
LSTM model, which was used to analyse and capture the 
temporal and complex spatial patterns in the historical 
data. Also, the uptake of nature-based solutions and/or 
AI-based forecasting has been used to provide more 
accurate and effective results in flood prediction. 

Many of the earlier research works have proved that deep 
learning models are highly suitable for flood prediction 
and early flood risk prediction. For example, Karthick et al. 
(2025) have provided an accurate flood risk estimation 
using a deep learning algorithm and climatological data 
from Chennai regions. Preprocessing methods were used 
to increase the quality of the data. The MaxAbsScaler 
approach was used to eliminate missing values, and the 
Extended Elman Spiking Neural Network model has been 
implemented to analyze and predict the risk of the flood 
level. This model obtained the highest accuracy by 
eliminating the network problems during the training 
phase; the parameters were tuned by implementing the 
Chaotic Artificial Hummingbird Optimizer. Babu. T et al. 
(2024) have proposed a Multiagent Reinforced learning 
model integrated with deep neural RNN with VANET for 
predicting early flood by processing Sentinel-2 satellite 
images. The deep neural RNN model effectively extracts 
the intricate patterns from the dataset. The training 
model output is compared with the ground truth image 
outputs to help to increase the prediction accuracy. The 
experimental output shows that the proposed model 
obtained 94.8% accuracy in early flood detection. 
Venkatraman M. et al. (2025) have proposed 
optimization-driven deep differential RecurFlowNet (ODD-
RecurFlowNet) for examining water quality to increase 
sustainability in agriculture and related environmental 
applications. The model uses a giant armadillo 
optimization algorithm for the feature selection process. It 
predicts and classifies water quality using a global 
attention-based RecurFlowNet model. A preprocessing 
model, including data cleaning and robust scalar 
normalization, was implemented to evaluate the input 
dataset used in the experiment and predict the water 
quality and quality index. A deep convolution neural 
network (DDiff-CNN) will be employed for the water 
quality classification. From the output, it is noticed that 
the obtained accuracy is 98.01% with 0.039% MSE, which 
proves its superiority level over the existing methods. 
Arun Mozhi Selvi Sundarapandi et al. (2024) have 
proposed modeling approaches such as a lightweight 
dense network, a tree structurally simple recurrent unit, 
and a tree structurally simple. Initially, the light-weighted 
dense network was implemented to convert the input 
meteorological data variables into grayscale images to 
predict the required patterns. The non-linear relationship 
between the input and output is obtained by 
implementing the TS-SRU model. Integrating the models 
increases flood prediction accuracy with good precision 
and recall values. 

2.1. Limitation and motivation 

Due to advancements in flood prediction and forecasting, 
earlier methods face many critical limitations compared to 
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the current situation and industry needs. No centralised 
flood prediction models are available to collect, process, 
aggregate, and forecast multiple areas. This also leads to 
potential data privacy breaches. Many unauthorised third 
parties access the sensitive hydrometeorological data 
obtained from various sensors, IoT devices, and satellite 
imagery, causing security problems, Nasir and Atal, 
(2023). Earlier methods have focused on extracting spatial 
or temporal features for flood prediction, where the 
prediction accuracy is low for global data. A potential 
hybrid model is needed to extract spatial and temporal 
features to improve prediction accuracy in satellite 
images. Most models analysed small-size static data 
obtained from a single location and predicted flood 
conditions. The static prediction outcomes cannot provide 
accurate predictions on flood conditions, which needs to 
analyse time-series data received from sensors or IoT 
devices generated continuously. Time series data includes 
flood data obtained over a long period and helps to create 
knowledge-discovered information to test the current 
situation. Some models are trained at localised datasets 
and provide less accuracy when applied in various coastal 
regions under different geographical and environmental 
conditions, where an additional model is needed for 
aggregating the locally trained data to train global data. 
Also, their efficiency is not applied and verified in the real-
time flood data prediction. Thus, this paper has been 
motivated to design and implement a novel framework by 
integrating the Federated learning model for global data 
processing, the CNN model for predicting flood conditions 
using spatial features, and the LSTM model for predicting 
flood conditions using temporal features. This framework 
can overcome the above-said limitations and provides 
improved prediction accuracy for global time-series data 

2.2. Problem statement 

In coastal regions of smart cities, flooding makes land, 
properties, money, and life more dangerous. The earlier 
methods and approaches used for flood prediction face 
many challenges because of limited privacy and 
inefficiency in accurately extracting all the spatiotemporal 
features and flood patterns. This problem is considered a 
significant problem and is understood clearly. Thus, it is 
explained mathematically as follows: Let  

tX
 m n 

R
  

be the feature matrix obtained from the input data at 
time t, where m denotes the spatial information and n 
denotes the hydrological and meteorological variables 
(e.g., temperature, precipitation, river discharge, sea 
level). Estimate the flood levels at the same time t is 
represented as 

 m

t 
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The proposed method CNN-LSTM is used as the predictive 
function f0. Since flood data is collected from different 
geolocations, a federated learning model is used to 
aggregate the trained data, which are trained at the local 
server where they are generated. The data aggregation is 
obtained using the following expression:  
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The model parameters of client I at iteration t are 

represented by i
t The CNN model used the convolution 

layers to extract spatial features from flood data using 
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The weight Wc is dynamically and with the bias bc in each 
convolution layer to learn and extract the spatial features. 
The convolution operation (*) performs filtering 

operations activated by the function , to get all the 
features Fs. The sequential data is processed by the LSTM 
model using the following equations: 
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Like the CNN model, LSTM also uses weight values Wh and 
Uh with the bias value bh. The hidden state ht during the 
time t, provides the hidden information and the obtained 
output layer parameters, such as Wo, bo. The error and 
loss values are calculated to confirm the prediction and 
forecasting accuracy rate. For example, mean square error 
(MSE) is used to train the model: 
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The predicted output indicating the flood severity at time 
t is denoted as ŷt. Since the input data is collected from 
many coastal regions of the smart city, it is aggregated by 
deploying a Federated Learning model, which uses 
federated-average (FedAvg) for the global model, and it is 
expressed as: 
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Where the raw data is processed at the local servers and 
updated in the global server. This makes the research 
people design and implement an efficient flood prediction 
model with privacy preservation and improved prediction 
accuracy and forecasting of flood events. To provide a 
better solution, this research proposes a predictive 
framework based on Federated Learning (FL) and CNN-
LSTM that allows for distributed learning at various 
locations while safeguarding data privacy. The model 
incorporates Convolutional Neural Networks (CNN) to 
extract spatial features and Long-Short-Term Memory 
(LSTM) networks to capture temporal dependencies in 
flood-related data. 

2.3. Proposed model 

Flooding significantly threatens coastal smart cities, 
damaging property, fatalities, and economic disturbances. 
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Conventional models for predicting floods frequently face 
challenges due to limited data availability, privacy issues, 
and their ineffectiveness in accurately capturing intricate 
spatial and temporal flood patterns. The challenge is to 
create a sophisticated flood prediction system that 
preserves privacy and is efficient in computation while 
providing accurate real-time forecasts of flood events. 
This paper implements CNN, LSTM, and CNN-LSTM for 
flood prediction in small-scale, large-scale, and global 
satellite images to save people by providing prior 
information. CNN model provides promising output in 
satellite image processing and classification, and LSTM 
provides promising output in time-series, series, and 
continuous data with memory and time management.  
Thus, this paper integrated CNN and LSTM models for 
efficient flood prediction for the global satellite dataset. 

2.4. Convolutional neural network 

In digital image processing, CNN recognises the objects in 
the input image. It comprises various layers, such as 
convolution, pooling, and fully connected layers. This 
convolution layer ensures that the incoming two-
dimensional data is filtered appropriately to create an 
appropriate feature map. Different feature maps need 
different combinations to get a final result. To generate a 
non-linear signal, CNN requires an activation function. The 
rectified linear unit (ReLU) is frequently retained for an 
activation function. The convolution operation takes a 
weighted sum of local patches from the input image and 
then applies an activation function. This operation can be 
expressed mathematically as: 

( ) ( )
1

, , ,

l l l l
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+ +
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Where the activation at the output feature map l, position 
at (i, j) denoted as Zi, jl. weights of the filter (kernel) in the 
layer l, denoted as Wm, n

l, values from the prior layer are 

denoted as ( ) ( )
1

,
l
i m j nX −
+ +

, bias in layer l, denoted as bl, and 

the activation function, typically ReLU (f(x)) = max (o, x) 
denoted as f. The pooling layer typically extracts the 
invariant features by removing the non-maximal values to 
do non-linear down-sampling. Pooling layers are applied 
post-convolution to diminish the spatial dimensions of the 
feature maps. Max-pooling, which chooses the maximum 
value within a region, is often utilized: 
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Where the pooled value for the region for the region in 
the feature map Z, denoted as Pi, j 

The output is transformed into a 1D vector following 
several convolutional and pooling layers: 

( )          Flatten Z vector of all elementsof Z=
  

The flattened feature vector is received by the fully 
connected layers, which apply weighted sums and then 
use an activation function (e.g., softmax for classification): 

( ).y f W x b= +
 

 

Where: weights is denoted as W, input is denoted as x, 
Bias term is denoted as b, and Softmax function for multi-
class classification is denotes as f. 

The loss function can compute the water errors between 
the observed and model outputs through the fully 
connected layer's connection to the max-pooling layer. 
Binary Cross-Entropy is often employed for binary 
classification tasks: 
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Where: True label (1=flood, 0 = no flood) is denoted as yi 
Predicted probability of flood is denoted as ŷi, and the 
number of samples is denoted as N. 

For multiclass classification, Categorical Cross-Entropy is 
applied: 
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The number of classes (e.g., minor, moderate, major 
flood) is denoted as C, True class label for sample I is 
denoted as yi, c, and Predicted probability for class c is 
denoted as (ŷi, c). The latest research indicates that Mean 
Square Error (MSE) is used as a loss function. This 
establishes the model for flood detection. This facilitates 
the extraction of significant features and empowers them 
to provide the patterns and structures necessary for flood 
detection. Through the application of CNNs, the flood 
detection model can proficiently examine satellite images 
and pinpoint areas affected by floods. This model has a 
rich feature derived from a large-scale image analysis task. 
This pretrained model enables flood detection to obtain 
information from representations derived from extensive 
image datasets. This makes it possible to process the 
performance even when dealing with minimum flood-
specific data. The satellite images highlight areas affected 
by floods and other disasters that should be observed. 
This divides affected and non-affected regions into 
separate folders (e.g., flood images and non-flood 
images). This plays as a foundation for the analysis of 
flood detection. 

2.5. Model architecture 

Some convolutional neural network models, such as 
ResNet50, VGG16, and InceptionV3, are used to create 
flood detection models. The structure of the CNN model is 
shown in figure-1. The CNN model performs by receiving 
the source from the areas detected by flood as the input. 
The input source is converted by cov2D, the fundamental 
operation dealing with image data. The source then 
reduces its spatial dimension of image data by 
maxpool2D, which is repeated twice. After the con2D and 
maxpooling2D process, the image is flattened, which 
converts the 2d array into a 1D array by the dense layer, 
which connects the previous layers. This process modifies 
the source and is used for the flood detection model. The 
modified data is used in flood and non-flood areas for 
flood detection, which is none other than the output of 
the CNN. 
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Figure 1. CNN model Architecture 

2.6. LSTM 

LSTM finds temporal relationships in satellite images 
because a flood is a time-dependent event. CNN transfers 
sequential features to LSTM to learn all the patterns 
regarding time. The cells in the LSTM are mathematically 
expressed as: 

 ( )1 ,t f t t ff W h x b −= +  
(3) 

 ( )1 ,t i t t ii W h x b −= +  
(3) 

 ( )1 ,t C t t CC tanh W h x b−= +  
(3) 

1t t t t tC f C i C−= +
 

(3) 

 ( )1 ,t o t t oo W h x b −= +  
(3) 

( )tanht t th o C=
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In the above equations, at the time t, the forget gate is 
represented as ft, input gate is represented as it, and the 
output gate is represented as ot. The state of each cell is 
represented as Ct, and the hidden state is ht. The 
activation function activates all the processes of each cell 

, called the sigmoid function. Finally, the fully connected 
layer, called the dense layer, predicts the results of flood 
or non-flood in the given image. It activates the process 
using a sigmoid function and Adam optimiser. the LSTM 
model architecture is shown in figure-2. 

 

Figure 2. LSTM Model 

2.7. Federated learning used CNN-LSTM framework 

The flood prediction and forecasting model is developed 
to predict the severity of floods and warn people living in 
coastal areas. The entire architecture of the FL-CNN-LSTM 
framework comprises multiple layers, such as application, 
data analysis, network, and data generation layers, as 
shown in Figure-3. This framework predicts flood 
conditions from multi-dimensional data. Initially, the raw 
data is generated by deploying various sensors, IoT 
devices, and related equipment for monitoring and 
recording floods, weather, and rainfalls [edge layer]. The 
data generated at the edge layer is collected and 
preprocessed. The missing data, redundant data, 
overfitting and underlying data are eliminated to improve 
the data quality. After preprocessing, the data concerning 
various parameters is transmitted separately to the base 
station through multiple channels.  

 

Figure 3. Federated Learning Model 

The flood prediction and forecasting model is developed 
to predict the severity of floods and warn people living in 
coastal areas. The entire architecture of the FL-CNN-LSTM 
framework comprises multiple layers, such as application, 
data analysis, network, and data generation layers, as 
shown in Figure-1. This framework predicts flood 
conditions from multi-dimensional data. Initially, the raw 
data is generated by deploying various sensors, IoT 
devices, and related equipment for monitoring and 
recording floods, weather, and rainfalls [edge layer]. The 
data generated at the edge layer is collected and 
preprocessed. The missing data, redundant data, 
overfitting and underlying data are eliminated to improve 
the data quality. After preprocessing, the data concerning 
various parameters is transmitted separately to the base 
station through multiple channels. The physical layer 
contains edge-based data collection centres. These 
sensors will continuously gather and transmit data to the 
local client station for local model training. These sensors 
encompass rain gauge sensors, water flow sensors, water 
flow calculating sensors and water level sensors, each 
playing a vital role in monitoring the various aspects of the 
water system. The proposed model involves processing 
hydrological and meteorological datasets from a targeted 
region in central Asia. In Table 1, the data gathered for 
this research is displayed. All tracked data parameters on 
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the physical layer undergo rigorous regulation during pre-
processing before local model training. These pre-
processing datasets will be executed for dataset 
normalisation on local stations where the corrupt records 
and missing values will be removed. The network layer in 
Figure-3 ensures the secure transmission of local data 
models to a central server. To assure the privacy 
preservation of these local models, the TCP/IP protocols 
have been utilized in this layer. By obtaining local data 
models from a client, this layer can provide asynchronous 
communication, and for training global models which can 
predict floods, these local data models will be transmitted 
to the server. The processing layer in Figure-3 facilitates 
the execution of the FL cycle by training local models at 
client stations, transferring local models to the client-
server, aggregating the local model, global data model 
learning at the central server and initiating predicted flood 
alerts. 

 

The above algorithm explains the federated learning-
based flood prediction process's overall process. Initially, 
the server sends a message to all the client's local 
modules 0. Then, the server gets the updates from all 
active clients in fixed intervals. All the active clients 
connected with a server calculate their local calculations 
and update the server. Each client calculates their 

weighted matrix with a learning η and trains the module. 
After the training process, the updated module (local 
modulek) is transmitted to the server. Finally, the 
weighted average matrix obtained from various local 
modules trains the global data and triggers flood alerts 
accordingly. 

 

CNN-LSTM Model 

2.8. Experimental setup 

In this paper, the input datasets are experimented with 
using the simulation software installed in the system with 
an Intel i7 processor, 1TB HDD, 64GB RAM, NVIDIA GPU, 
3.0GHZ processor, and Windows OS. The deep learning 
model is built using Python software, and the data 
processing is processed using the GPU backend. The 
proposed model is trained using real-time and 
meteorological satellite images. The CNN model is applied 
to extract the essential features from the input data. The 
LSTM model is applied to detect the temporal feature 
dependencies among the input data. The federated CNN-
LSTM approach ensures data privacy and reduces 
computational complexity in forecasting floods from 
satellite images. The model's performance is evaluated 
using accuracy, loss, and F1-score values.  

2.9. Dataset 

The dataset has 412 time series. Each series contains 
between 4 and 20 optical figures and 10 and 58 SAR 
figures 
(https://www.kaggle.com/datasets/virajkadam/sen12floo
d). On average, each series has about 9 optical figures and 
14 SAR figures. The statistics were taken between 
December 2018 and May 2019. A flood is visible in 40% of 
the optical figures from the Sentinel-2 satellite and 47% of 
the SAR figures from the Sentinel-1 satellite. Like in the 
MediaEval dataset, when a flood happens in a sequence, 
all the figures after it are marked as flooded. This is based 
on the idea that the ground still looks different even after 
the flood has passed. 

3. Results and discussion 

Due to the impact on livelihoods, the climate-changing 
rate causes frequent flooding worldwide, affecting 
people's survival rate. The flooding is analysed using 
geospatial data, which is used for mapping, disaster 
management, and navigation to reduce the impact of risks 
on flooding. The geospatial data is used as maps by high-
resolution optical and radar imagery (HRORI), which is 
used for the detailed image of the earth’s surface and 
forecasting weather parameters. The maps using sentinel 

https://www.kaggle.com/datasets/virajkadam/sen12flood
https://www.kaggle.com/datasets/virajkadam/sen12flood
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radar are used in HRORI to identify the flood-affected 
areas and predict water-related geohazards to 
acquaintance water bodies in affected regions with the 
help of learning algorithms in HRORI. Thus, this paper 
applies various learning algorithms such as CNN, LSTM, 
CNN-LSTM, and federating learning models to predict 
floods and safeguard people's livelihoods. Using the 
simulation software, the various flood prediction results 
are analysed, and the obtained results are discussed in 
this section, along with numerical and graphical results.  

 

Figure 4. Sample input satellite Image with and without flood 

sign 

Figure-4 (A) and (b) show two satellite figures in optical 
RGB format, comparing the same area before and after a 
flood, respectively. The figure-(b) on the right shows the 
region under normal conditions, with no flooding. 
Everything is clear, including roads, buildings, and natural 
features. The land is dry, and no sign of water is covering 
any area. Figure-(a) on the left shows the same region 
during a flood. Large areas are covered with water, 
making seeing roads and other structures difficult. Some 
parts of the figure look darker because of water 
saturation. Some areas also have clouds, which is common 
during extreme weather. This comparison helps us 
understand how flooding changes the landscape and 
shows how satellite figures help monitor natural disasters 
and their effects on people and places. 

 

Figure 5. Region (a) Before (b) after flood 

The two satellite figures-5 (a) and (b) show a region 
before and after a flood. Figure-(b) shows everything as 
usual, taken before the flood. Roads, land, and plants are 
easy to see, and the water stays in its usual place. Figure-
(b) shows the region after a flood. Much of the land is 
underwater, making it hard to see things. The satellite 
image looks darker because of all the water, and some 
clouds cover part of the view. These figures help show 

how destructive floods can be and how satellites help in 
disaster response. 

 

Figure 6. SAR image (a) During and (b) after the flood 

The SAR images compare a landscape before and after 
flooding. In the flooded image (Figure-6 (a)), dark areas 
show water coverage, mainly along rivers and floodplains, 
while bright areas indicate land and vegetation. In the dry 
image (Figure-6 (b)), water is less widespread, and the 
land appears more colourful due to urban structures and 
vegetation. This highlights how SAR images help in 
tracking floods. 

 

Figure 7. SAR image-Region (a) Before and (b) after the flood 

The image compares SAR pictures of a landscape before 
and after flooding. The "Flooding" image- (figure-7 (a)) 
shows dark areas indicating water coverage, which 
smooths the surface. The "No Flooding" image-(figure-7 
(a)) shows land with precise features that strongly reflect 
radar signals. This difference highlights how flooding 
affects surface reflectivity and demonstrates SAR's role in 
detecting flood-affected areas. 

 

Figure 8. Target Label Distributions For (a) Sentinel-1 And (b) 

Sentinel-2 Datasets 

Figure-8 (a) and (b) compare the target label distributions 
for Sentinel-1 and Sentinel-2 datasets. In both charts, 
most data points are labelled 0, meaning most input 
images show no flooding area. The Sentinel-1 dataset has 
2500 no-flooding and 1000 flooding satellite images. The 
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Sentinel-2 dataset has 1600 no-flooding and 500 flooding 
satellite images.  This indicates that the dataset is 
imbalanced, with much more non-flooded data than 
flooded data, making it harder to detect flooded areas 
using machine learning models. The input dataset is 
classified into three phases: training, validation, and 
testing to balance it.  

 

Figure 9. Training and validation (a) Loss, (b) Accuracy, and (c) 

F1-score of the CNN model 

The Loss Per Epoch of the CNN model graph in Figure-9 
(A) shows the model's prediction loss rate over 25 epochs. 
The training loss (green line) decreases steadily and 
reaches 0.3. And the validation loss (red line) keeps 
changing significantly and stays higher than the training 
loss of 1.8 loss rate. This might mean the model is 
overfitting or having trouble generalizing. The Accuracy 
Per Epoch graph in Figure-9 (b) shows the LSTM model's 
training and validation accuracy. The result indicates that 
the validation accuracy (red line) is higher than the 
training accuracy (green line), which is 68% on detecting 
the flood from the satellite images. This might mean the 
validation data is more straightforward for the model to 
classify or that its learning patterns are specific to the 
validation data. The F1-score Per Epoch graph in Figure-
9(c) shows how balanced the model is between precision 
and recall. The validation F1 Score (red line) is higher than 
the training F1 Score (green line), suggesting the model 
performs better on the validation data. However, the 
validation F1 Score fluctuates, indicating the model's 
performance changes across different validation samples. 

 

Figure-10. Training and validation (a) Loss, (b) Accuracy, and (c) 

F1-score of the LSTM model 

The Loss Per Epoch of the LSTM model graph in Figure-10 
(A) shows how the model's error changes over time. The 
training loss decreases steadily, so the model predicts the 
flooded and non-flooded regions with a loss rate of 0.1. 
The validation loss is initially high but drops quickly, 
indicating the model improves quickly. The Accuracy Per 
Epoch of the LSTM model graph in Figure-10 (b) shows 
how well the model predicts. The training accuracy keeps 
improving, which means the model is learning the 
patterns in the data with an accuracy of 78%. The 

validation accuracy increases but generally improves to 
71%, showing that the model works well, though not 
always perfectly. The F1-score Per Epoch of the LSTM 
model graph in Figure-10 (c) shows the balance between 
precision and recall. The validation F1 Score is usually 
higher than the training F1 Score of (0.40), meaning the 
model performs well on new data. But the model  

 

Figure 11. Training and validation (a) Loss (b) Accuracy, and (c) 

F1-score of the CNN-LSTM model 

The Loss Per Epoch of the CNN-LSTM model graph in 
Figure-11 (a) shows how the model’s loss decreases over 
time. The green line represents training loss, which 
steadily declines and reaches a 0.1 loss rate when 
processing the 50th epochs, indicating that the model is 
learning from the training data. The red line represents 
validation loss, which fluctuates significantly, suggesting 
that the model might not generalize well to unseen data 
and could be overfitting. Figure-11(b) shows the model’s 
training and validation accuracy. The green line (training 
accuracy) increases consistently, showing that the model 
is improving at making correct predictions on training data 
and achieved 90% accuracy on the 50th epochs. The red 
line (validation accuracy) also improves but is unstable, 
meaning the model’s performance varies on new data, 
which could indicate overfitting or noisy validation data. 
The F1 Score measures shown in Figure-11 (c) illustrate 
the balance between precision and recall. The green line 
(training F1 Score) remains relatively stable but does not 
improve much, suggesting the model is not significantly 
enhancing the precision-recall balance on training data. 
The red line (validation F1 Score) fluctuates heavily, 
indicating inconsistent performance on unseen data, 
which may require better tuning or more balanced data. 
On the 50th epoch, the model achieved a 0.463 F1 score. 
Figure-12 shows actual Vs predicted images that explain a 
model's prediction about flooding. The image on the first 
column is the original satellite image with "No Flooding" 
labelled. The second image is a saliency map highlighting 
the necessary pixels the model used to make the "No 
Flooding" prediction. The third image shows a Grad-CAM 
visualisation, highlighting the areas the model considered 
most important using a heatmap. The fourth image is an 
improved version of the Grad-CAM, which refines the 
highlighted areas. These images help us understand how 
the model made its "No Flooding" prediction. The overall 
result illustrates that the proposed model is more suitable 
for flood prediction.  

We compare the proposed FL-CNN-LSTM model with 
other standard flood prediction models to assess how well 
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it works. These include ARIMA, a statistical forecasting 
method based on time-series data; Random Forest, a 
machine learning model for analyzing hydrological data; 
and ANN, a deep learning method for predicting floods. 
We also compare it with a CNN-LSTM model that 
combines CNN and LSTM but is trained on a centralized 
dataset. Finally, we compare it with the proposed FL-CNN-
LSTM, which uses federated learning to ensure 
decentralized training and better privacy protection. The 
FL-CNN-LSTM model achieves an accuracy of 94.5%, which 
is better than traditional machine learning and deep 
learning models. Although CNN-LSTM shows competitive 
performance with 89.7% accuracy, it doesn’t preserve 
privacy. The FL-based model allows decentralized training, 
which means it works well across different coastal 
environments without needing retraining for each region. 
However, other models need retraining for various areas, 
limiting their scalability. Regarding training time, FL-CNN-
LSTM takes 10.7 seconds, slightly faster than CNN-LSTM at 
12.3 seconds but slower than simpler models like ARIMA 
(3.2 seconds) and RF (5.6 seconds). The trade-off between 
accuracy and training time is worth it because of the 
better flood prediction results.  Lastly, FL-CNN-LSTM is the 
only model that ensures privacy by not collecting data in a 
central server, unlike other models that raise security 
concerns due to data aggregation. The graph compares 

the performance of five models across Accuracy, 
Precision, Recall, and F1-Score. The proposed FL-CNN-
LSTM model outperforms all others with the highest 
scores in every metric, demonstrating its superior 
predictive capabilities. CNN-LSTM follows closely, while 
ARIMA shows the lowest performance. This highlights FL-
CNN-LSTM as the most efficient and reliable model among 
the evaluated options. 

 

Figure 12. Actual vs. Predicted Satellite Flood Image 

 

Table 1. Performance Comaprison 

Model Training Time(s) Privacy Preservation Generalization Across Regions 

ARIMA (Boulton et al., 2022) 3.2 No Low 

Random Forest (Zhang et al., 2023) 5.6 No Moderate 

ANN (Shen et al. 2022) 8.1 No Moderate 

CNN-LSTM(Karthik et al., 2025) 12.3 No Moderate 

Fl-CNN-LSTM(Proposed) 10.7 Yes High 

 

 

Figure 13. Performance Comparison 

Table 1 compares the training time, privacy preservation, 
and generalization of different machine learning models 
across regions. ARIMA trains the fastest, taking only 3.2 
seconds, but it doesn’t preserve privacy and has low 
generalization. Random Forest takes 5.6 seconds to train, 
doesn’t preserve privacy, but has moderate 
generalization. The Artificial Neural Network (ANN) takes 
8.1 seconds, doesn’t preserve privacy, and has moderate 
generalization. CNN-LSTM takes the longest time, 12.3 
seconds, does not preserve privacy, and has moderate 
generalization. The proposed FL-CNN-LSTM model offers a 

good balance, taking 10.7 seconds to train, maintaining 
privacy, and providing high generalization across regions. 

4. Conclusion 

Flood prevention in shoreline areas of smart cities is a 
major concern of accurate, extensible, and anonymity-
promoting approaches. Conventional flood prediction 
systems frequently face challenges connected with data 
privacy, virtual inadequacy, and restricted abstraction 
throughout various geographic zones. This paper presents 
a novel federated learning (FL) derived from a composite 
CNN-LSTM model developed for reinforcing flood defence 
precision to ensure information security and resilience. 
Extraction of Federated Learning (FL), this model 
authorizes localised training throughout various locations, 
prohibiting data breaches during the process of 
upgradation in the robustness of the forecasting model. 
CNN portion productivity holds the location features 
derived from the radar image and sensor signal, during 
which the LSTM network executes the temporary 
addictions in the meteorological sequential data, resulting 
in enhanced flood prediction accuracy. To prove the 
efficiency of the proposed model, it is compared with 
existing models in terms of accuracy, precision, recall, and 
F1-score. The result of the comparison states that, 
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compared to other models, the proposed CNN-LSTM 
model has achieved high performance metrics results with 
more than 95% accuracy. The overall observational 
outputs illustrate that the FL-CNN-LSTM model exceeds 
the conventional approach by providing better forecasting 
accuracy, cost-effective computing, upgraded data 
privacy, and increased adaptability for implementing 
actual-time flood prediction in smart cities. Though this 
model performed more efficiently, it has some limitations 
when performing with diverse environmental and 
geographical conditions of data. The proposed model 
entirely depends on continuous time-series sensor data, 
which may have limitations on the region without a 
sensor.  

Future work 

Apart from the favourable completion, there is a scope for 
the upcoming analysis and advancement. The present 
model focuses on the systematic satellite and IoT sensor 
signal. However, incorporating diverse digital sources like 
live social media insights, aerial mapping and community 
input helps to improve forecasting abilities. Maximizing FL 
architecture through integrating approaches like distinct 
secrecy and protecting all-party computing will reinforce 
security regulations during the maintenance of data 
usage. Analysing advanced DL systems like GNNs (Graph 
Neural Networks) and Modifier-related models will clarify 
the geospatial pattern recognition and update the 
prediction accuracy. The upcoming investigation will 
involve implementing the proposed method in real-time 
flood indication systems and calculating the efficiency in 
various climatic conditions and hazardous areas.  
Incorporating this technological development, the FL-
CNN-LSTM model is highly potent towards upgrading 
flexible, discerning and worldwide adaptable flood 
warning systems, contributing to updated hazard 
prevention and climate stability in smart cities. In the 
future, researchers can integrate drone-based systems 
and real-time data for effective flood prediction. In 
addition, GNN-based systems enhance geospatial 
reasoning in dynamic environmental.  
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