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Abstract 

Floods are among the most destructive natural calamities, 
endangering both people and property. The present 
project aims to create a mesoscale state-wide flood risk 
map for the Chennai district in Tamil Nadu, India, using 
drone data and a GIS-MCDA model. The Chennai 
cloudburst of 2023 was a disastrous meteorological event 
that caused widespread flooding and damage, killing over 
50 people. As a result, creating a flood risk map is critical 
for mitigating future calamities. In the present 
investigation, a flooding risk map created with drones is 
used to estimate damage assessment, create risk 
susceptibility zone maps, predict disasters, propose 
alternatives, and manage rescue and rehabilitation by 
considering flood risk variables such as precipitation (mm), 
proximity to river (km), Digital Elevation Models, DEM (m), 
slope (%), Land Use and Land Cover, LULC, drainage rate 
(km/km2), type of soil, and lithology. The results of this 
study may provide policymakers and managers with more 
full information and precise ideas concerning systems for 
early warning, rescue activities, and flooding mitigation 
strategies. 

Keywords: Chennai Floods 2023; Drone Technology; Flood 
Risk; GIS Mapping; Digital Elevation Models 

1. Introduction 

Floods are one of the most devastating natural 
catastrophes because they risk both life and property 

(Barasa and Perera 2018; Muthusamy et al. 2018). Flooding 
has grown increasingly frequent as a consequence of 
growing populations, industrialization, and changing 
climates (Detrembleur et al. 2015; Khosravi et al. 2020; 
Tabari 2020; Efthymia 2023). It is an unavoidable event that 
will most certainly intensify humanity's existence in the 
next years and jeopardize several regions throughout the 
planet. The existing and potential sensitivity to flood events 
needs a significant amount of geographic and temporal 
data for anticipating floods in the future (Ghosh and Kar 
2018; Joy et al. 2019; De Moel et al. 2015). To decrease 
storm-related hazards and damages, it is required to assess 
the risk of floods, locate storm-prone areas, and implement 
appropriate mitigation and control measures. Flood risk 
assessment is useful for prevention measures, warning 
mechanisms, and rescue strategies (Vieri et al. 2020). In 
disaster assessments, computational approaches are 
widely used for assessing flood risk (Kuldeep Garg and Garg 
2016; Zhang and Chen 2019). Hydrodynamic and 
hydrologic models are commonly used to assess floods 
severity, degree, and recurrence (Ullah et al. 2016). In 
particular, rainwater-runoff models and stream navigation 
models are presently utilized to forecast floods (Sindhu and 
Durga Rao 2017; Liu et al. 2018), as well as the run-off 
yielding method, a type of hydrologic framework, to 
investigate the flooding path in channels of flow (Chomba 
et al. 2021). Such models are capable of processing vast 
amounts of data and provide useful flooding data. An 
extremely difficult and pervasive component of these 
systems is a lack of hydro meteorological monitoring 
(Cabrera and Lee 2019). Furthermore, there is a shortage 
of precise information, making estimating flood risks 
difficult. To alleviate this constraint, a robust flooding risk 
assessment methodology must be developed. GIS systems 
are commonly used in flooding assessment and 
management because of their ability to organize and 
evaluate large databases such as hydrologic and 
meteorological predictions, digitally produced elevation 
models (DEM), and land use information. An essential 
feature of GIS for such application is the ability to combine 
numerous sources of information, such as satellite images 
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and topographical maps, and produce entire risk to 
flooding maps for making judgments. Additionally, GIS 
systems may be used to model flood events and predict 
their consequences. GIS may be used to analyze the 
effectiveness of a mitigation approach. The use of GIS for 
flooding management and evaluation is known to be an 
effective strategy for finding flooding-prone sites, 
forecasting flooding incidents, and assessing the 
effectiveness of mitigation techniques. (Areu-Rangel et al. 
2019; Dash and Sar 2020; Kongeswaran and Sivakumar 
2020). Several research (Wu et al. 2015; Xiao et al. 2017) 
have used GIS and multi-criteria decision analysis (MCDA) 
to assess the consequences of flooding-related elements. 
The MCDA-GIS approach, which integrates the spatial 
datamining skills of GIS with the ability of MCDA to link 
current data (such as rainfall, slopes, quantity of drainage, 
soil, and land usage) to decision-based data, has been 
found to be successful (Kazakis et al. 2015; Gigovic et al. 
2017; Seejata et al. 2018). Flood risk mapping has advanced 
significantly with the incorporation of drone technology, 
which has the potential to record high-resolution, real-time 
geographical data. Several studies have demonstrated the 
efficacy of drones, notably in enhancing flood risk 
assessment and management (Rimba et al. 2017; 
Feizizadeh et al. 2013). For example, Unmanned Aerial 
Vehicles (UAVs) are shown to provide exact topographic 
mapping to detect hazardous flood zones, which is crucial 
input for disaster preparedness (Gómez and Purdie 2020). 
Drones outfitted with LiDAR sensors are used to produce 
Digital Elevation Models (DEMs), which improve floodplain 
delineation and hydrological modelling accuracy. (Liu et al. 
2019). Furthermore, the usefulness of UAVs in monitoring 
flood extent and damages during post-flood assessments is 
emphasized, ensuring a quick and informed decision -
making (Mishra and Shekhar 2021; Aristeidis Kastridis 
2020; Perks et al. 2016). Another study investigates multi-
spectral imaging with UAVs, which was useful in 
determining plant cover, soil moisture, and surface runoff 
characteristics that influence flood risk (Das and Gupta 
2022). The integration of drones and Geographic 
Information Systems (GIS) has been further researched; the 
study emphasized the integration for mapping flood-prone 
zones and measuring community resilience (Rahman et al. 
2021). These studies highlight the expanding relevance of 
drone technology in improving flood risk mapping due to 
its low cost, accessibility to dangerous areas, and capacity 
to capture spatial-temporal changes with high precision. In 
this study, a flood prediction model for Chennai was 
created using an Extended Elman Spiking Neural Network 
(EESNN) optimized with a Robust Chaotic Artificial 
Hummingbird Optimizer (RCAHO). The model was created 
to increase flood forecasting accuracy by capturing 
complicated hydrological patterns and avoiding local 
minima during optimization. Trained on historical flood 
data, the methodology outperformed existing prediction 
approaches, indicating that it is a viable tool for early 
warning systems and disaster management (Karthik et al. 
2025). An integrated model for an early flood prediction 
system is created by combining Sentinel-2 satellite images 
to improve flood forecasting accuracy (Babu et al. 2024). A 

flood prediction model was suggested that uses a Light-
weighted Dense and Tree-structured Simple Recurrent Unit 
(LDTSRU) to assess meteorological data. The LDTSRU 
architecture is intended to efficiently capture complicated 
temporal correlations in meteorological data while being 
computationally simple. By analysing inputs such as 
rainfall, temperature, and humidity, the model strives to 
deliver accurate and fast flood forecasting. This technique 
provides a simplified solution for flood prediction, 
balancing model complexity and performance to improve 
catastrophe planning and response (Arun Mozhi Selvi 
Sundarapandi). In India, an autonomous, data-driven 
methodology was developed to forecast long-term rainfall. 
Their solution makes use of a Convolutional Residual 
Attentive Gated Circulation Model that has been optimized 
via the Humboldt Squid algorithm. This model incorporates 
complex temporal and geographical trends in climate data, 
increasing the accuracy of rainfall forecasts. The Humboldt 
Squid optimization refines the model's parameters, 
resulting in better prediction performance. This technique 
provides a reliable tool for predicting rainfall trends, which 
aids in agricultural planning and water resource 
management (Suresh Subramanian et al. 2024). This study 
assesses flood vulnerability in the Pallikaranai region using 
high-resolution aerial imagery and GIS-based mapping, 
giving important insights for disaster preparedness, 
mitigation, and urban flood risk assessment. To do this, the 
study uses UAVs outfitted with multispectral and LiDAR 
sensors to collect high-resolution aerial images of flood-
affected areas. GIS-based flood risk maps are created by 
combining drone data with satellite images and 
hydrological models in order to examine flood effect 
patterns such as water stagnation, drainage networks, and 
land use change. The study assesses important flood risk 
characteristics such as precipitation levels, proximity to 
rivers, digital elevation model (DEM), slope, land use and 
land cover (LULC), drainage density, soil type, and lithology. 
In addition, socioeconomic risks connected with flooding 
are evaluated in order to develop appropriate mitigation 
techniques for urban design and catastrophe management. 
The 2023 Chennai floods were triggered by a violent 
cloudburst driven by cyclonic rains from the Bay of Bengal, 
resulting in substantial devastation and the loss of over 50 
people. The Pallikaranai wetland, an important natural 
flood buffer, has grown more susceptible owing to 
development and poor drainage infrastructure. Traditional 
flood mapping methods lack real-time, high-resolution 
data, therefore drone-based GIS mapping is a more 
effective option for accurate and speedy flood assessment. 
This study aims to improve disaster resilience and 
preparedness in Chennai by merging real-time drone data 
with GIS. 
The scope of this study covers Pallikaranai and its 
neighbouring flood-prone areas, using UAVs equipped with 
modern sensors to conduct topographic and hydrological 
studies. The study combines drone-derived imagery with 
GIS-based spatial analysis, giving important insights for 
disaster response teams, urban planners, and government 
organizations. Furthermore, the approach used in this 
study may be duplicated for flood vulnerability evaluations 
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in other metropolitan areas, adding to long-term flood risk 
management methods on a larger scale. 

2. Study Area 

The study was carried out at Pallikaranai, Chennai, the 
capital of Tamil Nadu in India. Chennai district, formerly 
known as Madras Provincial, is one of Tamil Nadu's 38 
districts and has the state's greatest population density 
despite its tiny size. Furthermore, it encompasses the great 
majority of Metropolitan Chennai, which was previously 
divided between Chengalpattu, Kancheepuram, and 
Tiruvallur districts. Madras is located at latitudes (13.0° N 
and 13.1° N) and longitudes (80.16° E to 80.3° E) (Figure 1), 
with a total area of 426 km2. The area has the classic severe 
tropical environment, while most of the time is 
characterized by hot climate. The climate of Chennai is 
typically hot, with temperatures ranging from 26 to 35 
degrees Celsius with an average annual precipitation of 
1400 mm. Pallikaranai, located in southern Chennai, Tamil 
Nadu, is a low-lying, flood-prone area near the Bay of 
Bengal. Pallikaranai Marsh is a critical natural flood barrier 
that absorbs surplus precipitation. Chennai has witnessed 
multiple significant floods, including those in 2005, 2015, 
and 2023, with Cyclone Michaung dropping more than 550 
mm of rain in two days. The hydrographic network 
comprises of the Adyar River, Pallikaranai Marsh, and 
several canals, which assist drain surplus water, although 
urban encroachments have limited its efficiency. The 
elevation ranges from 2 to 6 meters, and the slope is flat 
(0°-2°), which delays water drainage and increases flood 
threats. Rapid development and wetland loss have 
exacerbated drainage issues. This work focuses on drone-
based GIS mapping to detect flood-prone locations, 
drainage paths, and topography differences, assisting in 
improved flood management and disaster planning. 

 

Figure 1: Map view of Hydrographic Network 

From September to December as shown in Figure 2, the 
north-eastern monsoon winds deliver the most 
precipitation, which is mostly driven by storms in the Bay 
of Bengal. Precipitation in the southwest monsoon is 
exceedingly varied, with summers showers hardly 
discernible (CCC&AR and TNSCCC 2015). The physical 
geology of the region is divided into four broad lithological 
categories: sandstone with conglomerate, Archean 
charnockite, sand with silt, and younger sand deposits 

formed by alluvial, marine, and eolian activity. Both the 
eroded crystalline rocks and the higher-lying soils/alluvium 
in this location contain uncontrolled ground water. The 
maximum depth of boreholes in the region is 100 meters. 
The research focuses on Pallikaranai, Chennai, India, a low-
lying wetland region that is prone to floods due to fast 
urbanization and inadequate drainage infrastructure. 
Pallikaranai is one of the last surviving marshlands in 
Chennai. It serves as a natural flood buffer. However, 
unplanned land use changes, encroachments, and 
decreasing water bodies have increased flood hazards. A 
land use map for the region shows a mix of residential, 
commercial, and industrial zones, as well as wetlands and 
water bodies. Historical flood statistics from the Chennai 
floods (2015, 2021, and 2023) show that Pallikaranai is 
prone to flooding due to high rainfall intensity and poor 
drainage networks. An investigation of the hydrographic 
network reveals that the area is crossed by channels that 
link to the Buckingham Canal and Pallikaranai Marsh, 
however these waterways are frequently obstructed, 
lowering drainage effectiveness. The soil texture is clayey, 
resulting to poor infiltration and long-term water 
stagnation. Morphological data, such as slope and 
elevation models (DEM), show that Pallikaranai has a low 
height (1-3 meters above sea level) and a moderate slope, 
allowing water to collect rather than drain properly. 
Pallikaranai is a high-risk flood-prone zone, hence 
enhanced GIS mapping and UAV-based monitoring are 
required for better flood control and urban development. 

 

Figure 2: Ombrothermic diagram of Chennai, Tamil Nadu, India 

3. Materials and Methods 

Flood risk modeling is critical for reducing flood damage 
through preparedness, mitigation, and resilience-building 
measures. Technological advances, notably in remote 
sensing, GIS, and machine learning, have enhanced the 
accuracy and usability of these models. However, 
difficulties such as data shortages and uncertainties must 
be addressed for valid and effective flood risk assessments. 

3.1. UAV/Drone used 

Aerial images were captured utilizing a 3D Mapping Drone 
equipped with a 20 MP Optical Daylight Camera. This UAV 
offers various advantages, including flexibility, cloud flight, 
prolonged endurance, a safe landing mechanism, and no 
requirement for a particular take-off location. Because of 
the UAV's terrain-following capabilities, we can keep the 
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Ground Sample Distance (GSD) of the photographs we take 
constant. Figure 3 depicts the UAV used in this study, and 
Table 1 details its technical specifications. Figure 3 depicts 
the enhanced and multi-functional LiDAR Drone, which has 
multiple payloads and excellent security. The drone has a 
standard "plug-in design" and a universal attachment gear. 
Compatible mounts may be quickly and easily fitted to vary 
the drone's functionality. It has a wide variety of uses. 
Users of the A6 Plus with various payloads may do 
industrial inspections, power line stringing, mapping, and 
firefighting. Table 1 highlights the technical specifications 
of the LiDAR drone. 

 

Figure 3: UAV/Drone RGB and UAV/LiDAR Drone used for this study 

3.1.1. UAV- RGB camera specifications 

The high-resolution aerial images are saved in an external 
memory attached to the drone's camera, while the location 
and orientation data are recorded in the Autopilot system. 
These images were also geo-tagged using ExifTools, an 
open-source application, and then processed. The optical 
sensor characteristics are listed in Table 1. 

3.1.2. UAV-LiDAR sensor specifications 

Figure 4 shows a device with a LiDAR sensor that consists of 
four parts: a laser, a scanner, a customized GPS receiver, and 

an IMU (inertial measurement unit). These components 
work together to collect the information needed to produce 
high-quality images and maps. Data may be obtained quickly 
while remaining very accurate. Surface data provides a 
higher sample density. All LiDAR observations include X, Y, 
and Z measurements. Most LiDAR readings contain an 
intensity value, which represents the amount of energy from 
light measured by the sensor. 

 

Figure 4: Oblique Camera (b) HESAI LiDAR Sensor 

3.1.3. UAV/Drone -RGB 3D Image Processing 

The UAV recorded images and GCPs are the primary inputs 
for UAV data processing. Metashape photogrammetric 
program produced several GIS data outputs, including 
orthomosaic, 3D models, DSM (Digital Surface Model), 
DTM (Digital Terrain Model), and contour. These goods 
were evaluated using several GIS tools for feature 
extraction and volume calculation. 

 

Table 1: UAV Camera and LiDAR Sensor Specifications 

Specification UAV Camera Parameters LiDAR Sensor Parameters 

Device Size 170 * 160 * 80 mm 11.5 * 11 * 12 cm 

Assemble Detachable - 

CCD Quantity 5 - 

CCD Size 23.5 * 15.6 mm - 

Pixel Dimension 3.92 µm - 

Effective Pixel 120 MP - 

Min. Exposure Interval ≤0.8s - 

Exposure Mode Fixed-Focus, Timing, Fixed-Point - 

Focus Distance 28mm / 40 mm - 

Angle 45° - 

Measuring Range - 300m @10% 

Laser Class - 905nm class1 (IEC 60825-1:2014) 

Laser Line Number - 32-beam 

FOV - 360 deg, adjustable 

Range Accuracy - ±1cm 

Data - Triple echo 192,000 points/sec 

Update Frequency - 200Hz 

Pitch/Roll Accuracy - 0.005 

Heading Accuracy - 0.017 

Position Accuracy - ≤0.05m 

GNSS Signal Type - GPS L1/L2/L5, GLONASS L1/L2, BDS B1/B2/B3, GAL E1/E5a/E5b 

Accuracy - ≤10cm @150m 

Weight - 1.15 kg 

Working Temperature -10°C ~ 40°C 35°C 

Storage - 64 GB Max support 128GB TF card 

Carrying Platform - Multi Rotor / VTOL 
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3.1.4. Point cloud generation 

The Structure from Motion (SfM) approach creates millions 
of geo-referenced 3D point clouds in the UAV image 
overlap area. The SfM approach makes use of pixel-based 
stereo reconstruction techniques to create a point cloud. 
The generated point clouds are used to create a 3D model.  

3.1.5. Orthomosaic generation 

An orthomosaic is similar to Google Earth but sharper. It is 
a huge, map-quality image with remarkable texture and 
image quality, generated by integrating multiple smaller 
images known as ortho mosaics. 

3.2. Experimental details 

The flood risk assessment study at Pallikaranai, Chennai, 
collected and processed data in real time using UAVs, GIS 
software, and network devices. High-resolution aerial 
imagery was examined to identify the flood-prone regions 
and susceptibility patterns. 

3.2.1. Hardware 

Multi-rotor and fixed-wing drones equipped with RGB, and 
multispectral cameras collected geospatial data, while 
LiDAR sensors created elevation models for flood mapping. 
GNSS modules (RTK/PPK-enabled GPS) provided accurate 
georeferencing, whereas Trimble RTK GPS was utilized for 
GCP placement. Weather sensors captured real-time data 
on rainfall, humidity, and wind speed. 

3.2.2. Software 

Pix4D Mapper and Agisoft Metashape were used to create 
3D models from imagery and LiDAR data. Flood 
susceptibility zones were mapped using ArcGIS and QGIS, 
which combined hydrological models with topography 
data. Google Earth Engine (GEE) and Python GIS libraries 
enhanced predictive flood modeling. 

3.2.3. Network devices 

Real-time data transfer was allowed for IoT sensor data 
gathering using 4G/5G LTE routers on UAVs and LoRa 
modules. A transportable ground station running Mission 
Planner software tracked UAV flights, transmitting 
telemetry data via 2.4 GHz and 5.8 GHz radio connections. 
Cloud storage systems, such as Google Cloud and AWS S3, 
provided safe data access.  

3.3. Damage assessment 

GIS offers reliable geographical data for assessing the 
amount of catastrophe damage. GIS uses satellite images, 
aerial data, and real-time information to assist stakeholders 
see the impact on infrastructure, natural resources, and 
communities. This evaluation is critical for prioritizing 
resources and organizing emergency relief efforts. 

Flood Vulnerability Index (FVI) (Balica et al. 2012), which 
quantifies the risk of flooding based on hazard, exposure, 
and susceptibility components. It is given by (eqn. 3.1): 

( )FVI * /E S R=
 (3.1) 

where: 

R = Resilience Component (The capacity of the community 
to recover from flood events.) 

E = Exposure Component (Population density, 
infrastructure, land use) 

S = Susceptibility Component (Elevation, drainage capacity, 
soil type) 

A higher FVI number implies increased flood susceptibility. 
The combination of UAV-based LiDAR and high-resolution 
drone photography improves the accuracy of H, E, and S, 
resulting in more exact flood risk estimates. This technique 
enhances flood risk management and mitigation tactics in 
urban flood-prone areas like Pallikaranai and Chennai. 

3.4. Flood vulnerability mapping algorithm 

The UAV-Based Flood Vulnerability Mapping method uses 
UAV images, LiDAR, and IoT sensor data to create a flood 
risk rating map. It preprocesses data, using machine 
learning and hydrological modeling, and visualizes flood-
prone zones for optimal disaster management. 

3.4.1. Pseudo code for flood vulnerability mapping 

 

The Pseudo Code is a systematic method for monitoring 
flood risk utilizing UAV pictures, LiDAR data, and IoT-based 
hydrological sensors. It blends data preprocessing, 
machine learning, and hydrological modeling to create 
accurate flood risk ratings, which help in disaster 
preparedness and management. 

3.5. Experimental setup and device arrangement 

The flood risk mapping project in Pallikaranai, Chennai, 
collected and analyzed accurate data using UAVs, ground 
control stations, and IoT sensors. Drone deployment and 
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sensor integration UAVs outfitted with RGB, multispectral 
cameras, and LiDAR sensors flew along GPS-defined flight 
routes planned using Mission Planner and a custom-made 
DH-Q4 drone. Ground Control Points (GCPs) were 
established and recorded with Trimble RTK GPS to improve 
georeferencing accuracy. Drones were released from an 
open field and avoided obstructions. 

3.5.1. Ground station and data transmission 

A mobile ground station (GCS) equipped with Mission 
Planner and QGround Control enables real-time drone 
monitoring. Telemetry data was sent via 2.4 GHz and 5.8 
GHz radio lines, while 4G/5G LTE modules enabled cloud-
based picture uploads. IoT sensors used LoRa connectivity 
to collect real-time rainfall, temperature, and humidity 
data. 

3.5.2. Data processing and GIS analysis 

Pix4D Mapper and Agisoft Metashape were used to 3D 
model and generate orthomosaics using imagery and LiDAR 
data. Geospatial analysis in ArcGIS and QGIS, as well as 
hydrological modeling in HEC-RAS, all contributed to the 
simulation of water flow. Machine learning algorithms in 
Google Earth Engine and Python's GIS libraries boosted the 
prediction accuracy. 

3.5.3. Power and safety measures 

Drones ran on high-capacity LiPo batteries, with backup 
power available at the GCS. Strict safety standards, pre-
flight checklists, and weather monitoring provided 
operational security. Emergency landing zones were 
created for risk minimization. 

4. Results and discussion 

4.1. Comparison of pallikaranai drone sata using 
orthomosaic image: 

Figure 5 depicts an orthomosaic study of the Pallikaranai 
region prior to and during the Michuang Cyclone, 
demonstrating the use of drone data in disaster 
management. The pre-disaster picture, taken on April 16th, 
2023, shows flood-prone areas highlighted in red, 
suggesting low-lying regions or poor drainage systems. This 
data provides a baseline for measuring the area's 
susceptibility to floods and underlines the importance of 
proactive mitigation measures. The post-disaster image, 
taken on December 8th, 2023, shows the cyclone's impact, 
including severe water stagnation in and around residential 
areas. The previously indicated flood-prone zones have 
experienced significant inundation, verifying the forecast 
accuracy of the pre-disaster assessment. The highlighted 
areas near residential structures demonstrate the 
inadequacy of existing drainage systems in managing 
intense weather events. The comparison of the two images 
reveals drones' usefulness in pre-emptive risk assessment 
and post-disaster evaluation. It also emphasizes the need 
for better urban design and the adoption of effective flood 
prevention methods. The data emphasizes the significance 
of continual monitoring with drones to improve real-time 
catastrophe response and long-term resilience planning 
Cyclone Michaung dumped heavy rains on Chennai in 
December 2023, causing serious flooding in Pallikaranai 

and surrounding regions. On December 4, the city received 
24 cm of rainfall, which the India Meteorological 
Department (IMD) classed as 'very heavy'. Over a 35-hour 
period beginning at 8:30 a.m. on December 3, 
Nungambakkam, a Chennai neighborhood, got 43 cm of 
rain. The heavy downpour caused swamped streets and 
submerged automobiles, with some places lying inundated 
for more than 36 hours. While particular river flow 
statistics for Pallikaranai during this event is not widely 
accessible, the region's low elevation and limited drainage 
facilities contribute to prolonged water retention after 
heavy rains. The Pallikaranai Marshland, a natural flood 
buffer, has been diminished owing to urban development, 
heightening flood dangers. The Open City Urban Data 
Portal provides daily rainfall data for Chennai from 1991 to 
2023. at summary, the December 2023 floods at 
Pallikaranai were principally caused by significant rainfall 
from Cyclone Michaung, along with urbanization influences 
on natural drainage systems. 

4.2. Drone mapping of pre-disaster Vs post-disaster: 

Drone mapping before and after Cyclone Michuang at 
Pallikaranai, Chennai, revealed widespread flooding and its 
impact on residential areas. Pre-disaster pictures from April 
16, 2023, depicted a dry terrain in Saibaba Nagar, whereas 
post-disaster images from December 8, 2023, revealed 
serious water stagnation, underlining the need for 
improved drainage infrastructure. Similarly, Sri Meenakshi 
Nagar, which seemed stable before to the cyclone, had 
major flooding between Shiva's Avenue and Mother's 
Matriculation School, highlighting the area's susceptibility. 
AGS Colony, Kamatchi Nagar, pre-disaster mapping 
highlighted infrastructure and drainage layouts, while post-
disaster images caught wet streets, building damage, 
clogged drains, and debris accumulation, highlighting 
crucial locations for emergency relief and recovery 
activities. These findings highlight the effectiveness of 
drone mapping in flood assessment, disaster planning, and 
resilience-building in urban flood-prone zones (Figure 6–8). 

4.3. Effect of newly built drainage system: 

Figure 9 depicts drone images taken in Anjugam Ammaiyar 
Nagar, Ambedkar Nagar, Perungudi, Chennai, which 
provide a thorough analysis of the impact of a recently 
constructed drainage system in the region. The first image, 
dated April 16, 2023, depicts the pre-disaster status of the 
area before the drainage system was built. The lack of an 
adequate drainage system resulted in water stagnation and 
the related flood danger. However, the second image, 
dated December 8, 2023, taken after the completion of the 
drainage system, shows the post-disaster scene during a 
period of severe rainfall. The findings clearly show that 
floodwater did not remain stagnant in the region, 
demonstrating the effectiveness of the new drainage 
system. Geographic coordinates (X: 416568.304 m, Y: 
1433759.003 m) indicate the intervention's specific 
position. This comparison highlights the vital role that 
proactive urban planning and infrastructure upgrades play 
in lowering flood risks, strengthening resilience, and 
improving living conditions in vulnerable places like 
Perungudi. 
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4.4. Broken marshland outlet causing floods in the 
residential areas 
Figure 10 depicts drone images of Netaji Nagar Main Road, 
Anna Nagar, Perungudi, Chennai, which highlight the effect 
of a damaged wetland outflow at Velachery on flooding in 
residential neighborhoods. The pre-disaster picture, dated 
April 16, 2023, depicts the initial state, which shows a rise 
in floodwater approaching residential zones due to the 
faulty marshland outflow. The water overflow posed 
substantial issues, especially for nearby residents and 
infrastructure. By December 8, 2023, as obtained in the 
post-disaster drone image, the persistent issue of water 
stagnation was readily evident, suggesting that the 
damaged marshland outflow had yet to be rebuilt. The 
coordinates (X: 416770.94 m, Y: 1433386.406 m) establish 
the specific location of the impacted area. These findings 
underscore the important necessity for the repair and 
maintenance of critical natural drainage systems, such as 
marshland exits, to prevent floods in highly populated 
metropolitan areas. This case study highlights the need of 
fixing such infrastructure failures in order to properly 
safeguard communities and decrease disaster risks. 

 

Figure 5: Comparison of Pallikaranai Drone Data using 

orthomosaic image of Pre-disaster vs Post disaster 

4.5. Detection of missing trees: 
Figure 11 depicts drone images from Saibaba Nagar, 
Pallikaranai, Perungudi, Chennai, which give a clear 
examination of vegetation changes in the region over time, 
with a special emphasis on the loss of one tree. The pre-
disaster image, dated April 16, 2023, depicts a tree on the 
residential property marked in the circled region. However, 
the post-disaster image obtained on December 8, 2023, 
shows that the tree has vanished, implying either 
purposeful removal or damage caused by natural 
conditions or urban expansion. The coordinates (X: 

415346.694 m, Y: 1430048.955 m) indicate the precise 
position of this observation. This study emphasizes the 
importance of constant monitoring and documenting 
utilizing drone mapping to track changes in urban 
vegetation. The loss of trees in urban environments can 
have long-term effects, such as increased urban heat 
islands, decreased biodiversity, and worse air quality (Tom 
Grylls and Maarten van Reeuwijk 2022). These findings 
emphasize the need of tree protection and urban 
replanting efforts to preserve ecological balance and 
improve urban resilience. 

 

 

Figure 6: Drone Mapping of Pre-disaster Vs Post-disaster at 

Saibaba Nagar, Pallikaranai,Chennai,India 

 

Figure 7: Drone Mapping of Pre-disaster Vs Post-disaster at Sri 

Meenakshi Nagar, Pallikaranai,Chennai,India 

 

Figure 8: Drone Mapping of Pre-disaster Vs Post-disaster at AGS 

Colony, Kamatchi Nagar, Pallikaranai, Chennai, India 
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Figure 9: Effect of Newly built Drainage system: Drone Mapping 

of Pre-disaster Vs Post-disaster at Anjugam Ammaiyar 

Nagar,Perungudi,Chennai,India 

 

Figure 10: Broken Marshland outlet causing floods in the 

residential areas: Drone Mapping of Pre-disaster Vs Post-disaster 

at Netaji Nagar Main Road,Anna Nagar-Perungudi,Chennai,India 

4.6. Prediction of Stagnant flood water near residential 
areas using drone mapping 

Figure 12(a) shows drone images from April 16, 2023, and 
December 8, 2023, which demonstrate the forecast and 
recording of stationary floodwater near residential areas. 
The first image, taken in April, shows a region with no 
evident waterlogging, indicating dry pre-monsoon 
conditions. However, the second image from December 
shows extensive water stagnation after heavy rain, 
particularly near residential areas. The impacted areas are 
shown in red, indicating a clear increase of water-covered 
zones that may cause dangers to inhabitants such as health 
hazards, structural damage, and disruptions to everyday 
operations. The use of drone mapping allows for exact 
identification of flood-prone areas, as demonstrated in this 
example. Authorities can forecast and mitigate flood 
impacts by comparing pre- and post-disaster data. These 

findings highlight the need of improving drainage 
infrastructure and applying flood mitigation methods in 
urban development (Harman Singh et al. 2023). 
Furthermore, such predictive analysis enables prompt 
intervention to protect communities and lessen the risk of 
residential areas to floods (Mujahidul Islam et al. 2025). 
This study highlights the important significance of drone 
technology in urban catastrophe management and 
resilience planning (Sharifah Mastura Syed Mohd Daud et 
al. 2022). The drone mapping of the region focuses on the 
evolution and forecast of stagnant floodwater near 
residential areas, underlining the value of aerial 
observation in disaster management. The pre-disaster 
image from April 16, 2023, Figure 12(b), depicts the 
residential area as dry, with no evident symptoms of water 
collection. In contrast, the post-disaster image from 
December 8, 2023, shows widespread water stagnation 
following a period of severe rainfall, notably in the marked 
residential areas. 

 

Figure 11: Detection of Missing Trees: Drone Mapping of Pre-

disaster Vs Post-disaster at Saibaba Nagar, Pallikaranai-

Perungudi,Chennai,India 

The damaged regions, shown in red, indicate flooding 
encroaching on formerly dry zones, creating substantial 
threats to the population, including pollution, health 
problems, and infrastructure damage. The data produced 
from these images demonstrates how drone mapping 
allows for exact identification and prediction of flood-
prone locations. Comparing pre- and post-disaster 
circumstances allows urban planners and disaster 
management teams to analyze risks, develop efficient 
drainage systems, and prepare for successful flood 
mitigation techniques (Naveen Prashar et al. 2023). This 
study emphasizes the importance of drones in monitoring 
environmental changes, giving practical information to 
mitigate the impact of water stagnation on urban 
residential neighborhoods. Figure 12(c) shows drone 
images that clearly depict stationary floodwater near 
residential areas, providing critical insights into the 
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consequences of floods. The pre-disaster image from April 
16, 2023, depicts the land as dry, with no evident evidence 
of waterlogging, suggesting typical circumstances. 
However, the post-disaster image, taken on December 8, 
2023, shows substantial stagnant water in residential 
areas, which is vividly shown in red. The impacted regions 
are marked, demonstrating the incursion of floodwaters 
following severe rainfall or inadequate drainage 
management. This comparison demonstrates the 
relevance of drone mapping in finding and forecasting 
locations susceptible to water stagnation. Such 
comprehensive imaging enables urban planners and 
emergency management teams to spot susceptible zones 
and determine the degree of floods in real time 
(Tingsanchali 2012). The data emphasizes the need for 
improved drainage infrastructure and flood control 
methods to avoid future tragedies. Drone technology's 
capacity to offer high-resolution and exact geographic data 
makes it an important tool in urban planning, assuring the 
safety and resilience of residential areas against repeating 
floods (Ning Wang et al. 2023). This case shows proactive 
approaches to addressing stagnant water concerns and 
protecting communities. The drone images in Figure 12(d) 
give a thorough comparison of pre- and post-disaster 
circumstances for predicting and analysing stagnant 
flooding in residential areas. The first image, from April 16, 
2023, depicts a dry landscape with no evident water 
stagnation, indicating consistent pre-monsoon conditions. 
In comparison, the view dated December 8, 2023, shows 
substantial water stagnation in residential areas, which is 
prominently highlighted in red. This sharp disparity 
highlights the consequences of flooding during the post-
monsoon season, when stagnant water encroaches on 
residential areas. This research highlights the significance 
of adopting drone mapping as an advanced tool for 
monitoring and forecasting flood-prone regions. By 
delivering pictures with excellent resolution and exact 
geographic data, drones enable authorities to correctly 
identify prone zones and analyze the number of floods. 
Such predictive insights are crucial for urban planning, as 
they allow for the creation of appropriate drainage 
systems, the deployment of flood mitigation measures, and 
prompt intervention to reduce catastrophic impacts on 
populations (Takele Sambeto Bibi et al. 2023). These 
findings highlight the importance of long-term urban 
infrastructure in addressing water stagnation and 
improving residential areas' resistance to flooding. Figure 
12(e) shows aerial views acquired by a drone on two 
separate dates: April 16th, 2023, and December 8th, 2023. 
The contrast emphasizes the existence of stagnant flood 
water that has gathered in a given location, particularly 
near residential areas. In the April image, the ground is 
drier and has ruins of buildings, with no visible water 
buildup. However, the December picture reveals 
substantial flooding, as water has collected and stalled over 
the area. The extreme difference between the two images 
implies either a recent major rainfall event or faulty 
drainage systems causing water stagnation. The finding 
emphasizes the need of addressing drainage difficulties, 
particularly in residential areas, to limit the risks caused by 

stagnant water, such as health concerns and structural 
damage (Ruolan Yu et al. 2023). Figure 12(f) depicts aerial 
images taken on April 16th, 2023, and December 8th, 2023, 
which give a clear visual comparison of land conditions over 
time. The April image shows a dry area with limited water 
presence and evident infrastructure, indicating a stable 
status at that time. However, the December image reveals 
significant changes, as large portions of the area are now 
submerged in stagnant flood water. 
The highlighted zones show that flood water has collected 
near residential areas, raising worries about potential 
public health, property, and daily life consequences. This 
comparison highlights the critical need for better water 
drainage systems and flood mitigation measures to prevent 
extended water stagnation and its negative consequences 
in sensitive areas. The drone photographs displayed in 
Figure 12(g), taken on April 16th and December 8th, 2023, 
reveal a noticeable alteration in the monitored region. The 
April image depicts a dry, well-defined piece of land that 
has no obvious water buildup. In contrast, the December 
picture shows significant stationary flood water 
encompassing the bulk of the region, especially around 
residential structures. This stalling indicates a problem with 
inadequate drainage or recent significant rainfall, which 
might lead to water retention over time. Stagnant water 
provides dangers, including health threats from 
waterborne infections, environmental concerns, and 
significant disturbance to nearby towns. Addressing these 
drainage issues is crucial to keeping residential areas safe 
and functioning during times of excessive rainfall or 
flooding. Figure 12(h) depicts two drone images taken on 
April 16, 2023, and December 5, 2023, highlighting the 
issue of stationary flood water in a residential 
neighbourhood. A specific location has been marked in 
both images, indicating that the flood water remains for an 
extended length of time. The second image, dated 
December 5th, clearly depicts where the stationary flood 
water is located. The comparison of these two timelines 
indicates that, despite the passage of months, floodwaters 
have not drained, indicating inadequate drainage or 
chronic water retention in the region. The finding indicates 
that the stagnant water is concentrated near residential 
areas, which might cause major health and infrastructure 
issues for the local people. This recurrent flooding 
necessitates immediate action to enhance drainage 
systems and minimize water stagnation, resulting in better 
living circumstances for the population. This study 
dramatically improves flood risk assessment with UAV-
based GIS mapping, offering high-resolution, real-time data 
for more accuracy than standard satellite approaches. It 
combines LiDAR and multispectral imagery to improve 
flood risk assessment and early warning systems. 
Scientifically, it enhances remote sensing and geospatial 
analysis by proving the usefulness of UAVs for flood 
monitoring. The work also advances machine learning-
based flood prediction and offers important hydrological 
and morphological datasets for future research. Addressing 
existing restrictions, it provides a scalable, cost-effective, 
and real-time flood management system for urban 
planning and emergency response. 
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Figure 12 (a)-(h): Prediction of Stagnant flood water near residential areas 

 

5. Conclusion 

The recommended solutions stress the importance of 
geospatial technology and data-driven approaches in 
mitigating flood risks and assuring long-term water 
management practices. Actionable flood mitigation 
measures may be undertaken by identifying crucial flood-
prone locations, measuring sediment deposition, and 
determining water body capacity using sophisticated 
surveys such as bathymetric and DEM analysis. 
Comprehensive watershed management and flow 
evaluations improve sustainable resource consumption 
and infrastructure development. Moving forward, the use 
of cutting-edge technology, such as drones, not only for risk 
assessment but also for recovery phases, has tremendous 
promise in disaster management. The results of this inquiry 
may provide policymakers and managers with more full 
information and precise ideas concerning systems for early 
warning, rescue activities, and flooding risk reduction 
techniques. This approach may open the door for using 
UAV-based GIS mapping for high-resolution, real-time 
flood assessment in Pallikaranai, Chennai. Compared to 

traditional satellite technologies, it provides quicker data 
collecting and improved spatial precision. The merging of 
LiDAR and multispectral imagery improves flood risk 
prediction. Furthermore, machine learning-based 
geospatial categorization increases early warning systems, 
making the method applicable to disaster management 
and urban planning. The UAV-based flood vulnerability GIS 
mapping technique has a number of disadvantages. UAV 
operations are weather-dependent and need numerous 
flights to cover vast regions due to limited flight endurance. 
Data processing is complicated, requiring significant 
computer capacity to analyze high-resolution pictures and 
LiDAR data. Drone flying in cities are restricted due to 
regulatory obstacles imposed by the DGCA. Furthermore, 
UAV sensors struggle with subsurface water detection, 
which reduces accuracy. Machine learning models are 
dependent on data availability, which can be unreliable, 
and the expensive cost of UAVs and GIS software limits 
accessibility. A hybrid strategy that combines satellite data, 
IoT devices, and UAVs can assist address these issues. Flood 
vulnerability Drone-based GIS mapping at Pallikaranai, 
Chennai, India showed considerable increases in accuracy 
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and resolution over previous studies. The UAV-based 
research indicated a flood-inundated area of 320 km², 
resulting in a 4.9% improvement over satellite-based 
estimates. The LiDAR-derived Digital Elevation Model 
(DEM) has a vertical precision of ±10 cm, 66.7% higher than 
prior SRTM DEM-based studies' ±30 cm accuracy. Flood 
depth research using UAV views revealed a maximum 
depth of 1.85 m, lowering differences by 12% compared to 
hydrodynamic model-based estimates. Furthermore, the 
machine learning-based land-use categorization obtained 
an overall accuracy of 92.3%, beating previous pixel-based 
approaches at 85%. The incorporation of Ground Control 
Points (GCPs) enhanced positional accuracy, dropping 
RMSE to 0.05 m, much better than the 0.15 m RMSE in 
earlier remote sensing methods. These findings emphasize 
the improved precision and efficiency of UAV technology 
for flood mapping, making it an important tool for disaster 
management and early warning systems in urban flood-
prone areas such as Pallikaranai, Chennai. The suggested 
UAV-based flood vulnerability mapping approach has 
some drawbacks. Weather dependence has an impact on 
drone operations under severe conditions such as heavy 
rain or high winds. Limited battery life limits coverage, 
necessitating additional flights. Data accuracy depends on 
adequate sensor calibration and GCP. Processing huge 
datasets requires significant computational resources. 
Network connection difficulties may impede real-time data 
transfer. Predictive accuracy relies on previous flood data 
and hydrological models, which may have inaccuracies. 
Despite these obstacles, the technique improves flood risk 
assessment and catastrophe response. Future research can 
concentrate on AI-driven flood prediction, HALE UAVs for 
long-term surveillance, and IoT-based real-time 
forecasting. Multi-sensor fusion (LiDAR, SAR, thermal) can 
improve accuracy, while cloud-based GIS can help with 
large-scale data processing. Improvements in legislative 
frameworks and community-driven mapping can boost 
UAV-based disaster management and flood mitigation 
efforts. 

Data availability statement 

The sequence data supporting the Flood Vulnerability GIS 
Mapping at Pallikaranai, Chennai, India using Drone 
Technology: A case study at Chennai floods 2023 image 
availability, as well as access to the data that underpins the 
findings of this study, are publicly available at the following 
GitHub repository https://github.com/educationsha/Flood 
All authors of this research study have contributed to the 
dataset hosted in this public repository. 
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