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ABSTRACT 15 

Water Quality Prediction (WQP) plays an essential role in supplying high-quality water to diverse 16 

sectors which is dominant for every living organism in the environment. WQP is an important issue 17 

that affects both the sustainability of ecosystems and the health of aquatic species. Traditional 18 

techniques for determining the quality of water are expensive, time-consuming, and prone to errors. 19 

To overcome these issues, a novel REmote WAteR Sensing for quality assessment (REWAR-Sense) 20 

methodology is proposed to develop an automated system for the prediction and classification of 21 

water quality in Gulshan Lake. Initially, the raw Water Quality (WQ) parameters were gathered from 22 

the Gulshan Lake using Hepta sensors and stored them into the ThinkSpeak Cloud for centralized 23 

data collection. These gathered data are fed to the preprocessing module to standardize the data. A 24 

Deep Learning (DL) Network is employed for feature extraction that identifies the critical patterns of 25 

WQ and reduces the data complexity. After feature extraction, a Water Quality Index (WQI) is 26 

predicted using an adaptive metaheuristic optimization algorithm that provides a numerical score to 27 

indicate the water's condition of the Gulshan Lake. Finally, an attention-based neural network 28 

categorizes the WQ into four such categories to enhance the Water Resource Management (WRM) 29 

for efficient environmental monitoring. The REWAR-Sense methodology was simulated by using 30 

MATLAB and it is validated by Gulshan Lake Dataset. The REWAR-Sense methodology is 31 

evaluated based on a number of variables such as accuracy, precision, recall, and F1-score. In 32 

comparison, the proposed REWAR-Sense method achieves an accuracy of 93.45%, precision of 33 

92.80%, recall of 93.20%, and F1-score of 93.00% outperforming the existing AutoDL, SOD-VGG-34 

LSTM, and LSTM-CN methods respectively.  35 

Keywords: Gulshan Lake, Water Quality Prediction, Ghost Network, Attention Based Bidirectional 36 

Recurrent Neural Network, Adaptive Fish Swarm Optimization. 37 
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1. Introduction 41 

Water quality monitoring data may play a major role in the efficient management and preservation of 42 

water resources (Wu and Wang, 2022; Azrour et al. 2022). Access to safe and clean water is crucial 43 

for agriculture, human health, and environmental sustainability which provides long-term benefits 44 

that can be achieved by combining Internet of Things (IoT) enabled WQ solutions with modern 45 

methods (Deng et al. 2021). In recent years, there has been an increase in interest in using Machine 46 

Learning (ML), DL, and the IoT to address environmental challenges (Khan et al. 2022; Iniyan Arasu 47 

et al. 2024). 48 

Sensor networks may be installed in water bodies via IoT that gather a number of information on a 49 

range of WQ parameters including pH, salinity, temperature, nutrients, and pollutant concentrations 50 

(Chen et al. 2021; Zhang and You, 2024). This real-time data collection provides a thorough grasp of 51 

the dynamic dynamics of aquatic ecosystems and enables ongoing WQ monitoring (Li et al. 2024; 52 

Shams et al. 2024). Decision-makers, managers of water resources, and legislators can use this 53 

information to provide the preservation and restoration of a variety of water resources (Venkata et al. 54 

2024; Pang et al. 2024). The Geographical location of the Gulshan Lake is depicted in Figure 1.  55 
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Figure 1. Geographical Location of Gulshan Lake 61 

Recently used WQP methods mainly include regression analysis, grey system theory, time series 62 

forecasting, and Artificial Neural Network (ANN) methods (Nithya et al. 2020; Satish et al. 2024). 63 

WQ data exhibit characteristics such as nonlinearity and variability with a strong ability to process 64 

nonlinear information are widely used in the field of WQP (Kushwaha et al. 2024; Khullar and Singh 65 

2022). This indicates that fusion models based on DL networks have greater advantages in WQP. 66 

However, the aforementioned prediction models do not adequately consider the varying importance 67 

of features in long-time series where highly important features often have a greater impact on the 68 

model’s prediction performance (Rajeswari et al. 2020, Krishna Bikram Shah et al.2023, Santhiya 69 

Govindapillai and Radhakrishnan Ayyapazham. 2024). 70 

WQ forecasting research is one such important topic of concern. But a growing global issue is the 71 

deteriorating WQ caused by pollution, population growth, and climate change (Díaz-González et al. 72 

2025). The expense, time commitment, and inability to gather data in real-time are the main 73 

drawbacks of conventional methods for WQ monitoring. River WQ variations indicate both gradual 74 

shifts and unpredictable non-linear processes. As a result, the process of appropriate WQP becomes 75 

more difficult (Rajanbabu et al. 2025). WQ forecasting is also essential for planning and managing 76 



 

 

 

water resources and their surroundings. Based on the expected outcomes the issue of water 77 

contamination can be foreseen and enable an early effort to avert its effects (Geethamani et al. 2023). 78 

To overcome these issues, a novel REWAR-Sense method is proposed to forecast the WQ of Gulshan 79 

Lake using advanced sensors and DL techniques. The major contributions of the proposed REWAR-80 

Sense methodology are given as follows.  81 

• The goal of the REWAR-Sense methodology is to develop a robust WQ prediction in 82 

Gulshan Lake for real-time environmental monitoring in WRM. 83 

• The raw environmental data related to WQ parameters are gathered from Gulshan 84 

Lake using Hepta sensors which are stored in the ThinkSpeak Cloud and preprocesses 85 

the data by handling the missing values and removing the irrelevant errors to 86 

standardize the data.  87 

• The ghost network extracts significant WQ features from the data and the Adaptive 88 

Fish Swarm Optimization (AFSO) algorithm produces a precise WQ index by 89 

quantifying the conditions through numerical scores. 90 

• The Attention based Bidirectional Recurrent Neural Network (ABiRNN) categorizes 91 

the WQ into potable water, palatable water, contaminated water, and infected water 92 

for efficient WRM. 93 

• The performance of the REWAR-Sense methodology is validated through metrics 94 

such as accuracy, precision, recall, and F1-score. 95 

Motivation 96 

Water quality plays an indispensable role in sustainable WRM and environmental protection. 97 

Numerous variables impact water quality and in turn its suitability for human consumption such as 98 

mining, industrialization, pollution, and natural occurrences. Current WQ methods gather water 99 

samples manually and examine the physical, chemical, and biological agents to identify the type of 100 

WQ.   These approaches' shortcomings include limited space or time range, time consumption, greater 101 

system costs, and insufficient real-time WQ assessment.  These factors are the motivation behind this 102 



 

 

 

research which is intended to develop a novel REmote WAteR Sensing for quality assessment 103 

(REWAR-Sense) methodology to address these complexities. The proposed REWAR-Sense 104 

methodology aims to provide an automated system for the prediction and classification of WQ in 105 

Gulshan Lake.  106 

Objectives 107 

The major objective of this research is to deploy an innovative automated WQ monitoring system to 108 

enhance the sustainability of ecosystems which is tailored for Gulshan Lake. The REWAR-Sense 109 

methodology reduces the complexity of the data through feature extraction and the WQI is predicted 110 

to identify the water conditions of the Gulshan Lake. The REWAR-Sense methodology categorizes 111 

the WQ into such categories to enhance the management of the water resources. These analyses are 112 

drawn out by the research through various techniques of WQ analysis on Gulshan Lake employing 113 

DL networks and an adaptive metaheuristic optimization algorithm. These research methodology is 114 

cost-effective, energy sustainable, reliability of data transmission, less time delay, high network 115 

coverage, and sensor accuracy.  116 

The remainder of the research is organized as follows: The related research for detecting WQP is 117 

provided in Section 2. The recommended REWAR-Sense methodology for WQP is covered in 118 

Section 3. The experiment results of the REWAR-Sense methodology is described in Section 4. 119 

Section 5 concludes the  REWAR-Sense methodology with future enhancement. 120 

2. Literature Survey 121 

Numerous studies that have examined to efficiently monitor and manage, and forecast WQ have 122 

focused on the intersection of IoT, DL, and ML technology. The related research discusses and 123 

highlights the following pertinent works and contributions below. 124 

In (Prasad et al. 2022) suggested WQP and assessed using both DL and Auto-DL techniques. For 125 

both binary class and multiclass water data conventional DL outperforms AutoDL by 1.8% and 1% 126 

respectively. While the accuracy of the traditional model achieves 98% to 99%, the accuracy of the 127 

AutoDL approach achieves 96% to 98% respectively.  128 



 

 

 

In (Islam and Irshad 2022) suggested a DL-enabled categorization and WQP model for artificial 129 

ecosystem optimization. The suggested AEODL-WQPC method predicts the WQI using an Optimal 130 

Stacked Bidirectional Gated Recurrent Unit (OSBiGRU) model and classifies WQ using an AEO 131 

with an enhanced Elman Neural Network (AEO-IENN) model. Validated on a WQ dataset, the 132 

AEODL-WQPC strategy outperforms more recent state-of-the-art techniques. 133 

In (Wan et al. 2022) suggested a model that tackles WQP caused by pollution from non-point sources 134 

using feature extraction and DL methods. When the suggested SOD-VGG-LSTM approach was 135 

applied, the Lijiang River watershed showed the largest relative differences between the expected 136 

and observed values for DO, CODMn, NH3-N, and TP. It consists of 8.47%, 19.76%, 24.1%, and 137 

35.4% of errors respectively. The SOD-VGG-LSTM's R2 was between 32% and 39.3% greater than 138 

that of the ARIMA, SVR, and RNN. 139 

In (Talukdar et al. 2023) suggested lake WQ indicators using DL methods based on sensitivity-140 

uncertainty analysis. The suggested approach forecasts the WQI by combining the models of the 141 

Generalized Linear Model (GLM), Neural Network (NN), and Gradient Boosting Machine (GBM). 142 

The water samples were found to have poor to very poor quality as indicated by their WQI which 143 

varied from 90.75 to 145.29. This model outperformed the existing models with a prediction accuracy 144 

of 25.77, RMSE of 5.07, MAE of 3.5, and R2 of 0.98 respectively.  145 

In (Rahu et al. 2023) suggested frameworks for WQ analysis and prediction enabled by ML and the 146 

IoT. To gather data from Rohri Canal, SBA, Pakistan, the IoT framework is outfitted with sensors for 147 

temperature, pH, turbidity, and Total Dissolved Solids (TDS). According to the data, the SVR model 148 

has the lowest R-squared at 0.73, while the MLP regression model has the greatest at 0.93. The 149 

Random Forest algorithm has the best accuracy, precision, recall, and F1-score of 0.91, 0.93, and 150 

0.92, respectively among classification techniques. 151 

In (Chhipi-Shrestha et al. 2023) suggested Applications of Artificial Intelligence (AI) and soft 152 

computing to assess the quality of drinking water. The adaptive neuro-fuzzy inference system, 153 

multilayer perceptron-based ANN, support vector machines, Bayesian networks, and general 154 



 

 

 

regression neural networks are some of the AI and SC approaches used in the digital water method 155 

to effectively monitor WQ. AI's and SC's primary roles in the suggested digital water were to model 156 

physicochemical and microbiological factors and assess the water's quality respectively.  157 

In (Mahesh et al. 2024) suggested WQP effectively manages water by integrating a normalizer with 158 

LSTM. While maintaining the intrinsic properties of the data the suggested LSTM-CN model 159 

incorporates normalization calculation techniques for adaptive processing of multi-factor data. To 160 

learn the properties of the data and produce precise prediction results, the LSTM-CN model works in 161 

tandem with the codec. The suggested LSTM-CN approach produces 99.3% accuracy, 95% precision, 162 

18.0% MSE, 11.45% RMSE, and 93.6% recall respectively. 163 

In (Venkatraman et al. 2023) suggested The logistic Giant Armadillo Optimization (GArO) deep 164 

differential recurflownet is used to forecast and classify WQ with precision. An Optimization driven 165 

Deep Differential RecurFlowNet (ODD-RecurFlowNet) is suggested to predict and classify WQ. The 166 

ODD-RecurFlowNet approach produces an overall accuracy of 98.01% and an RMSE value of 0.039 167 

using a standard dataset for WQ. 168 

In (Pavan kalyan et al. 2024) suggested An Analysis of Support Vector Machine (SVM) and Decision 169 

Tree (DT) Methods for Predicting Tomato Growth and Yield in Hydroponic Systems Using Deep 170 

Water Culture (DWC). In the suggested approach, the efficacy of SVM and DT methods in 171 

hydroponic tomato production is assessed using the DWC method.    In contrast, the suggested 172 

approach provides more accuracy with SVM. 173 

In (Raveena et al. 2024) suggested Coffee crop irrigation systems are continuously monitored and 174 

optimized using recycled water and bi-directional RNNs and IoT sensors.    The recommended 175 

technique collects data on soil moisture, weather, WQ, temperature, humidity, pH, and nutrient value.    176 

In terms of irregularity and watering schedules, the recommended method produces an accuracy of 177 

95.66% respectively. 178 

In (Li et al. 2024) suggested an analysis of the modernization and transformation of manufacturing 179 

firms using a four-way game and industrial internet platforms. A revenue sharing contract coefficient 180 



 

 

 

guarantees the steady growth of the suggested approach and ongoing collaboration.    The model gives 181 

platforms, manufacturing companies, governments, and developers a theoretical foundation for 182 

choosing a strategy. 183 

In (Wang and Ma, 2024) suggested a study on the connection between rising carbon emissions and 184 

the expansion of inclusive digital banking. The suggested approach examines carbon emissions and 185 

digital inclusive financing are related in Chinese cities between 2011 and 2022. By contrast, the 186 

suggested approach shows that carbon emissions can be reduced by 0.311% for every 1% expansion 187 

and that China's digital inclusive finance index has increased since 2011. 188 

In  (Wang et al. 2024) suggested an examination of the regions in China that produce the most energy 189 

in terms of carbon emissions. The suggested approach forecasts carbon emissions from 2021 to 2040 190 

using an open STIRPAT model. The study also highlights the importance of controlling per capita 191 

GDP and energy consumption for effective emission reduction strategies. 192 

In (Suresh Maruthai et al. 2025) suggested Real-time monitoring by combining HG-RNN with IoT 193 

sensor vision and wastewater recycling.  The suggested approach uses IoT sensors to efficiently clean 194 

and monitor contaminated ponds and turn them into sources of pure water. To deliver the best possible 195 

WQ while avoiding pollution, the HG-RNN algorithm predicts WQ parameters, examines future 196 

trends, and incorporates real-time treatment decisions. 197 

In (Zhang et al. 2025) suggested a consideration of heterogeneity and variable interaction in the 198 

relationship between artificial intelligence (AI) and digitization (D&AI) and carbon emissions. The 199 

suggested Decision Deep and Cross Feature-Transformation Network (DDCFTN) analyzes the 200 

carbon impacts of urban emissions. The suggested model works better than the traditional models and 201 

demonstrates that the influence of interacting effects exacerbates the overestimated contribution of 202 

D&AI to carbon emissions. 203 

In (Wu et al. 2025)  suggested the impact of green finance regulations on the ESG performance of 204 

construction firms. The suggested approach states that by setting financing caps and promoting the 205 

advancement of green technologies, the green credit policy greatly improves ESG performance. 206 



 

 

 

These findings are particularly significant among smaller and non-state-owned firms. The suggested 207 

approach enhances the ESG performance and reduces the environmental risks. 208 

In (Zeng et al. 2025) suggested a multi-scale spillover and a tail risk contagion between the top US 209 

technology shares and the green finance index.    The proposed method identifies Microsoft and the 210 

S&P 500 ESG index as the primary risk sources, and the net risk spillover characteristics show 211 

fluctuation and cyclicality. According to these findings, volatility connectedness increases in 212 

beneficial market conditions and is stronger at extreme tails. 213 

The research evaluation states that people forecast WQ and offer alerts on potential ecological 214 

contamination based on past environmental indicators. Determining the quality of water is difficult 215 

because of the complicated data. The decline of the surface water ecosystem exacerbates these 216 

problems. Predicting and monitoring surface WQ is essential. To overcome these issues, a novel 217 

REWAR-Sense methodology has been proposed to predict the WQ of Gulshan Lake using DL 218 

techniques. 219 

3. The REWAR-Sense Methodology 220 

In this section, a novel REmote WAteR Sensing for quality assessment (REWAR-Sense) 221 

methodology has been proposed to develop an automated system for the prediction and classification 222 

of WQ in Gulshan Lake. Initially, the raw environmental data related to WQ parameters are gathered 223 

from Gulshan Lake using Hepta Sensors such as Total Dissolved Solids (TDS) Sensor, Dissolved 224 

Oxygen (DO) Sensor, Total Organic Carbon (TOC) Sensor, Temperature Sensor, Turbidity Sensor, 225 

pH Sensor, and Chlorophyll Sensor to monitor various physical, chemical, and biological parameters 226 

in real-time over a specific period. Several Internet of Things protocols and wireless technologies are 227 

employed to transmit these data directly to the ThinkSpeak Cloud for storage. These gathered data 228 

are fed to the preprocessing module to attain an accurately reliable formatted data by using Handling 229 

Missing Values, Data Standardization, and Data Cleaning for feature extraction. The ghost network 230 

extracts significant features related to the WQ and reduces data dimensionality to ensure efficient 231 

WQ prediction. After feature extraction, the WQI is predicted by an AFSO optimization algorithm 232 



 

 

 

that represents whether the quality of water is excellent, fair, or poor through numerical scores. 233 

Finally, an Attention based BiRNN categorizes the WQ into respective categories such as potable 234 

water, palatable water, contaminated water, and infected water for accurate real-time environmental 235 

monitoring in WRM. The overall workflow of the proposed REWAR-Sense methodology is depicted 236 

in Figure 2.  237 

 238 

Figure 2. Proposed REWAR-Sense Methodology 239 

3.1. Data Collection (Hepta Sensors) 240 

The REWAR-Sense system utilizes the interconnected devices and Hepta Sensors such as 241 

Temperature sensor, Turbidity sensor, pH sensor, TDS sensor, Chlorophyll sensor, Dissolved Oxygen 242 

sensor, and TOC sensor deployed along the Gulshan Lake to automate data collection. These Hepta 243 

Sensors would continuously measure parameters such as temperature, turbidity, pH, concentration of 244 

dissolved solids, chlorophyll concentration, DO concentration, and TOC contents from the lake. The 245 

Hepta Sensor measures the temperature level of the water for concerning the ecosystem health and 246 



 

 

 

turbidity level for detecting the amount of pollutant levels in the water. In the Hepta Sensor, the 247 

alkalinity of water is determined using a pH sensor, and the concentration of dissolved ions is 248 

measured by a TDS sensor. The Hepta Sensor monitors the chlorophyll levels as well as oxygen levels 249 

in water which is vital for aquatic organisms and detects the pollution from organic matter. The Hepta 250 

Sensor quantifies the organic carbon content to provide insights into water pollution and 251 

decomposition levels. Several IoT protocols and wireless technologies enable the ThinkSpeak Cloud 252 

to store this processed data. 253 

3.2. Data Preprocessing 254 

Those data gathered by using the Hepta Sensor are fed to the preprocessing module to attain 255 

accurately reliable formatted data by using Handling Missing Values, Data Standardization, and Data 256 

Cleaning for feature extraction.  257 

Handling Missing Values:  258 

Due to regular maintenance of monitoring stations and occasional equipment failures, some WQ data 259 

may be missing. To ensure the validity of the experiment, complete data must be provided to the 260 

prediction model. It uses linear interpolation to handle missing data. The formula for linear 261 

interpolation is represented in Equation (1), 262 

                               𝑦𝑘 = 𝑦𝜔 + (𝑦𝑟 − 𝑦𝜔)
𝑘−𝜔

𝑟−𝜔
                                                                              (1) 263 

In the formula, k, ω, and r represent time, 𝑦𝑘 denotes the missing value at time k, 𝑦𝜔 represents the 264 

known data corresponding to the most recent time ω before 𝑦𝑘, and 𝑦𝑟 denotes the known data 265 

corresponding to the most recent time r after 𝑦𝑘. 266 

Data Standardization: 267 

The mean of the rescaled features is zero, and their standard deviation is one. Outlier features have the 268 

potential to substantially skew distributions. The influence of outliers is lessened by standardization 269 

since it focuses on the distribution. Since feature coefficients are all normalized to the same scale. This 270 

method can be used to determine a feature's importance. The Mean standardization uses the following 271 

Equation (2), 272 



 

 

 

                       𝑋𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 = (𝑋 − 𝑚) 𝑠𝑑⁄                                                                                   (2) 273 

Where m is the mean, x is the starting value, and 𝑠𝑑 is the standard deviation. Gaussian normalization 274 

which fits a Gaussian distribution, and scaling by interquartile range are two further standardization 275 

techniques. 276 

Data Cleaning: 277 

Outliers are eliminated from the data preparation framework through a process known as data 278 

cleaning. Data points that exhibit a significant departure from the norm are known as outliers which 279 

distort statistical analysis and model training. Finding and managing outliers is necessary to improve 280 

the reliability and quality of the data.  281 

3.3. Feature Extraction Using GhostNet 282 

A deep learning based GhostNet framework was implemented to extract the features from the 283 

preprocessed data for WQP. A ghost module has been built in the CNN network as shown in Figure 284 

3, that extracts multi-scale bottom-level features to increase the feature utility and reduce the network 285 

capacity. In order to identify the features from the inputs while maintaining the correlation between 286 

preprocessed data this network initializes random distributions. The layer's input volume which is 287 

represented as 𝑀𝑙𝑓−1𝜖ℤ
𝐾𝑙𝑓−1∗𝐾𝑙𝑓−1∗𝑁𝑙𝑓−1 related to the bias vector and an arbitrary feature 288 

𝑅𝑙𝑓𝜖ℤ
𝐾𝑙𝑓∗𝐾𝑙𝑓∗𝑁𝑙𝑓 defines the locations of identified features within the input data which is formulated 289 

in Equation (3). 290 

                                                  𝑅𝑙𝑓 = 𝐷𝑙𝑓 ∗ 𝑀𝑙𝑓−1 + 𝑏𝑖𝑎𝑠𝑙𝑓                                 (3) 291 

When applying convolutional kernels to input data Equation (3) indicates that each input element-292 

wise product with the filter weight is dumped into the local receptive field.  293 

In 𝑎 = �̂� − [𝐾𝑙𝑓−1 2⁄ ] and = �̂� − [𝐾𝑙𝑓−1 2⁄ ] , the spectral indexes are represented as 𝑠�̂�and 𝑠𝑖, and the 294 

indexes along the spatial proportions of weights are 𝑎, 𝑏, �̂� and �̂� is represented in Equation (4). 295 

                                         𝑅𝑙𝑓
𝑥,𝑦,𝑠𝑖 = ∑ 𝐷𝑙𝑓

�̂�,�̂�,𝑠�̂� ∗  𝑀
𝑙𝑓−1

𝑥+�̂�,𝑦+�̂�,𝑠𝑖�̂� + 𝑏𝑖𝑎𝑠
𝑙𝑓

𝑚𝑓
�̂��̂�𝑠𝑖�̂�

                                  (4) 296 
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Figure 3. Architecture of Ghost Network 298 

As a result, the nonlinearities of the data are learned using a non-linear activation function A(.) which 299 

yields the final output feature maps as 𝑀𝑙𝑓𝜖ℤ
𝐾𝑙𝑓∗𝐾𝑙𝑓∗𝑁𝑙𝑓 is represented in Equation (5). 300 

                                                                𝑀𝑙𝑓 = 𝐴(𝑅𝑙𝑓)                                             (5) 301 

Where the ReLU function which is typically employed in backpropagation methods is applied as A. 302 

Ghost convolution uses fewer variables and less computational power to produce redundant data. 303 

Intrinsic features �̃�𝑙𝑓 are updated in a few simple ways as the output features 𝑀𝑙𝑓 are developed as 304 

"ghosts." 𝑀𝑙𝑓𝜖 ℤ
𝐾𝑙𝑓∗𝐾𝑙𝑓∗�̃�𝑙𝑓 is the group name for these intrinsic feature maps which are generated by 305 

a primary convolution from Equation (5). Furthermore, all of the features are combined and 306 

vectorized by the pooling module, which then delivers the result to the WQI prediction module. The 307 

ghost network extracts significant features related to the WQ and reduces data dimensionality to 308 

ensure efficient WQ prediction.  309 

3.4. Water Quality Index Prediction via Adaptive Fish Swarm Optimization 310 

After feature extraction, the WQI is predicted by an AFSO optimization algorithm to represent the 311 

quality of the water. The group of fish is the individual, and the hunting space is the search space. 312 

The model begins with a set of populations based on member distribution. There are two types of the 313 

suggested routing protocol which are blocks and chasers. Equation (6)-(7) formulates the initialization 314 

step,  315 



 

 

 

                               𝑞𝑗
𝑖 = 𝑟𝑎𝑛𝑑. (𝑏𝑖

ℎ𝑖𝑔ℎ
− 𝑏𝑖

𝑙𝑜𝑤) + 𝑏𝑗
𝑙𝑜𝑤                                                                (6) 316 

𝑖 = 1,2, … 𝑛; 𝑗 = 1,2, … ,𝑚, 317 

                             𝑒(𝑐𝑟) = ∑ ‖𝑄𝑓 − 𝜇𝑟‖
2
, 𝑓 = 1,2, …𝑔;𝑞𝑓∈𝐶𝑟

                                                       (7) 318 

𝑟 = 1,2, … 319 

Using 𝑟𝑎𝑛𝑑 to define the random number, which is in the interval [0,1]. Following the 320 

aforementioned methods, the entire population 𝑄 is divided into discrete groups, or subpopulations, 321 

whose behavior can be modeled separately. Equation (8)-(10) displays the mean square error between 322 

the cluster 𝜇𝑟 and data points. Fish population Q is the initial data.  323 

                                           𝐸(𝐶) = ∑ 𝑒(𝐶𝑟)
0
𝑟=1                                                                             (8) 324 

                                Φ𝑟
𝑠+1 = Φ𝑟

𝑠 + 𝛼⨁𝐿𝑒𝑣𝑦(𝛽), 0 < 𝛽 ≤ 2                                                       (9) 325 

                                   𝛽 = (𝐸(𝐶) × 0.099) +
0.001𝑠

𝑆𝑚𝑎𝑥 10⁄
                                                               (10) 326 

In order to determine whether the prey has been moved, it will submerge itself in the crack and explore 327 

multiple nooks. On occasional walks, the 𝐶𝑟 will shift its position and search for any crevices where 328 

prey may be hiding. The new position is then determined using Equation (4). Since α = 1 and ⊕ is 329 

the entry-wise multiplication, α indicates the step size in this method. An algorithm for WQI 330 

prediction via AFSO Algorithm is derived in Algorithm 1. 331 

Algorithm 1: WQI Prediction via AFSO Algorithm 332 

   Input: Physiochemical Features, Derived Features, and Temporal Features 

   Output: WQI Score 

1. Initialize random fish population (Q) within bounds 

2. Cluster each fish groups (𝐶𝑟) and evaluate the cluster centroids (𝜇𝑟) via MSE 

3. Update the positions of each fish using Levy flight 

                                    Φ𝑟
𝑠+1 = Φ𝑟

𝑠 + 𝛼⨁𝐿𝑒𝑣𝑦(𝛽), 0 < 𝛽 ≤ 2 

4. Assess the fitness function for each fish using WQI 

5. Update the best position (Φ𝑏𝑒𝑠𝑡) of the fish according to the low error rate 



 

 

 

6. Modify the positions of chaser and blocker fish based on its spiral motion and 

average movement 

7. Return WQI score 

 333 

The tail regulates the distribution probability, where β is the Levy index. This can be represented 334 

using Equation (11)-(14). 335 

                𝑇 = ∏𝛼⨁𝑙𝑒𝑣𝑦(𝛽)~𝛼 (
𝑢

|𝑣|
1

𝛽⁄
) (Φ𝑟

𝑠 − Φ𝑏𝑒𝑠𝑡
𝑠 )                                                            (11) 336 

                                                   𝑢~𝑀(0, 𝜎𝑢
2)                                                                              (12) 337 

 338 

                                               𝑣~𝑀(0, 𝜎𝑣
2)                                                                                 (13) 339 

                                               Φ𝑟
𝑠+1 = ∑Φ𝑙

𝑠 + 𝑇                                                                       (14) 340 

Where, T is the randomly selected step. The 𝑢 and 𝑣 stand for the normal distribution as per Equation 341 

(15). The Equation (16), is used to assess the fitness of the 𝐶𝐹 at the new sites. 342 

                                          Φ𝑏𝑒𝑠𝑡
𝑠+1 = ∑Φ𝑏𝑒𝑠𝑡

𝑠 + ∏𝑇′                                                                   (15) 343 

                                          𝑇′ = ∑ 𝛼 (
𝑢

|𝑣|
1

𝛽⁄
)𝑛

𝑢=0                                                                          (16) 344 

                                          𝜑𝑓
𝑠+1 = 𝑍𝑓 . 𝑒

𝑏𝑝. 𝑐𝑜𝑠2𝜋𝑝 + Φ𝑟                                                         (17) 345 

The value of 𝑇′ is provided by Equation (17). A logarithmic spiral represents the Blocker Fish's (𝐵𝐹) 346 

movement. They always follow the logarithmic spiral motion of 𝐵𝐹, which may be found in Equation 347 

(18)-(20).  348 

                                            𝑍𝑓 = |𝑙. Φ𝑟 − 𝜑𝑓
𝑠|                                                                         (18) 349 

                                             {Φ𝑟 , 𝜑𝑓
𝑠} ∈ 𝐶𝑟                                                                              (19) 350 

                                          𝑞𝑓
𝑠+1 =

Φ𝑏𝑒𝑠𝑡+𝑞𝑓
𝑠

2
                                                                              (20) 351 

The number that breaks the distance of 𝑍𝑓 in [−1,1] is 𝑙. A new location will be chosen to find new 352 

prey after the search space is fully occupied. In these situations, the AFSORP model analyzes 353 



 

 

 

overexploitation using the λ parameter. The following Equation (21)-(24) has been used to determine 354 

the WQI.  355 

                                           𝑊𝑄𝐼 =
∑ 𝑞𝑖×𝑤𝑖

𝑁
𝑖=1

∑ 𝑤𝑖
𝑁
𝑖=1

                                                                             (21) 356 

                                          𝑞𝑖 = 100 × (
𝑉𝑖−𝑉𝐼𝑑𝑒𝑎𝑙

𝑆𝑖−𝑉𝐼𝑑𝑒𝑎𝑙
)                                                                     (22) 357 

                                         𝑤𝑖 =
𝐾

𝑆𝑖
                                                                                              (23) 358 

                                        𝐾 =
1

∑ 𝑆𝑖
𝑁
𝑖=1

                                                                                         (24) 359 

Where wi is the unit weight for each parameter as determined by Equation (21), N is the total number 360 

of parameters used in the WQI computations, and qi is the quality rating scale for each parameter i, 361 

as specified by Equation (24). The AFSO algorithm represents that the quality of water is excellent, 362 

fair, or poor through numerical scores.  363 

3.5. Water Quality Classification using ABiRNN  364 

An Attention based BiRNN categorizes the WQ for accurate real-time environmental monitoring in 365 

WRM. The ability to extract temporal correlations and contextual information from input data makes 366 

this method especially suitable for WQ classification. An attention strategy could increase accuracy 367 

and reduce noise from irrelevant data by concentrating on the most crucial components is represented 368 

in Equation (25). The architecture of the ABiRNN structure is depicted in Figure 4.  369 

                                    ℎ𝑡 = 𝑓(𝑈𝑥𝑡 + 𝑊ℎ𝑡−1 + 𝑏)                                                                     (25) 370 

In the following equation, f is the nonlinear activation function which is used to find the hidden 371 

state ht of the RNN at time t. BiRNN uses the forward and backward RNNs which is represented in 372 

Equation (26)-(27), 373 

                                    ℎ⃗ 𝑡 = 𝑓 (�⃗⃗� 𝑥𝑡 + �⃗⃗⃗� ℎ⃗ 𝑡−1 + �⃗� )                                                                   (26) 374 

                                 ℎ⃗⃖𝑡 = 𝑓(�⃗⃗⃖�𝑥𝑡 + �⃗⃗⃗⃖�ℎ⃗⃖𝑡+1 + �⃖⃗�)                                                                     (27) 375 



 

 

 

These represent the trainable parameters such as �⃗⃗� , �⃗⃗⃗� , �⃗� , �⃗⃗⃖�, �⃗⃗⃗⃖�, and �⃖⃗�. The nonlinear activation 376 

functions are 𝑓  and 𝑓. By analyzing the 𝑥𝑡 to 𝑥1 series, the reverse RNN generates the backward 377 

hidden layers (ℎ⃗⃖1,⋯, ℎ⃗⃖𝑡) which is represented by using Equation (28). 378 

                                 ℎ𝑡 = [ℎ⃗ 𝑡
𝑇; ℎ𝑡

𝑇]
𝑇
                                                                                            (28) 379 

After evaluating a set of forward hidden statistics (ℎ⃗ 1,⋯, ℎ⃗ 𝑡), the forward RNN analyzes the input 380 

series from 𝑥1 to 𝑥𝑡.  381 

 382 

Figure 4. Architecture of ABiRNN Network 383 

By concatenating the backward hidden layers with ℎ⃗ 𝑡 and ℎ⃗⃖𝑡, the ht hidden layer of BiRNN at time t 384 

is developed. Using Equation (29)-(30), where ct is the output and 𝑥𝑡… 𝑥1  is the input series that 385 

finds the attention module's output at time t. 386 

                           𝐶𝑡 = ∑ 𝛼𝑡
𝑘𝑇

𝑘=1 ℎ𝑘                                                                                                   (29) 387 



 

 

 

                        𝛼𝑡
𝑘 =

𝑒𝑥𝑝(�̂�𝑡
𝑘)

∑ 𝑒𝑥𝑝(�̂�𝑡
𝑗
)

𝑇𝑥
𝑗=1

                                                                                                     (30) 388 

If the weight of the ℎ𝑘 hidden layer is 𝛼𝑡
𝑘, then 𝐶𝑡 and αk reflect the weighted total of the RNN's 389 

hidden states (ℎ1, ⋯, ℎ𝑡). Equation (18) represents 𝛼𝑡
𝑘 in conjunction with other module components. 390 

Finally, the ABiRNN Classifies the quality of the water into respective categories such as potable 391 

water, palatable water, contaminated water, and infected water for for efficient environmental 392 

monitoring. 393 

4. Result and Discussion 394 

This section discusses the results of classifying the WQ using the proposed REWAR-Sense 395 

methodology. In the REWAR-Sense methodology, the data are collected through Hepta sensors 396 

including pH, DO, TOC, TDS, turbidity, temperature, and chlorophyll. The REWAR-Sense 397 

methodology was simulated by using MATLAB R2023a and it is validated by Gulshan Lake Dataset. 398 

The investigation makes use of an Intel i7 processor, 8 GB of RAM, and a Windows 10 OS system. 399 

The real-time sensor data are stored and visualized by using the ThingSpeak cloud platform. A 400 

comparison is made between the proposed REWAR-Sense methodology and existing methods such 401 

as AutoDL (Prasad et al. 2022), SOD-VGG-LSTM (Wan et al. 2022), and LSTM-CN (Mahesh et al. 402 

2024), according to the metrics including accuracy, precision, recall, specificity, F1-score, WQP 403 

Time, MSE, RMSE, and Computational Time. 404 

4.1. Dataset Description 405 

Gulshan Lake is located in Dhaka, which is Bangladesh's northernmost city. Gulshan Lake is 406 

considered to be one of the primary sources of surface water in these areas. The entire surface area of 407 

Gulshan Lake is around 100 hectares, and it is 3.8 kilometers long. The Environment Department 408 

(DOE) and Bangladesh's Environment and Forest Ministry provided these samples. Where, the data 409 

are gathered from the Gulshan Lake through a Total Dissolved Solids (TDS) Sensor, Dissolved 410 

Oxygen (DO) Sensor, Total Organic Carbon (TOC) Sensor, Temperature Sensor, Turbidity Sensor, 411 

pH Sensor, and Chlorophyll Sensor. In 2023, the monthly measurements were made of the WQ 412 



 

 

 

factors. The dataset used in this investigation contained 108 specimens. Based on the WQI prediction 413 

the WQ of the Gulshan Lake is categorized into potable, palatable, contaminated, and infected classes 414 

comprising around 25% even distribution among the Gulshan Lake dataset. This distribution across 415 

these classification phases employed a stratified partition with a 60:20:20 ratio of training, validation, 416 

and testing inputs. A 3-fold cross-validation strategy is employed to effectively assess the model’s 417 

generalization ability and reduce the risk of overfitting. This operation was repeated three times to 418 

ensure that each part had an opportunity to serve as the validation set. Through this approach, all the 419 

training data has been used for model training and evaluation thereby avoiding information wastage 420 

due to data partitioning. The parameter of epoch was set to 100 and the sample number per batch was 421 

set to 20. The Gulshan Lake dataset with epoch 100 was studied and their Val-Loss was calculated 422 

which is shown in Figure 6. During transitional climate periods the monthly data may not reflect daily 423 

or seasonal fluctuations. Therefore, the data preprocessing phase addresses these potential biases 424 

through data cleaning, handling missing values, and data standardization. The data preprocessing 425 

phase standardizes the data to balance these seasonal fluctuations. In this context, the Gulshan Lake 426 

dataset achieves superior results for predicting and classifying the overall WQ. 427 

 4.2. Performance Analysis 428 

The diverse methods used by these models resulted in varying assessments of the results they 429 

generated as, 430 

                              𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)

2𝑘
𝑖=1                                                                                (31) 431 

                              𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)

2𝑘
𝑖=1                                                                         (32) 432 

                         𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
                                                            (33) 433 

                              𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
                                                    (34) 434 

                          𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
                                                            (35) 435 

                                   𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                                            (36) 436 



 

 

 

However, by quantifying the mean absolute error between the predicted and actual values using the 437 

MSE and RMSE, equations (31)–(32) show the divergence between the expected and actual values 438 

that are susceptible to outliers.    Equation (33)–(36) shows the metrics of accuracy, precision, recall, 439 

and F1 score that were used to assess the models' performance. 440 

 441 

(a)  Temperature Prediction          (b) Chlorophyll Prediction 442 

 443 

(c) Turbidity Prediction                             (d) TDS Prediction 444 

 445 

(e) DO Prediction                                (f) TOC Prediction 446 



 

 

 

 447 

(g) pH Prediction 448 

Figure 5. Prediction Effect of Hepta Sensors 449 

The prediction effect of the Hepta sensors for WQP is depicted in Figure 5. Each sensor monitors a 450 

specific parameter critical for assessing WQ. The purpose of this prediction using Hepta sensors is to 451 

enable real-time and accurate assessment of WQ for environmental monitoring, and public health 452 

protection. The advantage of using Hepta sensors for WQP provides continuous real-time data which 453 

enhances the responsiveness of monitoring systems. The integration of multiple parameters improves 454 

decision-making and supports sustainable WRM to ensure ecological balance and public safety. 455 

 456 

(a)                                                                             (b) 457 

Figure 6. Accuracy and Loss curve for REWAR-Sense Method 458 

The proposed REWAR-Sense system is a model for characterizing the quality of the water. The 459 

classification outcomes and accuracy of the validation data set for each model are displayed in Figure 460 

6. The accuracy and loss ratio increase correspondingly when the verification data employs only 461 



 

 

 

quality data. The experimental result shows that improved accuracy and loss as well as graph 462 

stabilization for the proposed REWAR-Sense model. 463 

 464 

Figure 7. Confusion Matrix 465 

The four-class classification challenge for WQ detection may have resulted in a significant 466 

classification error because of the increased inter-class confusion. Most inputs are expected to fall 467 

into the category of WQ classification, as the confusion matrix in Figure 7 illustrates. The differences 468 

between the closely related forms of WQ, such as potable water, palatable water, contaminated water, 469 

and infected water, might not always be clear in contrast to the WQ detection tasks. In line with the 470 

results, the confusion matrix shows the most frequently predicted category in WQ detection.  471 

 472 

Figure 8. ROC Curve for REWAR-Sense Method 473 

The ROC curves for the REWAR-Sense model are plotted in Figure 8 which further illustrates its 474 

classification performance. The ROC curves reveal that the contaminated water has the largest AUC 475 

followed by potable water, infected water, and palatable water with AUC values of 0.980, 0.983, and 476 



 

 

 

0.978. This indicates that these REWAR-Sense models have strong classification abilities for the 477 

Gulshan Lake dataset and can effectively differentiate between positive and negative class samples. 478 

4.3. Comparative Analysis 479 

 480 

Figure 9. Comparison of WQP Time 481 

The WQP time consumption for different methods of comparison is shown in Figure 9. Using all of 482 

these methods, the parallel platform produces the average time after running the experiment times. 483 

The Proposed REWAR-Sense approach achieves a WQP time improvement of approximately 43.7%, 484 

34.8%, and 20.4% compared to the existing approaches AutoDL (Prasad et al. 2022), SOD-VGG-485 

LSTM (Wan et al. 2022), and LSTM-CN (Mahesh et al. 2024), respectively on average across all 486 

prediction runs. 487 

 488 

Figure 10. Comparison of MSE 489 



 

 

 

The MSE comparison of REWAR-Sense models is illustrated in Figure 10. For the assigned WQPs, 490 

the results of the REWAR-Sense models are assessed in terms of MSE. Differences in the model's 491 

performance can be seen by comparing the dataset results. The Proposed REWAR-Sense approach 492 

achieves an MSE improvement of approximately 56.7%, 48.7%, and 31.8% compared to the existing 493 

approaches AutoDL (Prasad et al. 2022), SOD-VGG-LSTM (Wan et al. 2022), and LSTM-CN 494 

(Mahesh et al. 2024), respectively, on average across all runs. 495 

 496 

Figure 11. Performance Comparison of REWAR-Sense Method 497 

Figure 11 compares the suggested REWAR-Sense technique's accuracy, precision, recall, specificity, 498 

and F1 score to those of current approaches. In the REWAR-Sense methodology, the WQ patterns of 499 

the Gulshan Lake are extracted by using the Ghost network, the quality of the water is predicted by 500 

using an AFSO algorithm, and the qualities of the waters are classified by the ABiRNN network.  The 501 

usage of these novel techniques in the REWAR-Sense methodology provides a robust performance 502 

for WQ prediction and classification in Gulshan Lake. The REWAR-Sense method performs better 503 

than the current AutoDL (Prasad et al. 2022), SOD-VGG-LSTM (Wan et al. 2022), and LSTM-CN 504 

(Mahesh et al. 2024) methods according to the metrics including accuracy, precision, recall, and F1-505 

score. Specifically, it achieves 93.45% accuracy, 92.80% precision, 93.20% recall, and 93.00% F1-506 

score respectively.  507 

Figure 12 shows the typical RMSE accuracy comparison. It displays the overall accuracy of each 508 

prediction point. There is minimal variation in the error values between the various methods. The 509 



 

 

 

Proposed REWAR-Sense approach achieves an RMSE improvement of approximately 34.8%, 510 

27.6%, and 16.4% compared to the existing approaches AutoDL (Prasad et al. 2022), SOD-VGG-511 

LSTM (Wan et al. 2022), and LSTM-CN (Mahesh et al. 2024), respectively, on average across all 512 

runs. 513 

 514 

Figure 12. Comparison of RMSE 515 

 516 

Figure 13. Water Quality Prediction 517 



 

 

 

Figure 13 displays each class's WQI range. Scatter plots that forecast WQ classes, such as excellent, 518 

fair, and poor, by taking into account the relevant WQI values are shown in Figure 12. The Proposed 519 

AFSO approach achieves a WQP improvement of approximately 46.15%, 35.38%, and 28.81% 520 

compared to the existing PSO, ACO, and CSO approaches, respectively. The AFSO algorithm 521 

provides an accurate prediction score to identify the quality of the water based on its dynamic WQI 522 

values. According to its swarm behavior, the AFSO algorithm dynamically adjusts its swarm search 523 

behavior and provides an enhancement in WQ prediction for Gulshan Lake.  524 

 525 

Figure 14. Comparison of Computational Time 526 

Even though the graph topology influences the solutions shown in Figure 14, the run time always 527 

stays within the constraints of a stable real-time solution and grows linearly as the number of nodes 528 

in the network rises. The Proposed REWAR-Sense approach achieves a computation time 529 

improvement of approximately 34.7%, 27.5%, and 19.4% compared to the existing approaches 530 

AutoDL (Prasad et al. 2022), SOD-VGG-LSTM (Wan et al. 2022), and LSTM-CN (Mahesh et al. 531 

2024), respectively on average across all data sizes. 532 



 

 

 

 533 

Figure 15. Comparison of Feature Extraction 534 

Figure 15 compares the feature extraction efficiency of the Ghost Network with accuracy, precision, 535 

recall, specificity, and F1-score to those of current approaches. Compared to the existing ConvNeXt, 536 

TFT-LSTM, and CNN networks, the GhostNet extracts efficient features with less computations. It 537 

captures the required WQ patterns from the data without redundant complexity. According to its 538 

lightweight framework, the GhostNet framework captures the required features which is highly 539 

suitable for WQ monitoring. The GhostNet method performs better than the current ConvNeXt, TFT-540 

LSTM, and CNN methods according to the metrics including accuracy, precision, recall, and F1-541 

score. Specifically, it achieves 95.5% accuracy, 92.1% precision, 91.8% recall, and 91.9% F1-score 542 

respectively.  543 

 544 

Figure 16. Performance Comparison with DL Techniques 545 



 

 

 

A comparison between the proposed ABiRNN network and DL techniques such as CNN-LSTM, 546 

CNN-GRU, and RNN-FFNN is shown in Figure 16. The proposed Attention-based BiRNN approach 547 

outperforms the existing CNN-LSTM, CNN-GRU, and RNN-FFNN techniques in terms of F1-score, 548 

recall, accuracy, and precision. Specifically, it achieves 90% accuracy, 88% precision, 87% recall, 549 

and 87% F1-score respectively. In the REWAR-Sense methodology, the ABiRNN network 550 

categorizes the Gulshan Lake’s WQ by capturing long-term dependencies in data with its 551 

bidirectional recurrent layers. The attention layer in the ABiRNN obtains the relevant patterns from 552 

the data and classifies the water according to its respective qualities which enhances the WQ of the 553 

Gulshan Lake.  554 

Discussion 555 

In this research, a novel REmote WAteR Sensing for quality assessment (REWAR-Sense) 556 

methodology has been proposed to develop an automated system for the prediction and classification 557 

of WQ in Gulshan Lake. During real-world applicability, the REWAR-Sense framework provides 558 

continuous monitoring of Gulshan Lake through IoT sensors and gathers the data for further 559 

processing. Due to this continuous data collection process the sensors may transmit massive amounts 560 

of redundant data which may arise computational overhead. These challenges were further addressed 561 

by using the given preprocessing and feature extraction techniques. The REWAR-Sense framework 562 

processes the gathered data and transforms them into a standardized format through preprocessing 563 

techniques. Furthermore, the GhostNet extracts the most relevant WQ patterns from the data with less 564 

computations which is highly suitable for WQ monitoring. Also, the REWAR-Sense framework 565 

provides an accurate WQI score prediction through the dynamic swarm behavior of AFSOA that 566 

ensures accurate prediction on dynamic water qualities of Gulshan Lake. Based on these WQI scores, 567 

the ABiRNN network captures the long-term dependencies from the data with its bidirectional 568 

recurrent layers and categorizes the Gulshan Lake’s water qualities into potable water, palatable 569 

water, contaminated water, and infected water. Therefore, while deploying the REWAR-Sense 570 

system in different environments, larger water bodies, or different types of pollutants the proposed 571 



 

 

 

framework is highly scalable for WQ analysis. However, while deploying the REWAR-Sense system 572 

in larger water bodies or different types of pollutants there is a slight variation in its accuracies based 573 

on the water conditions and its polluted levels of the Gulshan Lake. However, the proposed REWAR-574 

Sense system achieves superior results for accurate WQ prediction and classification of Gulshan 575 

Lake. 576 

5. Conclusion 577 

In this paper, a novel REWAR-Sense methodology is proposed to develop an automated system for 578 

the prediction and classification of WQ in Gulshan Lake. The REWAR-Sense methodology was 579 

simulated by using MATLAB and it is validated by Gulshan Lake Dataset. A comparison is made 580 

between the proposed REWAR-Sense methodology and existing methods such as AutoDL, SOD-581 

VGG-LSTM, and LSTM-CN, according to the metrics including accuracy, precision, recall, 582 

specificity, F1-score, WQP Time, MSE, RMSE, and Computational Time. In comparison, the 583 

proposed REWAR-Sense methodology achieves a WQP time improvement of approximately 43.7%, 584 

34.8%, and 20.4% compared to the existing approaches AutoDL, SOD-VGG-LSTM, and LSTM-CN 585 

respectively. Conversely, the proposed REWAR-Sense method achieves an accuracy of 93.45%, 586 

precision of 92.80%, recall of 93.20%, and F1-score of 93.00% outperforming the existing AutoDL, 587 

SOD-VGG-LSTM, and LSTM-CN methods respectively. The GhostNet method performs better than 588 

the current ConvNeXt, TFT-LSTM, and CNN methods according to the metrics including accuracy, 589 

precision, recall, and F1-score. Specifically, it achieves 95.5% accuracy, 92.1% precision, 91.8% 590 

recall, and 91.9% F1-score respectively. The REWAR-Sense methodology is currently validated only 591 

on Gulshan Lake which may limit its generalizability to other water bodies with different 592 

environmental conditions. In the future, the REWAR-Sense methodology will be further enhanced 593 

by incorporating real-time alert mechanisms for WQ anomalies and expanding the model to include 594 

additional water bodies for broader applicability and generalization. 595 
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