1	L	
_	L	

~	
2	

Eggshell-derived Hydroxyapatite Nanocarriers for Neem Oil based Nanoemulsion: Toward Sustainable Pest Control

3

S. Jeevitha*, T. Gajendran, K. Saranya

4 Corresponding Author - S. Jeevitha, Assistant professor, Department of Biotechnology,
5 Vivekanandha College of Engineering for Women (Autonomous), Namakkal, Tamil Nadu, India, Pin
6 code-637205, Mobile Number-7397177372, sjeevithabiotechnology@gmail.com. Orcid id7 https://orcid.org/0000-0001-9304-8852.

8 T. Gajendran, Assistant professor, Department of Biotechnology, BIT Campus, Anna University,
9 Tiruchirappalli, Tamil Nadu, India, Pin code -620024, Mobile Number-9952474561,
10 gajendran01@yahoo.co.in. Orcid id-https://orcid.org/0000-0002-2847-326X.

11 K. Saranya, Assistant professor, Department of Biotechnology, Adhiyamaan College of Engineering

12 (Autonomous), Hosur, Tamil Nadu, India, Pin code -635130, Mobile Number-9894455091,

13 <u>ksaranya31@gmail.com</u>.

14 AI Usage Statement

English Language editing in this manuscript benefited from AI-assisted tools for grammar correction. The conceptual framework, research methodology, data analysis, findings, and all intellectual contributions remain entirely the work of the authors with no AI input on the scholarly content.

20 Short running title: Carrier Loaded Nanoemulsion Organic Pesticide

21

- 22
- 23
- 24
- 25
- 1

26 Eggshell-derived Hydroxyapatite Nanocarriers for Neem Oil based Nanoemulsion: Toward

27

Sustainable Pest Control

28 Graphical abstract

29

30 Abstract

31 The impact of pests on crop productivity requires an effective and sustainable alternatives to synthetic pesticides, as it pose risks to human health and the environment. The green formulation of 32 a nanoemulsion pesticide by encapsulating into Hydroxyapatite Nanoparticles (HANPs) synthesized 33 from waste eggshells is the main aim of this research. The nanoemulsion formulation, containing 34 neem oil (1.75%), lemon peel oil (0.25%), soapnut extract (4%), and water (94%), was prepared using 35 ultrasonication. Dynamic Light Scattering (DLS) confirmed the high stability of the resulting 36 ~200 nm droplets. X-ray Diffraction (XRD) verified the crystalline nature of HANPs, while Fourier 37 Transform Infrared (FTIR) Spectral Analysis confirmed successful neem oil presence. In vitro release 38 studies demonstrated an initial burst release (~15% within 5 days), followed by sustained release 39

(~100% by day 70) consistent with Higuchi kinetics ($R^2 = 0.9892$). Aphid mortality increased with 40 both time and concentration, reaching complete mortality at 1.75% (v/v) after 12 hours. The LC₅₀ 41 values declined from 1.375% (v/v) at 2 hours to 0.893% (v/v) at 12 hours, indicating enhanced 42 43 toxicity with prolonged exposure. ANOVA, based on a Box-Behnken design, indicated that neem and lemon peel oil concentrations significantly affected efficacy (p < 0.001). Field trials showed 44 complete Aphid elimination on Solanum lycopersicum, Solanum melongena, and Allium cepa, with 45 no signs of phytotoxicity or harm to non-target organisms. The present study formulates an effective 46 pest control through prolonged delivery of active compounds, offering a cost-effective and 47 environmentally responsible solution for modern agricultural practices. 48

49 Keywords: Ultrasonication; Agricultural nanotechnology; Bio-waste valorization; Circular
50 bioeconomy; Environmental safety; Sustained pesticide release

51 **1. Introduction**

The World Health Organization has noted an increasing global reliance on pesticides, 52 particularly in industrialized countries where their use has been widespread since the 1940s (Wilson 53 et al., 2020). Pesticides appear in various physical forms such as liquids, gels, gases, powders or 54 granules and they may be either synthetic or derived from plants. Although synthetic pesticides offer 55 effective pest control, their persistence and toxicity pose serious threats to human health and the 56 environment (Muhammad et al., 2021). In contrast, botanical insecticides break down quickly and 57 cause less ecological harm, providing safer and more sustainable alternatives (Manar and 58 Fatimetoum, 2019; Parissa and Marjan, 2023). Among these, Neem (Azadirachta indica) has been 59 commonly investigated for its broad-spectrum insecticidal properties, primarily attributed to 60 Azadirachtin, a tetranortriterpenoid known for its antimicrobial, antifeedant, and insect growth-61 regulating effects (Adhikari et al., 2020; Saxena et al., 2021). However, its high molecular weight 62 and low water solubility limit neem oil's direct use. 63

To enhance its efficacy, neem oil is often formulated into nanoemulsion, which are 64 thermodynamically stable systems composed of oil, water, and surfactants (Gundel et al., 2018). The 65 nanoemulsion formulation needs a surfactant concentration of 3%-10%. Nanoformulation using high 66 67 energy method gives best result as it is energy intensive. Ultrasonication process is a frequently employed technique in high energy systems (Kumari et al., 2018; Anand Babu et al., 2021). 68 Nanoemulsions rely deeply on surfactants, which are used to solubilize it, these surfactants are 69 chemical or biological in nature. The non-ionic biosurfactant used in this study was saponin, which 70 was isolated from Sapindus mukorossi, are termed as soapnut (Abirami et al., 2023; Raafi et al., 71 2023). A plant-based synergist with oil extracted from lemon peels which amplified the stability of 72 the product and increased the efficacy against pests (Arpana *et al.*, 2017). 73

Even though neem oil nanoemulsion shows high preferences as an ecologically friendly 74 pesticide, its brief shelf-life, incapacity to persist on soil for long time render it unsuitable (Gurwinder 75 et al., 2022). An adequate carrier substance was developed for regulated pesticide delivery into soil 76 that safeguard the pesticide degradation process triggered by UV radiation and heat. This was 77 achieved by incorporating carrier material as Hydroxyapatite Nanoparticles (HANPs) made from 78 eggshells. HANPs are eco-friendly with active functional group for nanoemulsion to controlled 79 release of pesticide into the environment (An et al., 2022). The NSL nanoemulsion was mixed with 80 81 carrier material HANPs using ultrasonicator which results in N@HANP. Li and Lei (2025) found policies recommend the development of green technologies to prevent the that urbanization 82 environment by modern farming practices. 83

During the degradation of HANPs in soil, it provides both phosphate and calcium that are required for the growth of plants (Xiong *et al.*, 2018; Ahmed *et al.*, 2022; Salama *et al.*, 2023). It supports effective pest control and also makes the soil healthier (Bhardwaj *et al.*, 2019; Ghanghas *et al.*, 2023). Pesticides are one of the main sources of greenhouse gases in agricultural activities. Current green initiatives have attempted to lower their usage through the adoption of eco-friendly pesticides (Ma *et al.*, 2025a; Shen *et al.*, (2025).

90 2. Materials and Methods

91 **2.1 Materials**

Sapindus mukorossi fruits were procured from Sona Fruit Traders, India. Neem oil, derived from neem seed kernels and formulated as an emulsifiable concentrate (EC) with Azadirachtin content of 1500 ppm (0.15% w/w), was obtained from Kisan Centre, Amravati. Lemon peel oil was extracted in-house by simple distillation. Tween 80 and Dipotassium Hydrogen Phosphate (K₂HPO₄) were procured from Himedia Laboratories Pvt. Ltd., India. Eggshells were collected for HANPs synthesis.

98 2.1.1. Preparation of Saponin from *Sapindus mukorossi*

Well-dried *Sapindus mukorossi* fruits served as the source material for saponin extraction.
Although ethanol (50% v/v) yielding a higher saponin content (77.4%) than water (69%) (Rai *et al.*,
2023), the study selected water for its eco-friendly properties. The process began by removing the
seeds and soaking 10 g of soapnut pulp in 100 mL of distilled water (1:10 w/v) overnight (Kartiki *et al.*, 2020). After soaking, the mixture was ground, sieved, and then centrifuged at 1000 rpm for 15
minutes. Filtration followed, using Whatman No. 1 filter paper (110 mm), to obtain a 10% (w/v)
soapnut extract for experimental use.

106 **2.1.2. Preparation of lemon peel oil**

107 The process began by grating fresh lemon peels and mixing 50 g of the material with 150 mL 108 of distilled water. The mixture underwent hydro-distillation at 204 W for 60 minutes, with a water-109 to-material ratio of 3:1 (mL g-1) (Tan *et al.*, 2022). The extracted lemon peel oil functioned as a 110 synergist in the organic pesticide formulation (Yuan *et al.*, 2019).

111 **2.2.** Optimization of Surfactant and Sonication for Neem oil Nanoemulsion Stability

The study systematically optimized sonication parameters such as amplitude (20%, 40%, and 60%) and duration (5, 10, 15, and 20 minutes) to achieve stable emulsions. To determine the optimal surfactant concentration for a stable emulsion, the formulation process included saponin at concentrations of 1%, 2%, 3%, 4%, and 5% (v/v) the process involved triplicate preparation of each

formulation. A separate neem oil nanoemulsion was prepared using Tween 20, a commonly used surfactant, for comparison. Increasing surfactant concentration reduced droplet size and suppressed phase separation, but concentrations above 4% increased viscosity, which could affect sprayability and bioavailability.

The emulsification process began with the dropwise addition of distilled water to the neem oil-surfactant mixture under continuous stirring at 700 rpm for 30 minutes, forming coarse emulsions. These emulsions then underwent ultrasonication at 40% amplitude using a probe sonicator (750 W, 20 kHz) equipped with a 6 mm tip horn, immersed to a depth of 3.7 cm in a 200 mL glass beaker. Sonication was performed in pulse mode (30 seconds ON, 30 seconds OFF) for 10 minutes in a thermostatically controlled water bath maintained at 40 ± 2 °C. A digital thermometer monitored the temperature to prevent thermal degradation of neem oil constituents.

To assess stability, emulsions were stored at 54 °C for 14 days following Collaborative International Pesticides Analytical Council (CIPAC) guidelines (Sharma *et al.*, 2019). Formulations that remained single-phased and transparent were considered stable and selected for further characterization shown in Table 1. The percentage enhancement in efficacy is calculated based on the increase in mean mortality of NSL (98.9%) compared to NS (91.0%).

132

Table 1. Composition of Identified Stable Formulations

Composition Type	Formulation Code	Neem oil (v/v%)	Tween 20 (v/v%)	Saponin (from soapnut) (v/v%)	Lemon peel oil (v/v%)	% Enhancement in Efficacy
Neem+ Tween 20	NT	2%	4%	-	-	-
Neem + Saponin	NS	2%	-	4%	-	-
Neem+ Saponin+ Lemon peel oil	NSL	1.75%	-	4%	0.25%	+8.68%

134

136 **2.3. Synthesis of HANPs from Eggshells**

137 The process involved collecting eggshells, cleaning their surfaces, and calcining them in a 138 two-stage heat treatment oven (Rahman *et al.*, 2018). Heating at 900 °C released carbon dioxide and 139 transformed the eggshells into calcium oxide (Isiaka *et al.*, 2019). According to this equation (1),

140 $CaCO_3 \rightarrow CaO + CO_2$ (1)

High-purity CaO obtained from heat-treated eggshells served as the precursor for HANP synthesis in a deionized water solution. To achieve a Ca/P molar ratio of 1.67, 1.5 g of CaO (56.08 g mol-1), supplying 0.02675 mol of Ca^{2+} ,was mixed with 53.4 mL of 0.3 M K_2HPO_4 (174.18 g mol-1), providing 0.01602 mol of phosphorus, in 100 mL of distilled water (Atiek *et al.*, 2020).The CaO was gradually added to the K_2HPO_4 aqueous solution with continuous stirring, then left at 37°C for 24 hours to allow the self-reaction to occur. It is assumed that the HANPs is formed by the following reaction (2),

148

$$10CaO + 6K_2HPO_4 + 4H_2O \rightarrow Ca_{10}(PO_4)_6(OH)_2 + 12KOH$$
 (2)

149 2.4. Loading of NSL Nanoemulsion in HANPs

Disperse 2 mg of HANPs in 1 mL of NSL nanoemulsion and apply ultrasound treatment to form N@HANP. Centrifuge the mixture at 10,000 rpm for 15 minutes, then wash the resulting pellets with distilled water and dry them in an oven for 10 hours (Saheli *et al.*, 2020).

- 153
- 154
- 155
- 156
- 157
- 158
- 159

161 Figure 1. Schematic diagram for N@HANP Synthesis from Eggshell-Derived Hydroxyapatite

162 **3. Results and Discussion**

163 **3.1. Characterization of the Neem oil Nanoemulsion**

164 **3.1.1.** Viscosity

165 The viscosity ratio is a critical factor in droplet size reduction, as insufficient disruptive forces

166 relative to interfacial tension can hinder the formation of fine oil droplets. The nanoemulsion with

167 Tween 20 had a viscosity of 1.85 cP. Using saponin as the emulsifier reduced the viscosity to 1.67 cP,

and the addition of lemon peel oil further decreased it to 1.63 cP. These low viscosity values support

169 the successful formation of stable oil-in-water nanoemulsions, consistent with Ana et al., (2022).

170 3.1.2. pH Measurement

171 The presence of Tween 20 increased the pH of the NT formulation to 5.78. Saponin lowered

the pH of the NS formulation to 5.33 due to the acidic nature of soapnut extract (Kartiki *et al.*, 2020).

173 The addition of lemon peel oil increased the NSL formulation's pH values to 5.95. At the pH range

between 5.9 to 6.5, the nanoemulsion formulation maintains stability and doesn't separate into

175 different phases (Nusrat *et al.*, 2022).

176 3.1.3 Storage Stability Assessment

- As shown in Table 2, NSL remains stable in both its physical and chemical forms in all the tested environmental conditions. Its ability to withstand humidity, temperature, and light exposure makes it a best choice for organic farming.
- 180 Table 2. The NSL Nanoemulsion's stability at different environmental conditions
- 181

Condition	Humidity (RH)	Temperature Fluctuations	Light Exposure	Observation	NSL stability
Control (No Stress)	40%	32°C (constant)	No exposure	No phase separation	Stable
High Humidity	80%	32°C (constant)	No exposure	No phase separation	Stable with no deterioration
Low Humidity	20%	32°C (constant)	No exposure	No phase separation	Retained stability
Temperature Fluctuations (Daily cycle)	40%	10-40°C (fluctuating)	No exposure	No phase separation	Tolerated without degradation
Constant High Temperature	40%	40°C (constant)	No exposure	No phase separation	Tolerated without degradation
Light Exposure (UV light)	40%	32°C (constant)	12 hours/day	No phase separation	Remained stable under prolonged UV light exposure

182 **3.1.4. Droplet Size Distribution**

The Z-average, an intensity-weighted mean droplet size measured by dynamic light scattering (DLS), was used to evaluate droplet distribution. As shown in Figures 2, 3, and 4, the Z-average measured 395 nm for NS, 200.5 nm for NSL, and 225.8 nm for NT. Nano-pesticides with droplet sizes around 200 nm often demonstrate improved delivery and stability (Chaud *et al.*, 2021). Using a biosurfactant, the NSL nanoemulsion developed in this study reached a particle size of approximately 200 nm, which is smaller and more environmentally friendly than the 208–507 nm range reported by Choupanian *et al.*, (2017).

190

191 Figure 2. Size Distribution of NS by Intensity

194 Figure 3. Size Distribution of NSL by Intensity

196 Figure 4. Size Distribution of NT by Intensity

197 **3.1.5. Zeta Potential**

198

199

The stability of nanoemulsions is predicted by zeta potential analysis, which quantifies the surface charges of dispersed particles, particularly in nanomaterials (Joseph *et al.*, 2022).

Sample	Initial Z- Average (nm) ± SD	Initial PDI ± SD	Initial Zeta Potential (mV) ± SD	After 6 Months Z- Average (nm) ± SD	After 6 Months PDI ± SD	After 6 Months Zeta Potential (mV) ± SD	Remarks
NS	$\begin{array}{c} 395.0 \pm \\ 6.2 \end{array}$	$\begin{array}{c} 0.776 \\ \pm \ 0.02 \end{array}$	-3.61 ± 0.05	$\begin{array}{c} 580.0 \pm \\ 2.5 \end{array}$	$\begin{array}{c} 0.920 \pm \\ 0.02 \end{array}$	-3.6 ± 0.11	Highly unstable: Aggregation caused by low surface charge
NSL	200.5 ± 1.8	0.229 ± 0.01	-8.53 ± 0.1	205.0±1.1	0.230 ± 0.01	-8.48 ± 0.15	Stable: Lemon peel oil- mediated pH and emulsion balance
NT	225.8± 3.3	0.446 ± 0.01	$\begin{array}{c} 0.396 \pm \\ 0.1 \end{array}$	260.0± 2.2	0.540 ± 0.02	0.399 ± 0.1	Moderately stable: Minimal aggregation

201

The NSL formulation remained physically stable over six months, showing only minimal 202 variations in key parameters. The Z-average increased slightly from 200.5 nm to 205.0 nm, while the 203 PDI remained nearly constant (0.229 to 0.230), indicating a consistent particle size distribution. The 204 formulation exhibited monodispersity, as reflected by its low PDI, aligning with findings by Anuwat 205 et al., (2024), who reported that nanoemulsions with a PDI below 0.3 remain stable and uniform. In 206 contrast, the NS and NT formulations lost stability, displaying significant increases in droplet size 207 and PDI. The NS formulation, with a low zeta potential (-3.61 mV), lacked sufficient electrostatic 208 209 repulsion and aggregated, while the NT formulation demonstrated moderate instability due to less effective stabilization. Lemon peel oil helped maintain pH balance, enhanced interfacial stability, and 210 reduced particle aggregation (Tan et al., 2022; Andrea et al., 2023). This natural combination 211 outperformed conventional synthetic stabilizers such as Tween 20. 212

Temperature (°C):25.0Zeta Runs:Count Rate (kcps):77.4Measurement Position (mm):Cell Description:Clear disposable zeta cAttenuator:	. (9/)	St Day (m)/
Temperature (°C):25.0Zeta Runs:Count Rate (kcps):77.4Measurement Position (mm):	: 11	
Temperature (°C): 25.0 Zeta Runs:	: 2.00)
	: 100	
System		

			Mean (mv)	Area (%)	St Dev (mv)
Zeta Potential (mV):	-3.61	Peak 1:	-22.9	9.3	8.31
Zeta Deviation (mV):	119	Peak 2:	87.9	9.3	10.4
Conductivity (mS/cm):	0.616	Peak 3:	45.7	7.1	6.48
-					

214 Figure 5. Zeta Potential of NS

Syster	m					
Ter	mperature (°C):	25.0		Zet	a Runs: 22	
Соц	int Rate (kcps):	81.8	Measu	rement Positio	n (mm): 2.00	
С	ell Description:	Clear disposat	ole zeta c	Att	enuator: 11	
Result	ts					
				Mean (mV)	Area (%)	St Dev (mV)
Zeta	Potential (mV):	-8.53	Peak 1:	16.5	9.6	6.24
Zeta	Deviation (mV):	105	Peak 2:	-36.6	9.2	7.55
Condu	ctivity (mS/cm):	0.0892	Peak 3:	-7.72	8.7	5.48
	Result quality	Good				
		Zeta F	otential D	istribution	Record:	Sample NSL
	300000					
ints	ł					
[0]	200000					
tal (l					
Tot	Í		~~~	$\sim \sim \sim$		
	100000	$\sim \sim$	~		Λ_{-}	
	ł	\sim			\sim	
	۰ ـــــ	,		_i,		
		-100		0	100	200
		AI	oparent Ze	ta Potential (1	nV)	
			-			

218 Figure 7. Zeta Potential of NT

219 3.1.6. Fourier Transform Infrared (FTIR) Spectral Analysis

FTIR spectroscopy identified the functional groups present in the nanoemulsion components 220 (Priya et al., 2020). Table 4 presents the major absorption bands and corresponding functional group 221 assignments for neem oil, lemon peel oil, saponin, and Tween 80 across the three formulations (NS, 222 223 NSL, NT). The NSL spectrum distinctly shows aromatic/alkene C-H stretching at 3084 cm⁻¹ and C-H bending between 990–904 cm⁻¹, indicating the incorporation of lemon peel oil constituents such as 224 225 limonene, which contribute to enhanced emulsion stability and synergistic pesticidal activity. Additionally, the consistent presence of C–O stretching and O–H bending bands (1030–1335 cm⁻¹) 226 in all samples supports the structural integrity of the surfactant-oil interface. 227

228

229

230

Functional Group	Observed Frequency	Presence of the Band in the Spectrum			References
Vibrations	(cm-1)	NS	NSL	NT	
		NEI	EM OIL		
O-H stretching	3524 - 3572	Yes	Yes	Yes	
C-H stretching (aliphatic)	2791-2817	Yes	Yes	Yes	
C=O stretching	1701- 1766	Yes	Yes	Yes	
C–O stretching / O-H bending	1330-1335	Yes	Yes	Yes	Das <i>et al</i> ., 2021
C–H bending (aromatic /aliphatic)	709-716	Yes	Yes	Yes	
• <i>'</i>		LEMON	N PEEL C	DIL	
C-H stretching (=CH, aromatic / alkene)	~3084	-	Yes	F	Salamah <i>et al.</i> , 2024
C–H bending in aromatics	990- 904	-	Yes		
		SA	PONIN		
OH stretching	3300- 3386	Yes	Yes	-	Chitrabanu <i>et al</i> 2021
C=C stretching	1619-1651	Yes	Yes	-	Cinitabana <i>et ut.</i> , 2021
		TW	EEN 80		
OH stretching	~3419	-	-	Yes	
C–H wagging (aliphatic chain)	~ 897	-	-	Yes	Sahu <i>et al.</i> , 2022
		-			
					m

Figure 8. FTIR spectra (4000–500 cm-1) of NS, NSL, and NT Nanoemulsion formulations

235 3.1.7 Transmission Electron microscopy (TEM) Morphological Characterization of NSL

The NSL nanoemulsion droplet size distribution was revealed by TEM analysis (Sampaio *et al.*, 2022). During mixing a turbid milky white solution appeared, represents that the droplet dissemination of NSL emulsion. A clear transparent emulsion was obtained after ultrasonication process with reduced droplet size (Seyed *et al.*, 2019). The TEM analysis indicates that the NSL formulation droplet was spherical in shape without accumulation. On comparing with TEM and DLS results, the mean droplet size was around 200 nm.

242

Figure 9. TEM image of NSL Nanoemulsion at magnification of 45 KX with 500 nm scale bar

244 3.1.8. Wettability and Contact Angle Analysis

The nanoemulsions NT, NS and NSL droplets on leaf surfaces are clearly illustrated in figure 10. These nanoemulsions are hydrophilic because the angles were less than 90° (Nusrat *et al.*, 2022).

- **Figure 10.** Contact angle of NT, NS and NSL
- 249 3.2. Characterization of HANPs and N@HANP
- 250 3.2.1 FTIR Spectral Analysis of HANPs and N@HANP
- 251 An FTIR analysis investigated the compatibility of HANPs and NSL nanoemulsion. The main
- 252 peaks of HANPs and N@HANP spectrum data were summarized in Table 5.
- **Table 5.** FTIR Spectral Peaks and Corresponding Functional Groups in HANPs and N@HANP

Functional Group Vibrations	Observed Frequency	Presence of the Band in the Spectrum		References
v ibi ations	(cm-1)	HANPs	N@HANPs	
		HANPs		
O–H stretching	3641–3643	Yes	Yes	
CO ₃ ^{2–} asymmetric stretching	1411-1416	Yes	Yes	Saheli <i>et al.,</i> 2020; Gheisari <i>et al</i>
PO ₄ ³⁻ symmetric stretching	1035–1038	Yes	Yes	2015
CO ₃ ^{2–} bending	873-876	Yes	Yes	
		NSL		
C=H stretching	~2922	-	Yes	
C–H stretching (aliphatic chain)	~2853	-	Yes	
C=O stretching	~1742	-	Yes	Devi et al., 2023
C–C stretching (aromatic)	~1573	-	Yes	
C–H bending (aromatic /aliphatic)	~714	-	Yes	

The presence of neem oil and stabilizers are shown clearly in the extra bands of N@HANPs spectrum. The C=O stretching at 1742 cm-1 indicating the presence of easters in the neem oil. The peak at 2922 cm-1 shows C=H stretching of methylene groups in the emulsion. The hydroxyapatite presence confirmed by the peaks of PO_4^{3-} and CO_3^{2-} groups in both the spectrum. On correlating both the bands of HANPs and N@HANPs, the NSL components presence was revealed which adhered to the surface of the carrier material.

261

Figure 11. FTIR spectrum between 4,000 cm-1 and 500 cm-1 obtained for HANPs, N@HANP

263 **3.2.2** Field Emission Scanning Electron Microscopy (FE-SEM) of HANPs

264

The FE-SM image reveals that the HANPs has porous spherical structure to attach nanoemulsion (Padmanabhan *et al.*, 2019; Saheli *et al.*, (2020).

269 **3.2.3 Energy Dispersive X-ray (EDAX) Analysis of HANPs**

The EDAX analysis confirms that the HANPs are crystalline in nature without impurities, the components identified are 10.81% of oxygen, 1.61% of calcium and 0.18% of phosphorous. (Saheli *et al.*, 2020).

273

274 Figure 13. EDAX pattern of HANPs

275 3.2.4 X-Ray Diffraction (XRD) Pattern of HANPs

The XRD analysis revealed that the HANPs appears like crystals with peaks at 2θ was 18° , 28.9°, 34.1°, 47.2°, 51°, 54.5°, 62.9°, and 64.5°. On correlating with the standard hydroxyapatite peaks, the resultant was similar (Priyam *et al.* 2019). The HANPs exhibit a crystalline structure result proven that the pattern matches with JCPDS data No. 09 to 432.

282 Figure 14. XRD analysis of obtained HANPs

283 **3.2.5 Thermal Analysis**

The sample mass changes over temperature and time at various gas conditions was measured by using thermal analysis method. The result confirms that the HANPs are constant up to 370°C. The HANPS are unstable above this temperature, because of bound water release and carbonates, organic compounds decomposition (Mônica *et al.*, 2020).

288

Figure 15. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) curves of
 HANPs

292

293 3.2.6 Release Profile of N@HANP

The incorporation of this nanoemulsion with carrier material HANPs was evaluated as $83.5 \pm$ 294 0.5% using Encapsulation Efficiency (EE) Equation (3) (Patel et al. 2020). Around 15% of discharge 295 of content occurs within the first 5 days of investigation. After that the rest of the content was 296 gradually released and about 100% delivery reached by 70th day. In this study this extended-release 297 pattern plays a major role when compared to normal pesticide usage which breaks down rapidly and 298 frequent use can be avoided with this innovative product (Brahma et al., 2019). Traditional neem oil 299 nanoemulsions are usually effective for a limited time, from 7 to 15 days (Kumar et al., 2021), and 300 they possess lower encapsulation efficiency, from 60% to 75%. 301

302 Encapsulation Efficiency (EE)% = $\frac{\text{Actual Weight of NSL encapsulated HANP} - \text{Weight of HANP}}{\text{Weight of HANP}} \times 100$ (3)

The N@HANPs grains were sprinkled either directly on the surface or mixed into the top 0 to 303 5 cm layer of the soil. Based on Higuchi model results the release of NSL from the granules because 304 of diffusion ($R^2 = 0.9892$). The zero-order model ($R^2 = 0.9484$) also demonstrated a strong fit, 305 indicating a relatively constant release rate. The Korsmeyer–Peppas model ($R^2 = 0.9096$) yielded a 306 release exponent (n = 0.9507), indicating Super Case II transport, where polymer matrix relaxation 307 and erosion rather than simple diffusion govern the release process. In contrast, the first-order model 308 $(R^2 = 0.9037)$ showed a weaker correlation, suggesting that the release was not primarily 309 310 concentration-dependent. All the kinetic modelling results indicate that NSL was released from the N@HANPs matrix in a constant way, primarily because of diffusion and changes in the carrier's 311 structure caused by moisture (Kim et al., 2023). There was no evidence for bioaccumulation or harm 312 to soil and aquatic organisms seen in the residue analysis (Padmanabhan et al., 2019; Brahma et al., 313 2019; and Kumar et al., 2021). As climate change risks rise worldwide, it is important to develop low-314 emission agro-inputs like biodegradable nanopesticide (Wu et al., 2025). 315

Figure 16. Kinetic Modeling of Neem oil Release from N@HANP Based on Higuchi, Zero-Order,
First-Order, and Korsmeyer–Peppas Models.

320 3.2.7 Ecotoxicological and Aphicidal Activity Assessment

Ma *et al.* (2025b) highlighted that restoring plants through sustainable farming is important. Ecotoxicological assessments confirmed that the nanoemulsion formulation did not cause acute or chronic toxicity in non-target aquatic and soil organisms under laboratory conditions repeated in triplicate (Raja *et al.*, 2022). No mortality or adverse effects appeared in *Poecilia reticulata* juveniles during 96-hour acute exposure (n = 16) or during 28-day chronic exposure assays (n = 30). Similarly, 28-day soil toxicity tests involving adult *Eisenia fetida* (n = 160 across treatment and control groups)

327 showed no observable harmful effects (Ashwini 2023). While these findings suggest that the 328 formulation is likely safe for non-target species, further large-scale and multispecies studies are 329 recommended to comprehensively validate its environmental safety.

330

Figure 17. Aphicidal activity of Neem oil Nanoemulsion at different concentrations against aphids
(mean ± SD, repeated in triplicate).

Under typical field conditions (average temperature: 30 ± 2 °C; relative humidity: 60 to 70 333 percent), NSL exhibited strong Aphicidal activity against Solanum lycopersicum, Solanum 334 melongena, and Allium cepa. Each treatment was applied to a group of 10 plants and repeated across 335 three independent field trials. The nanoemulsion pesticide, applied as a foliar spray, effectively 336 targeted aphids located on the undersides of leaves, shoot tips, and floral buds. No signs of 337 phytotoxicity were observed during the 14-day monitoring period, including symptoms such as leaf 338 discoloration, necrosis, or growth retardation (Takla et al., 2021). Figure 17 shows a clear time and 339 dose dependent increase in aphid mortality. At the highest tested concentration of 1.75 % (v/v) of 340 neem oil, the formulation achieved complete aphid control within 12 hours. A simple linear regression 341 analysis between concentration and Aphicidal activity after 12 hours revealed a statistically 342 significant positive correlation ($R^2 = 0.648$, p = 0.00496), confirming the concentration dependent 343 efficacy of the formulation. 344

345 **3.2.8** Optimization of Neem oil Nanoemulsion Using Response Surface Methodology (RSM)

346 A neem oil nanoemulsion was optimized using RSM based on a Box-Behnken design. The Box–Behnken design was selected for its efficiency, as it requires fewer experimental runs than other 347 RSM designs while effectively fitting quadratic models. It also avoids extreme factor combinations, 348 349 thereby minimizing risk during the optimization of sensitive bioactive formulations such as neem oil nanoemulsion. The quadratic model showed strong statistical significance (F = 1003.89, p < 0.0001), 350 with high model fit indicated by $R^2 = 0.9991$, adjusted $R^2 = 0.9981$, and predicted $R^2 = 0.9935$. The 351 Adequate Precision value of 88.234 confirmed an excellent signal-to-noise ratio, well above the 352 acceptable threshold of 4, indicating strong model discrimination. Furthermore, the low standard 353 deviation (0.2037) and low coefficient of variation (0.2117%) relative to the mean response value 354 (96.22%) demonstrated the model's high precision. 355

Analysis of Variance (ANOVA) results in Table 6 show that neem oil (A) and lemon peel oil 356 (C) significantly influenced mortality in both linear and quadratic terms (p < 0.0001), while saponin 357 358 (B) did not exert a significant effect (p = 0.6067), consistent with its role as an emulsifier. The data also reveal a significant interaction between neem oil and lemon peel oil (AC, p = 0.0195), whereas 359 other interaction terms showed no statistical significance (p > 0.05). These findings are further 360 supported by the regression coefficients and diagnostic statistics in Table 7, which show strong 361 positive effects for A and C, negligible influence of B, and a positive AC interaction, along with low 362 standard errors and VIF values indicating model reliability and stability. 363

- 364
- 365
- 366
- 367
- 368
- 24

Source	Sum of Squares	df	Mean Square	F-value	p-value
Model	374.78	9	41.64	1003.89	< 0.0001
A – Neem oil	104.07	1	104.07	2508.99	< 0.0001
B – Saponin	0.0119	1	0.0119	0.2870	0.6067
C – Lemon peel oil	104.07	1	104.07	2508.99	< 0.0001
AB	0.0021	1	0.0021	0.0502	0.8283
AC	0.3521	1	0.3521	8.49	0.0195
BC	0.0021	1	0.0021	0.0502	0.8283
A^2	47.25	1	47.25	1139.10	< 0.0001
B ²	0.0548	1	0.0548	1.32	0.2836
C^2	47.25	1	47.25	1139.10	< 0.0001
Residual	0.3318	8	0.0415	E	_
Lack of Fit	0.3318	5	0.0664		
Pure Error	0.0000	3	0.0000		
Total	375.11	17	_		

The 3D response surface (Figure 18) shows that increasing neem oil concentration increases mortality, while saponin concentration has minimal effect. These results validate the selection of neem and lemon peel oils as active components and confirm the role of saponin as a stabilizing agent.

Table 7. Regression Coefficients and Diagnostic Statistics

			0.50 (0.50/ 07	
Factor	Coefficient	Std. Error	95% CI	95% CI	VIF
	Estimate		LOW	High	
Intercept	99.99	0.0997	99.76	100.22	
A – Neem oil	3.34	0.0667	3.19	3.49	1.07
B – Saponin	-0.0357	0.0667	-0.1894	0.1180	1.07
C – Lemon peel oil	3.34	0.0667	3.19	3.49	1.07
AB	0.0208	0.0930	-0.1935	0.2352	1.20
AC	0.2708	0.0930	0.0565	0.4852	1.20
BC	0.0208	0.0930	-0.1935	0.2352	1.20
A ²	-3.36	0.0997	-3.59	-3.13	1.06
B ²	-0.1146	0.0997	-0.3445	0.1153	1.06
C ²	-3.36	0.0997	-3.59	-3.13	1.06

Figure 18. 3D surface plot showing the interactive effect of Neem oil (A) and saponin (B) on Aphid
mortality (%) with lemon peel oil (C) held constant at 0.25.

379 3.2.9 Cost and Scalability Analysis

India generates around 5.23 million metric tonnes of eggshell debris every year. Using this 380 waste to make HANPs is an affordable way, and it also eliminates the expense of eggshells disposal 381 (Sanprit et al., 2021). The same fits for the juice-processing industry, which throws out lemon peel 382 waste, which constitutes almost half of the fruit's weight (Ciriminna et al., 2020). Zhang et al., (2025) 383 exposed that the greener ideas are encouraged to protect environment. This leads to the utilization of 384 waste like eggshell and lemon peel to produce N@HANPs. The net cost of N@HANPs is equal to 385 commercially available nano-formulated delivery systems, like polymeric and lipid-based carriers 386 (Su et al., 2022). Sourcing the capital for greener proposals are made simpler using online finance 387 (Wang and Ma, 2024). 388

Based on this research, it is possible to make the N@HANP formulation on a small scale in a lab. Future work should focus on standardizing the raw materials processing steps to eliminate the variation in industrial scale production.

NSL Nanoemulsion Formulation		HANPs Formulation		N@HANP Formulation	
Item	Cost	Item	Cost	Item	Cost
Neem oil	0.041USD	Eggshell-derived CaO	0.12 USD	NSL	11.14 USD
Soap Nut Extract	0.035 USD	K ₂ HPO ₄	9.37 USD	HANP	7.15 USD
Lemon Peel Oil	0.18 USD				\bigcirc \land
Distilled water	0.11 USD		2.93 USD	2	
Energy Consumption	0.039 USD		0.47 USD		0.50 USD
Total Cost	0.40 USD		12.88 USD		18.79 USD

Table 8. Cost of raw materials and utilities for laboratory-scale production of 1000 mL NSL
Nanoemulsion, 1 kg of HANPs, and 1 kg of N@HANP formulations

395

396

4. Conclusion

A stable NSL nanoemulsion formulated with better stability and bioefficacy than the others. 398 Encapsulation into biowaste-derived HANPs was confirmed through FTIR, FE-SEM, XRD, TEM, 399 and thermal analyses. Field and ecotoxicity studies demonstrated high pest suppression and 400 environmental safety. This study introduces a novel, biodegradable nano-carrier system for prolonged 401 pesticide delivery using low-cost, agro-waste inputs, supporting safer and more sustainable pest 402 management. Although HANPs are widely reported as slow-release phosphate fertilizers, their 403 degradation kinetics in soil under pesticide-loaded conditions remain under explored. Further study 404 is required to monitor HANPs degradation in various soil types by tracking calcium and phosphate 405 ion release, and fitting the data to appropriate kinetic models to better understand their environmental 406 407 behavior.

- 408
- 409
- 410
- 411
- 27

412	Acknowledgement
-----	-----------------

413	I want to express my deep gratitude to my guide for his guidance. I also thank Vivekanandha
414	College of Engineering for Women (Autonomous) and my colleagues for their support in carrying
415	out this research work.

Author Contribution Statement: Ms. S. Jeevitha: Conceptualization, Data curation, Formal
analysis, Investigation, Methodology, Resources, Validation, Visualization, Writing – original
draft.Dr. T. Gajendran: Supervision, Formal analysis, Methodology, Validation. Dr. K. Saranya:
Supervision, Validation.

420 **Funding:** No grants were received from government or private funding sources for this research.

421 Research content: The research content of this manuscript is original and has not been published

422 elsewhere.

423 **Ethical approval:** Not applicable.

424 **Conflict of interest:** The authors have no conflict of interest.

425 **Data availability:** Not applicable.

426 **Consent to publish:** All authors agree to publish the article in the Global NEST Journal.

427 **References**

- Abirami, N., J. Jesteena and R. Ragunathan. (2023), Production of surfactin from novel
 Bacillus spp. isolated from soil and its antifungal properties, *J. Environ. Biol*, 44, 728-735.
- Adhikari, Kripa & Bhandari, Sudip & Niraula, Dikshya & Shrestha, Jiban. (2020), Use of neem
 (*Azadirachta indica* A. Juss) as a biopesticide in agriculture: A review, *Journal of Agriculture and Applied Biology*, 1,100-117.
- Ahmed A.A. Elsayed and Ahmed EL-Gohary and Zeinab K. Taha and Hend M. Farag and
 Mohamed S. Hussein and Khaled AbouAitah. (2022), Hydroxyapatite nanoparticles as novel
 nano-fertilizer for production of rosemary plants, *Scientia Horticulture*, 295,110851.

- 4. An C, Sun C, Li N, Huang B, Jiang J, Shen Y, Wang C, Zhao X, Cui B, Wang C, Li X, Zhan
 S, Gao F, Zeng Z, Cui H, Wang Y. (2022), Nanomaterials and nanotechnology for the delivery
 of agrochemicals: strategies towards sustainable agriculture, *J Nanobiotechnology*, 20(1):11.
- Ana Sofía Lemus de la Cruz, Josefina Barrera-Cortés, Laura Patricia Lina-García, Ana C.
 Ramos-Valdivia and Rosa Santillán. (2022), Nanoemulsified Formulation of *Cedrela odorata*Essential Oil and Its Larvicidal Effect against *Spodoptera frugiperda* (J.E. Smith), *Molecules*, 27(9), 2975.
- 6. Anand Babu Perumal, Xiaoli Li, Zhenzhu Su, Yong He. (2021), Preparation and
 characterization of a novel green tea essential oil nanoemulsion and its antifungal mechanism
 of action against *Magnaporthae oryzae*, *Ultrasonics Sonochemistry*, **76**, 105649.
- Andrea Fürst, Iram Shahzadi, Zeynep Burcu Akkuş-Dağdeviren, Anna Maria Schöpf, Ronald
 Gust, Andreas Bernkop-Schnürch. (2023), Zeta potential shifting nanoemulsions comprising
 single and gemini tyrosine-based surfactants, *European Journal of Pharmaceutical Sciences*,
 189, 106538.
- Anuwat Lakyat, Jarongsak Pumnuan, Thanaporn Doungnapa, Sudjai Phutphat, Somsak
 Kramchote, Kamronwit Thipmanee. (2024), Nanoemulsion-Based Plant Essential Oil
 Formulations: In Vitro Evaluation of Pesticidal Activity against Ectoparasites in Poultry,
 Poultry Science, 103(1), 103245.
- Arpana Kumari, Nusrat Siddhiqa, Ranju Sharma, P.K. Patanjali. (2017), Activity enhancement
 of Neem (*Azadirachta indica*) based repellent cream using biodegradable botanical synergist,
 International Journal of Pharmaceutical Research, 9, 21.
- 457 10. Ashwini Charpe. (2023), Nano-Encapsulation of Neem Based Pesticide Formulations, *Journal*458 *of Plant Disease Sciences*, 17, 82-92.
- 459 11. Atiek Rostika Noviyanti, Nur Akbar, Yusi Deawati, Engela Evy Ernawati, Yoga Trianzar
 460 Malik, Retna Putri Fauzia, Risdiana. (2020), A novel hydrothermal synthesis of
 461 nanohydroxyapatite from eggshell-calcium-oxide precursors, *Heliyon*, 6, 4.

- 462 12. Bhardwaj Laxmikant, Sharma Sandeep, Ranjan Anuj, Jindal Tanu. (2019), Persistent organic
 463 pollutants in lakes of Broknes peninsula at Larsemann Hills area, East Antarctica,
 464 *Ecotoxicology*, 28, 589–596.
- 465 13. Brahma, D., Dey, A., & Saha, S. (2019), Environmental impact assessment of pesticide
 466 formulations, Bioaccumulation and biomagnification studies, *Journal of Environmental*467 *Management*, 254, 109-120.
- 14. Chaud, M., Souto, E. B., Zielinska, A., Severino, P., Batain, F., Oliveira-Junior, J., & Alves,
 T. (2021), Nanopesticides in agriculture: Benefits and challenge in agricultural productivity,
 toxicological risks to human health and environment, *Toxics*, 9(6), 131.
- 471 15. Chitrabanu Chikkanayakanahalli Paramesh C., Halligudra G., Gangaraju V., Sriramoju J.B.,
- Shastri M., Kachigere B.H., Habbanakuppe D.P., Rangappa D., Kanchugarakoppal R.S.,
 Shivaramu P.D. (2021), Silver nanoparticles synthesized using saponin extract of *Simarouba glauca* oil seed meal as effective, recoverable and reusable catalyst for reduction of organic
 dyes, *Results in Surfaces and Interfaces*, 3, 100005.
- 16. Choupanian, M., Omar, D., Basri, M., & Asib, N. (2017). Preparation and characterization of
 neem oil nanoemulsion formulations against Sitophilus oryzae and Tribolium castaneum
 adults, *Journal of Pesticide Science*, 42(4), 158–165.
- 479 17. Ciriminna, R., Forest, B., Meneguzzo, F., Pagliaro, M. and Hamann, M.T. (2020). Technical
 480 and economic feasibility of a stable yellow natural colorant production from waste lemon peel,
 481 *Applied Sciences*, **10**(19), 6812.
- 18. Das, Parineeta & Sharma, Namita & Puzari, Amrit & Kakati, Dilip & Devi, Nirmala. (2021),
 Synthesis and characterization of neem (*Azadirachta indica*) seed oil-based alkyd resins for
 efficient anticorrosive coating application, *Polymer Bulletin*, **78**(4).
- 485 19. Devi, L. & Mukherjee, Avik & Dutta, Debjani & Kumar, Santosh. (2023), Carnauba wax486 based sustainable coatings for prolonging postharvest shelf-life of citrus fruits, *Sustainable*487 *Food Technology*,1,415-425.

488	20. Ghanghas, B.S., A.K. Rohilla, P.K. Chahal, J. Malik, R. Niwas and R. Mukteshwar. (2023),
489	Good practices adopted by horticulture farmers to minimize residual effects of pesticides for
490	food safety hazard and soil health, J. Environ. Biol, 44, 267-274.
491	21. Gheisari, Hassan & Karamian, Ebrahim & Abdellahi, Majid. (2015), A novel hydroxyapatite
492	-Hardystonite nanocomposite ceramic, Ceramics International, 41,5967-5975.
493	22. Gundel, S.D.S., de Souza, M.E., Quatrin, P.M., Klein, B., Wagner, R., Gündel, A., Vaucher,
494	R.D.A., Santos, R.C.V., Ourique, A.F. (2018), Nanoemulsions containing Cymbopogon
495	flexuosus essential oil: Development, characterization, stability study and evaluation of
496	antimicrobial and antibiofilm activities, <i>Microb. Pathog.</i> , 118 , 268–276.
497	23. Gurwinder Singh, Kavitha Ramadass, Prasanthi Sooriyakumar, Oshadi Hettithanthri,
498	Meththika Vithange, Nanthi Bolan, Ehsan Tavakkoli, Lukas Van Zwieten, Ajayan Vinu.
499	(2022), Nanoporous materials for pesticide formulation and delivery in the agricultural sector,
500	Journal of Controlled Release, 343 , 187-206.
501	24. Isiaka Oluwole Oladele, Okikiola Ganiu Agbabiaka, Adeolu Adesoji Adediran, Akeem
502	Damilola Akinwekomi, Augustine Olamilekan Balogun. (2019), Structural performance of
503	poultry eggshell derived hydroxyapatite based high density polyethylene bio-composites,
504	<i>Heliyon</i> , 5 , 10.
505	25. Joseph, George & Pinheiro, Dephan & Mohan, Mothi & Pai, Sunaja, (2022), PANI/Bi2O3
506	polymeric nanocomposite for the reduction of 4-nitrophenol, <i>Polymer Bulletin</i> , 80 (8),1-15.
507	26. Kartiki B. Jadhav, Mrunal Ghag Sawant, Trupti Satvekar & Jayashree M. Nagarkar. (2020)
508	Biopesticide formulations of karanj and castor oil using soapnut, Journal of Dispersion Science
509	and Technology, 43 (3), 330-335.
510	27. Kim, HM., Park, J. H., Choi, Y. J., Oh, JM., & Park, J. (2023), Hyaluronic acid-coated gold
511	nanoparticles as a controlled drug delivery system for poorly water-soluble drugs, RSC
512	Advances, 13(8), 5529–5537.

513	28. Kumar, A., Pradhan, T., & Gupta, N. (2021), Ecotoxicity testing of nanoformulations:
514	Assessing the impact on soil and aquatic ecosystems, Environmental Toxicology and
515	<i>Chemistry</i> , 40 (3), 760-770.

- 51629. Kumari S, Kumaraswamy RV, Choudhary RC, Sharma SS, Pal A, Raliya R, Biswas P, Saharan
- 517 V. (2018), Thymol nanoemulsion exhibits potential antibacterial activity against bacterial
 518 pustule disease and growth promotory effect on soybean, *Sci Rep*, 8(1), 6650.
- 30. Li, H. and Lei, X. (2025), Reducing agricultural pollution through urban policy: Evidence from
 China's new urbanization initiative, *Global NEST Journal*, 27 (6), 06862.
- 31. Ma, S., Yan, H., Li, D., Liu, H., and Zeng, H. (2025a), The impact of agricultural
 mechanisation on agriculture carbon emission intensity: Evidence from China, *Pak. J. Agri. Sci.*, 62(1), 99–110.
- 32. Ma, S., Liu, H., Li, S., Lyu, S., and Zeng, H. (2025b), Quantifying the relative contributions
 of climate change and human activities to vegetation recovery in Shandong Province of China, *Global NEST Journal*, 27(5), 07160.
- 33. Manar Fawzi Bani Mfarrej, Fatimetou Mohamed Rara. (2019), Competitive, Sustainable
 Natural Pesticides, *Acta Ecologica Sinica*, 39(2), 145-151.
- 34. Mônica Rufino Senra, Rafaella Barbosa de Lima, Diego de Holanda Saboya Souza, Maria de
 Fátima Vieira Marques, Sergio Neves Monteiro. (2020), Thermal characterization of
 hydroxyapatite or carbonated hydroxyapatite hybrid composites with distinguished collagens
 for bone graft, *Journal of Materials Research and Technology*, 9(4),7190-7200.
- 35. Muhammad N, Zia-ul-Haq M, Ali A, Naeem S, Intisar A, Han D, Wei B. (2021), Ion
 chromatography coupled with fluorescence/UV detector: A comprehensive review of its
 applications in pesticides and pharmaceutical drug analysis, *Arabian Journal of Chemistry*,
 14(3), 102972.

- 36. Nusrat lqbal,Dipak Kumar Hazra,Aloke Purkait,Amrish Agrawal,Jitendra Kumar. (2022),
 Bioengineering of neem nano-formulation with adjuvant for better adhesion over applied
 surface to give long term insect control colloids and surfaces, *B:Biointerfaces*, 209(2),112176.
- 540 37. Padmanabhan, M., Dey, A., & Saha, S. (2019), Surface properties of hydroxyapatite
 541 nanoparticles and their ecological effects, *Environmental Toxicology*, 31(4), 567-579.
- 542 38. Parissa Taheri, Marjan Soweizy. (2023), Application of essential oils to control some
 543 important fungi and bacteria pathogenic on cereals, *Journal of Natural Pesticide Research*,
 544 6,100052.
- 39. Patel, S., Sharma, R., & Yadav, P. (2020), Nanoemulsions for controlled pesticide delivery, *Journal of Agricultural and Food Chemistry*, 68(4), 1189-1197.
- 40. Priya, K., G. Thiribhuvanamala, C. Sangeetha, A. Kamalakannan, S. Haripriya and S.
 Parthasarathy. (2020), Antifungal activity of medicinal plants, *Adathoda vasica* and *Andrographis paniculata* against *Colletotrichum capsici*, the chilli fruit rot pathogen, J. *Environ. Biol*, 42, 1461-1469.
- 41. Priyam, Ayushi & Das, Dr.Ratul Kumar & Schultz, Aaron & Prasad, Pushplata. (2019), A new
 method for biological synthesis of agriculturally relevant nanohydroxyapatite with elucidated
 effects on soil bacteria, *Scientific Reports*, 9, 15083.
- 42. Raafi SM, Arju SN, Asaduzzaman M, Khan HH, Rokonuzzaman M. (2023), Eco-friendly
 scouring of cotton knit fabrics with enzyme and soapnut: An alternative to conventional NaOH
 and synthetic surfactant based scouring, *Heliyon*, 9(4).
- 43. Rahman, Abdul & Younis, Adnan & Subhani, Qamar & Shehzad, Khurram & Cui, Hairong &
 Zhu, Yan. (2018), Porous SnO2 nanoparticles-based ion chromatographic determination of
 non-fluorescent antibiotic (chloramphenicol) in complex samples, *Scientific Reports*, 8,12327.
- 44. Rai S, Kafle A, Devkota HP, Bhattarai A. (2023), Characterization of saponins from the leaves
 and stem bark of *Jatropha curcas* L. for surface-active properties, *Heliyon*, 9(5), 28.

- 45. Raja, S., Mohan, A., & Arora, A. Neem oil-based nanoformulations. (2022), Advancements
 and challenges in sustainable pest control, *Environmental Science and Pollution Research*,
 29(9), 12621-12634.
- 46. Saheli Pradhan, Maheshwar Durgam, Damodhara Rao Mailapalli. (2020), Urea loaded
 hydroxyapatite nanocarrier for efficient delivery of plant nutrients in rice, *Archives of Agronomy and Soil Science*, 67(3), 371-382.
- 568 47. Sahu, Meenakshi & Reddy, Vasudeva & Kim, Bomyung & Patro, Bharati & Park, Chinho &
 569 Kim, Woo & Sharma, Pratibha. (2022), Fabrication of Cu₂ZnSnS₄ Light Absorber Using a
 570 Cost-Effective Mechanochemical Method for Photovoltaic Applications, *Materials*, 15(5),
 571 1708.
- 48. Salama DM, Osman SA, Shaaban EA, Abd Elwahed MS, Abd El-Aziz ME. (2023), Effect of
 foliar application of phosphorus nanoparticles on the performance and sustainable agriculture
 of sweet corn, *Plant Physiol Biochem*,203,108058.
- 49. Salamah N, Cantika CD, Nurani LH, Guntarti A. (2024), Authentication of citrus peel oils
 from different species and commercial products using FTIR Spectroscopy combined with
 chemometrics, *Pharmacia*, **71**, 1-7.
- 578 50. Sampaio, Cátia & Bourbon, Ana & Gonçalves, Catarina & Pastrana, Lorenzo & Dias, Alice &
 579 Cerqueira, Miguel. (2022), Low energy nanoemulsions as carriers of thyme and lemon balm
 580 essential oils, *LWT*, **154**,112748.
- 581 51. Sanprit Aditya, Jaspin Stephen, Mahendran Radhakrishnan. (2021). Utilization of eggshell
 582 waste in calcium-fortified foods and other industrial applications: A review, *Trends in Food*583 Science & Technology, 115, 422–432.
- 52. Saxena, A., P. Arivaradarajan, A.K. Mukhopadhyay and S.P. Nandi. (2021), Bactericidal effect
 of neem (*Azadirachta indica*) leaf extract on *Helicobacter pylori*, *J. Environ. Biol*, 42, 15911597.

- 53. Seyed Mohammad Mohsen Modarres-Gheisari, Roghayeh Gavagsaz-Ghoachani, Massoud
 Malaki, Pedram Safarpour, Majid Zandi. (2019), Ultrasonic nano-emulsification A review,
 Ultrasonics Sonochemistry, 52,88-105.
- 54. Sharma, Ranju & Kumari, Arpana & Singh, Sarat & Singh, Mukesh & Dubey, Saurabh &
 Iqbal, Nusrat & Patanjali, Phool. (2019), Development and stability enhancement of neem oil
 based microemulsion formulation using botanical synergist, *Journal of Molecular Liquids*,
 296, 112012.
- 55. Shen, D., Zhao, X., Lyu, S., Liu, H., Zeng, H., & Ma, S. (2025), Qualification and construction
 enterprise innovation quasi-natural experiments based on specialized, high-end and
 innovation-driven "small giant" enterprises, *Journal of Asian Architecture and Building Engineering*, 1–19.
- 56. Su, Y., Zhou, X., Meng, H., Xia, T., Liu, H., Rolshausen, P., Roper, C., McLean, J.E., Zhang,
 Y., Keller, A.A. and Jassby, D. (2022), Cost-benefit analysis of nanofertilizers and
 nanopesticides emphasizes the need to improve the efficiency of nanoformulations for
 widescale adoption, *Nature Food*, 3(12), 1020–1030.
- 57. Takla, Shiry & El-Dars, Farida & Amien, Alla & Rizk, Marguerite. (2021), Prospects of Neem
 Essential oil as bio-pesticide and determination of its residues in eggplant plants during crop
 production cycle, *Egyptian Academic Journal of Biological Sciences, F. Toxicology & Pest Control*, 13, 1-15.
- 58. Tan Phat Dao, Ngoc Quyen Tran, Thanh Truc Tran, Van Tan Lam. (2022), Assessing the
 kinetic model on extraction of essential oil and chemical composition from lemon peels (*Citrus aurantifolia*) by hydro-distillation process, *Materials Today: Proceedings*, 51(1),172-177.
- 59. Wang, Z. and Ma, S. (2024), Research on the impact of digital inclusive finance development
 on carbon emissions—Based on the double fixed effects model, *Global NEST Journal*,
 26(7),06227.

- 60. Wilson AL, Courtenay O, Kelly-Hope LA, Scott TW, Takken W, Torr SJ. (2020), The
 importance of vector control for the control and elimination of vector-borne diseases, *PLOS Negl Trop Dis*, 14(1), e0007831.
- 61. Wu, Y., Zhao, K. and Lei, X. (2025), Navigating the carbon crossroads: climate transition risk
 and carbon emission efficiency in China's energy enterprises, *Global NEST Journal*, 27(5),
 06858.
- 618 62. Xiong, L., Wang, P., Hunter, M. N., & Kopittke, P. (2018), Bioavailability and movement of
 619 phosphorus applied as hydroxyapatite nanoparticles (HA-NPs) in soils, *Environmental*620 Science: Nano,5(12),2888-2898.
- 63. Yuan Wanling, Zhao Pengyue, Chen Huiping, Wang Liangm, Huang Guizh, Cao Lidong,
 Huang Qiliang. (2019), Natural green-peel orange essential oil enhanced the deposition,
 absorption and permeation of prochloraz in cucumber, *RSC Adv*, 35, 20395–20401.
- 64. Zhang, C., Zhang, Z., Zhao, K. and Lei, X. (2025), From regulatory pressure to green
 innovation: A cognitive perspective from China's plastic industry, *Global NEST Journal*, 27,
 1-10.