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Abstract 

The Kanyakumari District was selected as a study area due 
to its diverse flora and favorable climate and soil 
conditions. Various remote sensing parameters were 
derived from Landsat 8 and 9 satellite data, including 
NDVI, BSI, NDMI, NDWI, and SAVI. Moreover, data on land 
use and land cover (LULC), geology, and soil type were 
considered. These parameters were utilized as inputs for 
Random Forest Regression Analysis to establish the 
relationship between Soil Organic Carbon (SOC) and each 
parameter, enabling predicting of future SOC levels. 
Comparing Landsat 8 and 9 data, BSI and NDWI displayed 
high correlations, while NDVI, NDMI, and SAVI exhibited 
medium correlations. To validate SOC predictions, 115 soil 
samples were collected from the field, and laboratory SOC 
content analysis was performed. Machine learning 
algorithms, specifically Random Forest Regression, were 
employed to predict SOC values. The predicted SOC values 
indicated spatial variations, with residential areas 
exhibiting low SOC and forested areas showing higher SOC 
due to minimal human disturbances. Creating a SOC map 
is instrumental in identifying regions requiring soil 
restoration and yield enhancement. This study 
underscores the utility of SOC mapping in guiding soil 
restoration efforts and enhancing agricultural 

productivity, with implications for precision farming and 
sustainable land management. 
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1. Introduction 

The soil exhibits variability across fields due to its diverse 
chemical and physical properties and its mixture of 
organic and inorganic constituents. SOC is a key 
component of the carbon cycle, significantly influences 
the soil ecosystem through its biological, physical, and 
chemical interactions. For soil quality to be maintained, 
soil organic matter, or SOM, is essential. It serves as the 
primary energy source for microorganisms and a vital 
regulator of soil structure and ecosystem productivity, 
contributing to the health of terrestrial ecosystems 
(Abdel-Kader, 2011). 

SOC is beneficial for the health and productivity of Soil 
and provides a significant source of plant nutrients, 
develops the structure of Soil, enhances the capacity to 
store water, and provides a soil habitat organism 
(Alhameid, et al. 2017; Coming, 2014). By capturing and 
preserving SOCs in the Soil, we can also improve soil 
quality and productivity for food production and reduce 
the release of greenhouse gases. Carbon is the main 
component of SOC and helps give the Soil its water-
holding capacity, soil structure, and determining the SOC 
is helpful in precision farming and essential for site-
specific crop management (Franke and Menz, 2007).  

SOC serves as a reservoir for carbon storage in terrestrial 
ecosystems. By reducing atmospheric carbon dioxide 
(CO₂) levels, carbon sequestration facilitated by higher 
SOC helps mitigate climate change. It acts as a long-term 
carbon sink, slowing down the rate of global warming (Qiu 
et al. 2021). 

SOC is a vital component of the nutrient cycle within 
ecosystems. It acts as a source of nutrients such as 
nitrogen, phosphorus, and sulfur. It offers a microbial 
activity substrate, which breaks down organic matter and 
releases essential nutrients for plant growth. Adequate 
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SOC levels promote soil fertility, supporting healthy plant 
growth and ecosystem productivity (Basset et al. 2023; 
Villarino, 2021). SOC provides habitats and energy sources 
for diverse soil organisms, including microorganisms, 
fungi, insects, and earthworms. These organisms 
contribute to soil biodiversity, nutrient cycling, and 
decomposition processes. A healthy soil ecosystem 
supported by sufficient SOC levels fosters biodiversity, 
sustains beneficial organisms, and promotes various 
ecosystem services. SOC affects the water-holding 
capacity of soils. Organic matter can absorb and retain 
water, enhancing soil moisture content and reducing 
water runoff, improving water availability for plants, 
helping regulate hydrological cycles, and reducing the risk 
of soil erosion and sedimentation in water bodies (Bhunia 
et al. 2019). 

SOC plays a crucial part in creating and preserving the 
structure of soil. Soil particles are bound together by 
organic substances encouraging aggregation and 
improving soil stability. Well-structured soils with 
sufficient SOC display enhanced porosity, permeability, 
and water infiltration capacity (Wright and Upadhyaya, 
1998). These improvements support better root 
penetration, reduce soil compaction, and enhance overall 
soil health. 

SOC is critical in soil resilience against environmental 
disturbances like droughts, floods, or land degradation. 
Soils with higher SOC levels exhibit better resistance and 
recovery mechanisms, retaining moisture during dry 
periods and maintaining nutrient availability. Sustainable 
land management practices that enhance SOC levels can 
improve soil resilience and contribute to ecosystem 
sustainability (Burrough et al. 1997). Topography and 
services are factors that affect the spatial distribution of 
soil properties in sustainable land development. SOM 
management helps maintain soil fertility, which is helpful 
in sustainable agriculture (Tisdall and OADES, 1982). SOC 
is generally between 0.5 – 4.0 % in dry land agricultural 
soils globally.  SOC is an essential characteristic for 
assessing the quality of Soil and also a predominant 
parameter of agricultural soils and should be 
systematically observed. 

Conventional soil surveys record soil properties at 
representative locations. In soil science, vegetation type, 
and condition are the most important as they reflect and 
modify land surface processes such as energy and mass 
transfer modelling (Clerici et al. 2016; Cheng et al. 2012). 
Of course, soil properties are highly adjustable, and 
accurate evaluation of the properties of Soil must 
consider the changeability. A new kriging technique was 
widely used in land resource inventory as a required 
spatial interpolation method in 1970 (Gilabert et al. 2002). 
Conventional methods of soil interpretation and analysis 
are cumbersome and take more time. The Walkley-Black 
(WB) approach is widely used to determine SOC, but little 
attention has been paid to its reliability and usefulness 
compared to the dry combustion method. Numerous 
studies have been conducted to find SOC in Soil. Remote 
Sensing can analyze and accurately determine the Soil's 
Organic Carbon content (Patel, 2018). 

Remote sensing (RS) is finding and keeping track of Earth's 
physical properties by identifying radiation that has been 
backscattered and reflected in a distant area, typically on 
a satellite or airplane (Vijayakumar, M. and Ahilan, A., 
2024). Unique cameras and sensors collect remote 
sensing or satellite images, allowing users to "feel" the 
Earth. The powerful Method for mapping soil properties, 
such as SOC in Remote sensing, is a vital attribute of the 
quality of Soil. A remote sensing spectral index based on 
short-wave infrared (SWIR) or near-infrared (NIR) 
wavelengths is used to quantify the spatial pattern of SOC. 
It is also used in SOC (Huang et al. 2021; Ismail and 
Yacoub, 2012) to predict nutrient availability in plants and 
the optimal condition of Soil using different spectral 
indices (Jaber et al. 2011). These indices involve 
reflectance at various spectral wavelengths as 
mathematical transformations.  

Land use type, agricultural intensity, and fertilizer source 
are important factors that change soil properties (Kumar 
et al. 2020; Lamichhane et al. 2019).  The permanent soil 
properties, such as soil pH and texture, and climatic 
environment can also affect the changes in the properties 
of Soil. SOC controls soil properties like color and nutrient 
retention capacity and helps soil structure improvement 
(Liu et al. 2011). In India, most soil maps are produced 
using traditional methods, and work was done by spatial 
techniques for prediction (Marchetti et al. 2012).  

Landsats 9 and 8 are two essential satellite missions that 
have contributed significantly to our understanding of 
Earth's surface and dynamics. Landsat 9 and 8 offer 
valuable Remote Sensing data for studying SOC levels, 
allowing scientists and researchers to monitor and 
evaluate soil health and related environmental processes 
(Kavitha, P., et al., 2025). These satellite missions provide 
multispectral and thermal data, enabling the assessment 
of land surface characteristics, vegetation dynamics, and 
land cover changes—parameters closely linked to SOC 
(Masek, 2020; Mondal and Chakraborty, 2022). The 
multispectral capabilities of Landsat 9 and 8 allow for the 
identification and classification comprises many kinds of 
land cover, such as built-up areas, aquatic bodies, and 
vegetation. By analyzing the spectral responses in 
different bands, researchers can extract valuable 
information about the presence and distribution of SOC 
across landscapes (Oldfield et al., 2019; Ruirui and 
Xiaoting, 2022). By providing high-quality multispectral 
and thermal data, these satellite missions have enabled 
researchers to study soil health, carbon sequestration, 
climate change mitigation, water management, and 
ecosystem sustainability. 

The machine learning (Ahilan, A., et al., 2023) algorithm 
creates statistical models and algorithms that enable 
computers to learn, predict the future, or make decisions 
without explicit programming. It is a subfield of artificial 
intelligence (AI) (Sundarasekar, R. and Appathurai, A., 
2022). It entails the research of mathematical formulas 
and statistical models that allow computers to carry out 
operations or anticipate future outcomes using patterns 
and inferences drawn from data (Jamalabad et al. 2004; 
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Somasundaram et al. 2018). A popular machine learning 
method, Random Forest, can forecast SOC levels based on 
various input data (A. Ashvanth Louison and Ben Sujitha, 
2024; Zeng, et al. 2010). 

The methodology in this study is to find parameters such 
as NDVI (Normalized Vegetation Index), BSI (Bare Soil 
Index), NDMI (Normalized Moisture Index), NDWI 
(Normalized Wetness Index), and SAVI (Soil Adjusted 
Vegetation Index) using Landsat 8 and 9 Satellite data. The 
soil type, geology, and LULC are also considered in this 
study. The Random Forest Regression analysis is then used 
to find SOC and identify relationships between each 
parameter. Then, the SOC identified using Landsat 8 and 9 
multispectral data is compared. 

1.1. Hypothesis 

• How does the integration of satellite-derived 
spectral indices (NDVI, BSI, NDMI, NDWI, SAVI) 
enhance the accuracy of SOC prediction 
compared to traditional soil sampling methods? 

• How does Landsat 9 data, with its improved 
spectral resolution, contribute to better SOC 
prediction compared to Landsat 8? 

• How does the application of the Random Forest 
Regression model improve the robustness and 
reliability of SOC mapping? 

• How do variations in land use, land cover, and 
soil type affect SOC prediction in different 
regions of the Kanyakumari district? 

2. Materials and methods 

2.1. Study area 

Top of Form 

Bottom of Form 

The Kanyakumari district is located between 8°03' and 
8°35' north latitude and 77°15' and 77°36' east longitude. 
Kanyakumari district is bounded by Tirunelveli district to 
the North and northeast, Mannar Bay to the east, the 
Indian Ocean to the south, the Arabian Sea to the west, 
and Thiruvananthapuram district (Kerala) to the west. The 
Kanyakumari has an area of 1,672 km2. 

Kanyakumari District has two regions, namely Edai Nadu 
and Nanjil Nadu. The Edai Nadu region includes Thovalai 
and Agastheeswaram taluks are part of the Nanjil Nadu 
region, Vilavancode and Kalkulam taluks are part of the 
Western Ghats. The Aralvaimozhy Pass separates these 
two regions, and these areas are separated by the 
Vaezhimalai (Vaezhi Hills). The topography of the 
Kanyakumari district includes the Western Ghats on the 
west coast and the sea on three sides northern border or 
the other side surrounded by land. The year-round warm 
weather ranges from 30°C (86°F) to 33°C (92°F). The Study 
Area Map of Kanyakumari District shown in Figure 1. 

2.2. Soil sample collection 

Soil samples were collected at random depths of 0 cm and 
20 cm from various LULC categories for validation. The 
latitude and longitude of 115 soil samples were recorded 
using a handheld GPS, as shown in Figure 2. SOC analysis 

of these samples was conducted in the laboratory using 
the Walkley-Black (WB) wet oxidation method (Liu et al. 
2011).  

 

Figure 1. Study Area Map of Kanyakumari District 

 

Figure 2. Sample Locations of the Soil Samples 

2.3. Data collection 

The SOC training/validation dataset was collected from 
the field in March 2023, and organic carbon 
measurements were collected through field studies using 
the Random Sampling Method. Landsat 8 and 9 data were 
used to predict SOC retrieved from USGS Earth Explorer. 
The Landsat 8 and 9 are Earth-observing satellites 
launched by The USGS and NASA. In 2013, Landsat 8 was 
launched. while Landsat 9 was scheduled for a 2021 
launch (based on information available as of September 
2021). Both missions are dedicated to Earth observation 
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and land imaging, designed with devices such as the 
Operational Land Imager (OLI) and Thermal Infrared 
Sensor (TIRS), which enable the acquisition of 
multispectral pictures for a variety of applications. Landsat 
9 aimed to provide enhanced data quality and continuity 
with previous Landsat missions, contributing to long-term, 
consistent Earth observation data that is freely accessible 
to the public and beneficial for uses like disaster 
management, forestry, land use planning, agriculture, and 
environmental monitoring. 

3. Methodology 

As mentioned in Figure 3, the data is collected using 
Multispectral (Landsat 8 and 9) and conventional 
Methods. The conventional method collects the 0 to 20 
cm topsoil using random sampling. Then, the soil is sieved, 
taken to the Laboratory, and oven-dried for 24 hours. 
Then, by using the Walkley black method, the SOC is 
identified. Then, using the Multispectral Method, the 
Landsat 8 and 9 satellite images were preprocessed, and 
parameters like NDVI, BSI, NDWI, NDMI, and SAVI were 
identified, and the relationships between them were 
analyzed. Then, the SOC is predicted using Random Forest 
regression analysis, and a digital SOC Map is prepared. 

 

Figure 3. Methodology 

3.1. Parameters 

3.1.1. Bare soil index (Bsi)  

The ground not covered with grass, other habitat cover, 
wood chips, gravel or rock surfaces, or artificial coverings 
is called Bare Soil. The BSI index has a numerical value 
associating red, near-infrared, green, and blue bands to 
identify soil changes. BSI's value depends on the soil 
background's evolution and sun angle. This is precise 
about Soil darkening as it is about vegetation growth. The 
Soil values of BSI are used to lower the difference 

between sun and shade soils and minimize dry and wet 
soil conditions. BSI is calculated according to existing using 
the following formula: 

( ) ( )( ) ( ) ( )( )/BSI = + − + + + +Red SWIR NIR Blue Red SWIR NIR Blue
  

3.1.2. Normalized Differential Vegetation Index (Ndvi) 

Normalized Difference Vegetation Index (NDVI) values, a 
metric for identifying vegetation, are estimated using the 
TM data's red channel (band 3) and NIR (band 4) status 
and monitoring vegetation change. NDVI is calculated by 
the formula. 

( ) ( )   /  = − +NDVI NIR Red NIR Red   

NDVI values range from -1 to +1, with the (+1) value (high) 
denoting vegetation or high backscatter surfaces and the 
(-1) value denoting areas devoid of vegetation or low 
backscatter. Negative (low) values indicate the presence 
of water, clouds, Bare soils, and non-healthy vegetation, 
which have equal or nearly equal backscatter for NIR and 
Red region, resulting in lower values. Healthy green 
foliage has a high reflectance of NIR radiation and, 
therefore, a high value. NDVI obtained from Landsat 8, 9 
TM data was used to predict SOC. NDVI is generally 
sensitive to plant biomass and nitrogen status. 

3.1.3. Normalized differential moisture index (Ndmi) 

The NDMI is a number between -1 and +1, where the 
lowest values indicate low vegetation moisture content 
and the highest numbers signify a significant level of 
moisture. A decrease in NDMI shows water stress, and an 
abnormally high NDMI value indicates flooding. NDMI is 
sensitive to Moisture level of vegetation. The positive 
values indicate a high level of vegetation moisture content 
and vice versa.  

( ) ( )   –   /    = +NDMI NIR SWIR NIR SWIR
  

3.1.4. Normalized differential wetness index (Ndwi) 

NDWIs are generally sensitive to plant biomass and water 
conditions. NDWI is calculated from the green (G) and 
near-infrared (NIR) bands and emphasizes the quantity of 
water in a water body. High NDWI values indicate dense 
vegetation coverage and more vegetation water content. 
Low NDWI values mean low vegetation coverage and low 
vegetation water content. During water scarcity, the 
NDWI decreases. NIR wavelengths increase the high 
backscatter for vegetation and Soil and reduce the water's 
poor reflectivity. The result of the NDWI is positive for 
water and negative or zero for Soil and vegetation. 

( ) ( ) ( ) ( )= /  /− + = − +NDWI G NIR G NIR Or NDWI NIR SWIR NIR SWIR   

3.1.5. Soil adjusted vegetation index (Savi) 

SAVI is derived from the Red and NIR bands with a ground 
brightness correction factor (L), which has a value of 0.5 
to account for all land cover varieties derived from the 
surface's reflectance. 

( ) ( )( ) ( )   –   /       *    = + + +SAVI NIR RED NIR RED L 1 L
  

3.1.6. Lulc 
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Maps of land use and land cover (LULC) are essential for 
many different fields and industries. These maps play an 
important part in urban planning and development, 
helping with decisions regarding infrastructure 
development and zoning for land use.  

They also play a significant part in environmental 
conservation by identifying and protecting natural 
habitats and ecosystems, keeping track of deforestation, 
and analyzing changes in vegetation cover. LULC maps 
improve crop planning and aid in soil suitability 
assessments in agriculture and land management, and 
they support watershed monitoring and flood risk 
assessment in water resource management. LULC maps 
are also employed in planning infrastructure and 
transportation, disaster risk reduction plans, forestry and 
resource management, climate change research, and 
biodiversity conservation initiatives. These give crucial 
information for making knowledgeable decisions, 
managing land sustainably, protecting the environment, 
and addressing various land use and sustainability issues. 
The LULC Map of Kanyakumari District shown in Figure 4. 

 

Figure 4. LULC Map of Kanyakumari District 

3.1.7. Geology 

The geology of the Kanyakumari district is distinguished by 
a wide range of rock formations that display a mixture of 
old crystalline rocks, coastal sediments, and laterite 
deposits. Specific geological hazards result from this 
region's geological makeup, closely related to tectonic 
activity and coastal influences. Laterite deposits, known 
for their iron-rich composition and valuable resource for 
construction, are found in the district's elevated regions. 
Sedimentary rocks, like sandstones and shales, are 
common along the district's coastline. Various geological 

processes shaped these rocks, including the dynamic 
forces of rivers and waves. Notably, the area is 
distinguished by charnockites, a variety of granitic rock 
distinguished by its distinctive reddish color and 
frequently used as building materials. The Geology Map of 
Kanyakumari District shown in Figure 5. 

 

Figure 5. Geology Map of Kanyakumari District 

 

Figure 6. Soil Type Map of Kanyakumari District 

3.1.8. Soil types 

The diverse soil types in Kanyakumari district influence 
farming methods, crop patterns, and the overall ecological 
balance. Farmers and land managers must carefully plan 
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land use and conservation initiatives to maintain the 
region's natural resources and agricultural productivity. 
The Kanyakumari district has much red soil, especially in 
the hilly areas, distinguished by its reddish to brownish 
color due to its high iron oxide content. Although this soil 
type typically drains well, it is often nutrient-poor, making 
it suitable for growing crops like groundnuts, millets, and 
pulses with the correct irrigation and fertilization. In the 
hilly and forested areas of Kanyakumari district, lateral 
soils are commonly found on high plateaus. To improve 
the soil quality in these areas for agricultural use, farmers 
may need to add organic matter and nutrients. In the 
coastal plains of the Kanyakumari district, alluvial soils are 
prevalent along riverbanks and estuaries, formed by the 
deposition of clay and silt carried by rivers and streams. 
The Soil Type Map of Kanyakumari District shown in 
Figure 6. 

Alluvial soils are fertile and ideal for growing rice, 
coconuts, and other cash crops because they retain 
moisture well. Along the Kanyakumari district's coastline, 
sandy soils are common, defined by their low water-
holding capacity and coarse texture. These sandy soils are 
suitable for growing crops that can withstand salt, such as 
cashews, coconut, and certain vegetables. However, due 
to their low water retention, they may require regular 
irrigation. Some district areas have gravelly soil, especially 
on rocky terrain and steep slopes. Rock-filled lateritic 

gravelly soils are less conducive to agriculture. However, 
they are necessary to preserve the region's biodiversity 
and can support vegetation. Regur or cotton soil, also 
referred to as black soil, is relatively uncommon in the 
Kanyakumari district but found in some places. 

Cotton, pulses, and oilseeds thrive in these soils to their 
high level of organic materials and nutrient levels. The 
district has gravelly soil, especially on rocky terrain and 
steep slopes. Rock-filled lateritic gravelly soils are less 
conducive to agriculture; however, they are necessary for 
preserving the region's biodiversity and supporting 
vegetation. Regur or cotton soil, also referred to as black 
soil, is relatively uncommon in the Kanyakumari district 
but found in some places. Cotton, pulses, and oilseeds 
thrive in these soils because of their high organic matter 
and nutrients. 

4. Statistical analysis 

The statistical values are analyzed using XLSTAT software 
for variables like SOC, NDVI, NDWI, NDMI, SAVI, and BSI. 
The relationship between one dependent variable (NDVI, 
NDWI, NDMI, SAVI, and BSI) and the self-supporting 
Random Forest regression model was used to compute 
the variable (SOC), and then applied to estimate the SOC 
Concentration. The Random Forest regression Model fits 
the residual plots and the R2 coefficient for SOC Variables.  

 
Table 1. Relationship between Index and Satellite Data using Random Forest Regression Analysis 

SL.NO INDEX LANDSAT 8 LANDSAT 9 

1 NDVI 0.870 0.896 

2 BSI 0.878 0.948 

3 NDMI 0.878 0.896 

4 NDWI 0.878 0.939 

5 SAVI 0.881 0.896 

Note: The table illustrates the Random Forest Regression (R2) values between NDVI, BSI, NDMI, NDWI, and SAVI. 

 

5. Results 

5.1. Descriptive statistics between soc and other index 

The statistics observed for NDVI, SAVI, BSI, NDMI, and 
NDWI are present in Table 1. The highest SOC is observed 
in the area of high vegetation, and the lowest SOC is 
obtained in the waterbodies of the study area. The 
relationship between the NDVI index, which represents 
the state of vegetation and land cover, and the SOC was 
evaluated using a Random Forest regression function, 
yielding highly reliable R2= 0.870 for Landsat 8 and R2= 
0.896 for Landsat 9. The NDVI shows high values in the 
region of the northwest and low values in the Northeast 
part of the study area. In the NDVI Spectral range for 
Landsat 8, the Red Band is between 0.64 - 0.67 µm and for 
NIR Band is between 0.85 - 0.88 µm and for Landsat 9, the 
Red Band is between 0.636–0.673   µm and for NIR Band 
is between 0.851–0.879 µm. It has used hyperspectral 
datasets to compare differences in NDVI that directly 
influence the spectral band characteristic. It also 
demonstrates the importance of NDVI between Landsat 
geometries and vegetation management activity and 
growth throughout the year. The NDVI range for Landsat 8 

is between -0.279566 and 0.609625, and for Landsat 9, it 
ranges from -0.166845 to 0.657373, illustrated in Figure 7 
a & b. Due to bandwidth, spatial resolution, and data 
processing differences NDVI, behavior can vary 
significantly across different sensors, especially between 
space-borne and airborne. When NDVI is high, the 
vegetation is high, so the SOC content in the Soil is high. 
The NDVI is high in the Southwest area in both Landsat 8 
and 9, low in the east area and very low in waterbodies of 
the study area in Landsat 8 and 9. 

The bare Soil is more if the BSI value is high. The Spectral 
range of BSI for Landsat 8 the Red Band is between 0.64 - 
0.67 µm, the NIR Band is between 0.85 - 0.88 µm, the 
SWIR Band is between 0.450 - 0.51 µm and the Blue Band 
is between1.57 - 1.65 µm and for Landsat 9, the Red Band 
is between 0.636–0.673 µm and for NIR Band is between 
0.851–0.879 µm SWIR Band is between 1.566–1.651 µm 
and Blue Band is between0.452–0.512 µm. The 
relationship between BSI, which indicates vegetation 
change, and SOC is R2 = 0.878 for Landsat 8 and R2 = 0.948 
for Landsat 9. When BSI is high, the SOC is low in that 
area. The range of BSI for Landsat 8 ranges between -
0.00253593 to 0.597988, and for Landsat 9 ranges from -
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0.244995 to 0.272404, which is given in Figure 8 a & b. 
When the NDVI is high, the BSI is very low; it shows high 
vegetation in the area, so the SOC is high. The Maximum 
BSI is obtained in the southeast region in both Landsat 8 
and 9, and the minimum value is observed in the 
southwest area in Landsat 8 and North in Landsat 9 of the 
study area. 

 

Figure 7a & b. NDVI Map of Kanyakumari District for Landsat 8 

And 9 

 

Figure 8 a & b. BSI Map of Kanyakumari District for Landsat 8 

And 9 

The relationship between NDMI, which indicates moisture 
content, and SOC is R2 = 0.878 for Landsat 8 and R2 = 0.896 
for Landsat 9. The Spectral range of NDMI for Landsat 8 
for NIR Band is from 0.85 to 0.88 µm The SWIR Band lies 
between 0.450 - 0.51 µm and for Landsat 9, for NIR Band 
is the SWIR Band, which is between 0.851 and 0.879 µm 
1.566–1.651 µm. The NDMI for Landsat 8 is -0.322584 to 
0.436183, and for Landsat 9, it is between -0.314451 to 
0.375168, given in Figure 9 a & b. When BSI is low, the 
moisture content in the area is high due to the presence 
of vegetation. So, when BSI increases, NDMI decreases, 
and vice versa. As the vegetation content is high in NDVI, 
when the NDVI increases, NDMI also increases. The 
Maximum NDMI is obtained in the Northwest area in the 
northeastern part of the research area is where the 
lowest value is seen in both Landsat 8 and Landsat 9, and 
North in Landsat 9. 

 

Figure 9 a & b. NDMI Map of Kanyakumari District for Landsat 8 

And 9 

 

Figure 10 a & b. NDWI Map of Kanyakumari District for Landsat 8 

And 9 

 

Figure 11 a & b. SAVI Map of Kanyakumari District for Landsat 8 

And 9 

The relationship between NDWI, which represents the 
humidity or wetness index, and SOC shows that Landsat 8 
has R2 = 0.878, and Landsat 9 has R2 = 0.939. The NDWI 
Spectral range for Landsat 8, the Green Band is between 
0.53 - 0.59 µm and for the NIR Band spans 0.85 to 0.88 µm 
and for Landsat 9, the Green Band is between 0.533–
0.590 µm and for NIR Band is between 0.851–0.879 µm. 
The NDWI range for Landsat 8 is between -0.537361 and 
0.280735 for Landsat 9 is between -0.314451 to 0.375168. 
The Maximum NDWI is obtained in the northern part of 
both Landsat 8 and 9, and the minimum value is observed 
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in the western part of Landsat 8 and the eastern part of 
the study area in Landsat 9. When NDWI values are 
greater than zero, they represent surfaces with water; 
when the NDWI is low or zero, they represent surfaces 
without water. Water levels are higher in bodies with 
more vegetation; hence, moisture levels are low. So, if 
NDVI rises, NDWI is low and vice versa, as indicated in 
Figure 10 a & b. 

The relationship between SAVI and SOC for Landsat 8 is R2 
= 0.861 and R2 = 0.896 for Landsat 9. In the SAVI Spectral 
range for Landsat 8, the Red Band is between 0.64 - 0.67 
µm and for NIR Band is between 0.85 - 0.88 µm and for 
Landsat 9, the Red Band is between 0.636–0.673   µm and 
for NIR Band is between 0.851–0.879 µm. The SAVI range 
for Landsat 8 is between -0.41934 to 0.914426, and for 
Landsat 9, it is between -0.250263 to 0.986037. When the 
NDMI is high, the SAVI is also high due to the vegetation 
present. The Maximum SAVI is obtained in the Northwest 
area in both Landsat 8 and 9, and the minimum value is 
noted in the research area's northeastern region in both 
Landsat 8 and 9, as illustrated in Figure 11 a & b. 

Kanyakumari district has a varied land use pattern. It 
includes agricultural land, forests, urban areas, coastal 
areas, and hilly terrain. A sizable amount of the district is 
devoted to agriculture, with the cultivation of crops like 
rice, coconut, rubber, and spices. The hilly areas, 
particularly in the Western Ghats, are covered with dense 
forests. The soil types in Kanyakumari district vary based 
on the topography. Alluvial soils are found in the coastal 
plains, making them suitable for rice cultivation. Red and 
laterite soils are prevalent in the hilly regions, which are 
not very fertile and require proper land management 
practices. Black soil is also found in some district areas, 
suitable for crops like cotton and oilseeds. The Western 
Ghats have rich forest soils that support diverse 
vegetation. The geological composition of the 
Kanyakumari district is influenced by its location at the 
Indian Peninsula's southernmost point. The Western 
Ghats, which run through the eastern part of the district, 
are primarily composed of Precambrian rocks like gneiss, 
granite, and schist. The coastal regions have sedimentary 
rocks, including sandstone and limestone. The presence of 
these different rock types contributes to the varied 
topography of the district, with rugged mountains in the 
east and a relatively flat coastal area in the west. 

 

Figure 12 a & b. Box Plotting of INDICES of Kanyakumari District 

for Landsat 8 And 9 

5.2. Box plot for landsat 8 and landsat 9 

In Figure 12 a & b, the box plot shows that the NDVI is 
higher in Landsat 8 than in Landsat 9, and SAVI is higher 

than NDVI as the soil brightness factor corrects it. The 
NDWI is higher in Landsat 9 than Landsat 8. The NDMI is 
nearly equal in both Landsat 8 and Landsat 9. The SAVI is 
higher in Landsat 8 than in Landsat 9. The BSI is high in 
Landsat 8 than Landsat 9. 

5.3. Validation and prediction using machine learning 
model 

A branch of artificial intelligence (AI), machine learning 
identifies patterns and connections in data to help guide 
decisions or actions. Computer programs that 
automatically find hidden patterns in data, predict 
outcomes, and improve performance based on prior 
experiences are known as machine learning algorithms. 
The Random Forest Regression Algorithm is the one that 
gives high accuracy and is used in our study. 

Using a Random Forest model, we found a positive 
correlation between the SOC values, which are estimated 
and predicted, and the predicted SOC is mapped in Figure. 
13 a & b, and the results show that all the samples are 
randomly distributed. Using the RMSE and R2 values, 
Predictive precision was estimated. The final approach is 
chosen according to which has a high RMSE and low R2 
value. The digital SOC map helps to identify the SOC pixel-
wise in the satellite imagery. 

The predicted SOC Map of Landsat 8 shows that the SOC is 
very low in residential areas and high in forest areas. But 
in Landsat 9, the Forest areas have combined SOC from 
low to high, which shows that the areas with high 
vegetation have high SOC due to the undisturbed nature, 
and the areas with low SOC show that there is an 
influence of humans. The Landsat 8 has SOC ranges from 
0.04 to 0.31, lower than Landsat 9. The Landsat 9 has SOC 
ranges from 0.0433835 to 0.34756, which is higher due to 
the penetration range or Spectral Resolution of Landsat 9. 

 

Figure 13 a & b. Predicted SOC Map of Kanyakumari District for 

Landsat 8 and 9 

Agricultural lands, especially those under organic farming 
practices, have relatively higher SOC content due to 
incorporating organic matter into the soil. Crops like 
coconut, rubber, and spices may contribute to SOC 
accumulation. Forested areas, including the dense forests 
in the Western Ghats, often have substantial SOC content, 
as organic matter from plant litter and decaying 
vegetation enriches the soil. Coastal regions have lower 
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SOC content because of the sandy and well-draining soils, 
which are less conducive to organic matter retention. 
Alluvial soils found in coastal plains may have varying 
levels of SOC content, depending on land management 
practices and cropping systems. Well-managed paddy 
fields can accumulate organic carbon, while intensive 
cultivation may deplete it. Red and laterite soils in hilly 
areas generally have lower SOC content than other soil 
types due to their low organic matter content. Black soils 
have a relatively higher SOC content, especially in areas 
with sustainable agricultural practices and the 
incorporation of organic amendments. Forest soils, 
particularly in the Western Ghats, have the highest SOC 

content to the continuous input of vegetation-derived 
organic materials and little disturbance. The geological 
composition indirectly influences SOC content by affecting 
soil development and vegetation cover. Soils developed 
on different geological substrates may have varying 
organic carbon levels. In the Western Ghats, where 
Precambrian rocks predominate, the forested areas have 
higher SOC content due to the rich organic matter 
accumulation in these ecosystems. Coastal regions with 
sedimentary rocks have soils with relatively lower SOC 
content, primarily because of their sandy nature, which 
limits organic matter retention. 

 

Table 2. Comparison of the existing models and proposed model 

Authors Methods Accuracy 

Bhunia, G. S., et al., (2019) Multivariate Regression Model 89.63% 

Lamichhane, S., et al. (2019) Digital Soil Mapping Algorithm 90.50% 

Kumar, U., et al., (2020) Soil Physical-Chemical Quality Prediction 87.49% 

Liu, Y. Y., et al., (2011) Soil Moisture Prediction Using Microwave Data 91.22% 

Proposed Model RFR with Landsat Data 98.45% 

 

Table 2 shows a comparison of existing models and the 
proposed model. The proposed technique maintains high 
accuracy levels of 98.45%. The proposed model enhances 
the total accuracy by 9.84%, 8.78%, 12.52%, and 7.92% 
better than existing techniques respectively. The 
comparison above indicates that the accuracy of the 
proposed model is superior to that of the existing models. 

6. Discussion 

The result indicated that Landsat 8 had lower SOC index 
correlation values than Landsat 9. In this research, 115 soil 
samples were verified for in-situ SOC, and the comparison 
of SOC indexes for Landsat 8 and 9 was carried out. In 
other research, SOC was usually estimated using field 
surveys and geostatistical modeling. The research mostly 
used in-situ observations. SOC is an important factor in 
the growth of plants, and it is predicted by correlations 
with indices like NDVI, BSI, NDMI, NDWI, and SAVI. Our 
findings authenticate significant correlations of SOC with 
NDVI, BSI, NDMI, NDWI, and SAVI. NDVI had a notably 
high correlation coefficient with SOC, which study that 
changes in NDVI have an important impact on SOC 
content. The spatial variability of BSI also contributes to 
SOC estimation, with the relationship being inverse; high 
NDVI is associated with low BSI and vice versa. It is 
interesting to observe that areas of high NDVI and SAVI in 
our study were also found to have higher SOC content, as 
depicted in the SOC maps. However, in our study, the SOC 
was notably linked with the NDVI index and SAVI Index, 
and the Regions with high NDVI are mapped to regions 
with high SOC and vice versa. For SOC Map preparation, 
the Random Forest model demonstrated an excellent 
model based on biomass generated. The relationship is 
identified between reference and predicted SOC, which 
are used practically. Landsat 8 offers 4,096 colors and 12-
bit data, while 16,384 hues may be distinguished using 
Landsat 9. and provides 14-bit data of a given wavelength. 
Landsat 9's orbit is eight days out of phase, with Landsat 8 

of 16 days to increase the temporal coverage of 
observations. Stray light correction, a problem found on 
Landsat 8's TIRS, A three-year design life Class-C 
instrument has been significantly improved by TIRS, a 
Class-B instrument with a five-year design life, is part of 
Landsat 9.  

When there is an improved instrument, it gives good 
results. As a result, the predicted SOC is higher in Landsat 
9 than in Landsat 8, which shows that the accuracy is 
higher in Landsat 9. By using SOC identification, the 
farmers can identify the level of SOC, and the plants are 
planted accordingly for high yield. A limitation of our 
study is that the Soil was sampled only once in the season. 
Therefore, for further studies, seasonal sampling is 
performed to determine SOC differences using 
Multispectral Remote Sensing and GIS (Geographic 
Information System). 

7. Conclusion 

This study used field data and Assessing the amount of 
organic carbon in top soil with remote sensing photos and 
Random Forest Regression Models (0 -20 cm). This study 
shows that factors such as NDVI, BSI, NDMI, NDWI, and 
SAVI help determine SOC. Comparing the large pixel size 
(30m) of Landsat 8 and 9 gives different results, in which 
Landsat 9 gave us comparatively high results. The NDVI 
and SAVI, the significant parameter, showed a good or 
nearly equal correlation with SOC, and the BSI and NDWI 
highly correlated with SOC. At the same time, the NDMI 
also had a good correlation with SOC. The parameters like 
soil type, LULC, and geology also affect the SOC in the 
study area, in which the soil type plays a significant role. 

As a more modern satellite than its predecessors, Landsat 
9 offers better spectral resolution, radiometric accuracy, 
and data quality. These improvements lead to more 
accurate red and NIR band measurements, which 
improves the accuracy of NDVI and SAVI calculations. 
Kanyakumari district's land use, land cover, soil types, and 
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geology are shaped by its unique geographical location 
and topographical diversity. This diversity supports 
various agricultural activities, natural resources, and 
regional tourism opportunities. This, thus, significantly 
affects the precision with which SOC content in crops may 
be anticipated using satellite data. So, creating a SOC Map 
helps us better determine where soil restoration and yield 
enhancement are needed. Kanyakumari district's SOC 
content varies widely across land uses, soil types, and 
geological areas. Forested regions and well-managed 
agricultural lands have higher SOC content, while coastal 
and hilly areas may have lower SOC levels. SOC deficiency 
has profound negative effects on soil fertility, structure, 
microbial activity, resilience to environmental stresses, 
and the global carbon cycle Effective land management 
practices can help enhance SOC content in the district, 
leading to improved soil fertility and sustainability in 
agriculture. For wise land management choices, 
conservation tactics, and attempts to reduce climate 
change, it is crucial to comprehend the relationship 
between SOC and the environment. Monitoring and 
maintaining healthy SOC levels contribute to sustainable 
agriculture, carbon sequestration, water resource 
management, and ecosystems' overall health and 
functioning. Managing and enhancing SOC levels using 
techniques like agroforestry, cover crops, organic 
amendments, and decreased tillage is crucial for 
preserving soil health and sustainability. Our ability to 
evaluate SOC levels and comprehend their environmental 
ramifications has drastically improved by using Landsat 9 
and Landsat 8, and we are currently researching the 
possibility of combining data from several satellite 
missions to enhance SOC mapping and monitoring. Future 
SOC accuracy improvements necessitate the use of 
hyperspectral and microwave data. Furthermore, the 
paper recommends expanding the study to include field-
level SOC prediction, which is beneficial for precision 
farming and helps improve environment management by 
providing food security. 
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