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Abstract 

 

In current years, the integrity of water quality has been jeopardized by a multitude of 

contaminants. Consequently, the modeling and forecast of water quality have assumed significant 

importance in the management and mitigation of water pollution. This study focuses on the 

development of sophisticated Artificial Intelligence (AI) algorithms for the purpose of predicting the 

Water Quality Index (WQI) and Water Quality Classification (WQC). Artificial Neural Network 

models, specifically the Nonlinear Autoregressive Neural Network (NARNN) and Long Short-Term 

Memory (LSTM) deep learning algorithm, have been devised for the purpose of predicting the WQI. 

In Water Quality Classification, we used Extreme Gradient Boosting (XGBoost), Support Vector 

Machine (SVM) & k-Nearest Neighbour algorithm (K-NN) has been used for the forecasting. The 

dataset included in this study consists of 10 parameters that are deemed to be significant. The models 

that were constructed were subsequently assessed using several statistical criteria. The findings 

indicate that the suggested models have a high level of accuracy in predicting the WQI and effectively 

classifying water quality with improved resilience. The findings of the study indicate that the NARNN 

model exhibited a slightly superior performance compared to the LSTM model in forecasting the 

values of the WQI. Additionally, the XGBoost algorithm attained the maximum level of accuracy, 

reaching 99.23%, in predicting the Water Quality Classification. 
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1.INTRODUCTION 

Water quality degradation has become a critical global concern due to increasing 

contamination from industrial, agricultural, and domestic activities [1]. Poor water quality directly 

impacts human health, ecosystems, and economic development. According to global reports, over 2 

billion people consume water contaminated with fecal matter or harmful pollutants, resulting in 

widespread waterborne diseases and environmental damage [2]. The growing demand for clean and 

safe drinking water calls for advanced, scalable, and cost-effective solutions to monitor, predict, and 

treat water quality. 

Traditional methods of water quality assessment and purification rely heavily on laboratory-

based testing and basic filtration techniques [3,4]. While these approaches are effective to some 

extent, they are often labor-intensive, time-consuming, and lack the precision needed to address 

complex contamination patterns. Furthermore, conventional filtration methods are inadequate for 

removing emerging pollutants, while real-time monitoring capabilities remain largely 

underdeveloped. This gap necessitates the development of advanced tools and technologies that can 

deliver accurate predictions and efficient treatments for water quality improvement [5,6]. 

Artificial intelligence (AI) offers a transformative approach to tackling water quality 

challenges. By leveraging machine learning and deep learning techniques, AI models can analyze 

large datasets, predict water quality trends, and classify water conditions with high accuracy [7,8]. 

This study employs advanced AI techniques, including the Nonlinear Autoregressive Neural Network 

(NARNN) and Long Short-Term Memory (LSTM) models for Water Quality Index (WQI) 

prediction. In addition, algorithms like Extreme Gradient Boosting (XGBoost), Support Vector 

Machines (SVM), and k-Nearest Neighbor (KNN) are utilized for water quality classification [9,10]. 

In addition to predictive modeling, this study introduces a novel approach to natural filtration using 

Hemidesmus indicus, a cost-effective and environmentally friendly material [11].Hemidesmus 

indicus demonstrates promising potential for lake water purification by effectively reducing turbidity, 

dissolved solids, and heavy metals. This experimental approach aligns with the principles of 

sustainable water management by minimizing chemical use and leveraging renewable natural 

resources [12,13]. 

This research focuses on Red Hills Lake, a critical rain-fed reservoir in Chennai, India, that serves as 

a primary water source for urban and rural communities. The study aims to develop an integrated 

system combining AI-driven predictive models with experimental filtration techniques. By 



 

 

addressing the dual challenges of accurate water quality monitoring and sustainable treatment, the 

research aspires to provide a robust framework for improving water safety and management [14]. 

The findings of this study have far-reaching implications for water resource management, particularly 

in regions grappling with limited infrastructure and high pollution levels. By demonstrating the 

efficacy of multi-model AI approaches and sustainable filtration techniques, this research contributes 

to the broader goals of environmental sustainability and public health [15]. The proposed framework 

offers a scalable solution for real-time water quality monitoring and treatment, setting a benchmark 

for future innovations in water management. 

2.MATERIALS AND METHODS 

2.1 Study Area 

 

The Red Hills Lake, commonly known as Pulhalaeri or Pulhal lake and occasionally spelt 

Puzhal lake, is situated in Red Hills, Chennai, India. It is located in the Tamil Nadu state's Thiruvallur 

district. It is one of two rain-fed reservoirs the other two being Chembarambakkam Lake and Porur 

Lake from which water is collected for delivery to Chennai City. 3,300 million ft3 is the lake's total 

storage volume. The reservoir is equipped with two masonry weirs. Both weirs have a length of 220 

meters and a depth of 15 feet, with one of them measuring 178 meters in length. The bund measures 

5 meters in length and spans a distance of 7 kilometres. Over a period of time, the weirs have 

developed a propensity for leakage. The Ambattur residential neighbourhood and the main road 

connecting to Avadi junction are situated in the southwestern region of the reservoir. The eastern 

region of the reservoir encompasses several notable features, including a water treatment facility, 

Pulhal Central Prison, and a road that provides connectivity to Koyambedu and North Chennai.  

 

The Padiyanallur village is situated along the Thiruvallur Koot Road, which is located in the northern 

region and serves as a direct route to Thiruvallur. There are two bund road routes that facilitate 

connectivity between the north and east sides of the reservoir. The first route extends from Alamaram 

junction to Redhills market junction, while the second route spans from Redhills bypass road junction 

to Surapet junction. The villages of Pammathukulam, Pothur, Attanthangal, and Naravarikuppam are 

situated in the northwestern region.  

2.2 Proposed Method 

The purpose of this study is to determine the water quality using Artificial Intelligence (AI) 

methods, such as XGBoost, SVM, K-NN, LSTM, and NARNN, can accurately forecast various 



 

 

aspects of Water Quality Index and Water Quality classification. Therefore, in the first part of this 

section, the examined area is provided, and then ranges of the various components of the water quality 

that were assessed are discussed. Following that, the research methodology of AI models is shown in 

Figure 1. 

 

 

Figure 1. Research Methodology 

 

2.3 Filtration of Hemidesmus indicus 

 

As seen in Fig. 2, the experimental setup for filtration using species known as Indian sarsaparilla, 

Hemidesmus indicus, can be found in South Asia. It can be found across the majority of India, from 

the upper Gangetic plain in the east to Assam, as well as in a few locations in the centre, west, and 

south of the country. Sarsaparilla is made from the dried root of tropical Smilax species 

(Smilacaceae); in India, this is Smilax aspera L. and Smilax ovalifoliaRoxb. It is a thin, twining shrub 

that can occasionally be semi-erect or prostrate. Roots are fragrant and woody. The stem has several 

nodes, is thin, terete, and thickened. The opposite, short-petioled, highly varied leaves range in shape 

from elliptic-oblong to linear-lanceolate. The blooms grow in dense sub-sessile axillary cymes and 

are greenish on the outside and purple on the inside[16]. In order to compare the initial water sample 

findings with the treated lake water that was filtered utilising novel Hemidesmus indicus, the water 

sample from the Puzhal lake was taken and evaluated for the following parameters. 

 



 

 

 

Figure 2: Experimental Setup for Hemidesmus indicus Filtration 

The following procedures to filter the raw sample using Hemidesmu sindicus 

A 1 litre polypropylene measuring cylinder is used to carry out the experiment for the present 

study. To carry out the experiment various layers with different proportions are set at first. A small 

hole of 10mm diameter is made in the bottom of the measuring cylinder for the treated lake water to 

get collected in the container kept below in the stand. In the measuring cylinder a filter paper is placed 

at the bottom and then a layer of fine aggregate followed by a layer of coarse aggregate of 3.5 cm 

depth is placed. On top of these layers, a layer of Hemidesmus indicusn root of 20 cm depth is placed. 

The measuring cylinder is kept on top of the stand and a container is placed on   the bottom of the 

stand for the treated lake water to get collected.  After which the initial sample of 1litre is poured on 

the measuring cylinder, the sample passes through various layers and the filtered water gets collected 

in the container.  The initial and treated lake water are tested for the following parameters such as 

pH, turbidity, hardness, chloride, sulphate, calcium, Total Dissolved Solids (TDS), Total Suspended 

Solids (TSS), iron and copper. 

 

2.4 Data Pre-processing 

 

The preprocessing stage plays a pivotal role in ensuring the quality and reliability of data used for 

water quality prediction and classification. In this study, the dataset comprises measurements of ten 

key water quality parameters, including pH, turbidity, hardness, chloride, sulphate, calcium, Total 

Suspended Solids (TSS), Total Dissolved Solids (TDS), iron, and copper. The data preprocessing 

pipeline was designed to prepare the dataset for AI-based analysis and modelling[17,18]. 

 

 

 



 

 

2.4.1. Data Cleaning and Normalization 

Initial data cleaning involved identifying and handling missing values, which were replaced using 

mean imputation for numerical parameters to maintain data consistency. Outliers detected through Z-

score analysis were reviewed and either corrected or excluded, depending on their context within the 

dataset. To ensure uniformity across all features, Z-score normalization was applied, converting the 

data into a standard scale with a mean of 0 and a standard deviation of 1. This step was crucial for 

optimizing the performance of machine learning algorithms [19]. 

 

2.4.2. Data Splitting 

The dataset was divided into training, validation, and testing subsets. A 70:15:15 ratio was employed 

to ensure adequate data for model training, hyperparameter tuning, and evaluation [20]. The training 

set was used to train the models, while the validation set aided in optimizing model parameters, and 

the testing set evaluated the models' final performance on unseen data. A stratified sampling approach 

was used to maintain the proportional representation of water quality classifications in all subsets. 

 

2.4.3. Data Volume and Temporal Coverage 

The dataset consists of water quality measurements collected over a specific period from Red Hills 

Lake. A total of [provide specific number] data points were included in the analysis, representing 

variations in seasonal and daily water quality [21]. Temporal dependencies in the dataset were 

retained, particularly for time-series models like NARNN and LSTM, to capture long-term trends and 

patterns in the water quality parameters. 

 

2.4.4. Feature Engineering and Transformation 

Correlation analysis was performed to examine relationships between the parameters, aiding in 

feature selection and dimensionality reduction where necessary. Parameters with strong correlations 

were retained for prediction and classification to enhance model interpretability and reduce 

computational complexity. Additionally, categorical labels were encoded using one-hot encoding for 

the classification tasks [22,23]. 

 

2.4.5. Cross-Validation 

K-fold cross-validation with 5 folds was employed during model training to mitigate overfitting and 

ensure robust evaluation. Each fold allowed the model to train on different subsets of data while 

validating on unseen portions, providing a comprehensive understanding of its generalization 

capabilities. 

 



 

 

2.5 Water Quality Index Calculation 

 

The estimation of WQI involves the consideration of several elements that significantly influence 

the quality of water. In this work, a set of ten significant water quality metrics is employed to evaluate 

the efficacy of the proposed model in comparison to a dataset that has been previously published.  In 

water quality index, to assign the constant value proportionality calculated as follows: 

 

𝜅 = 1
∑ 𝒮𝒾

𝓃
𝒾=1

⁄             ---------------------------------------- (1) 

Where, 

𝜅  -> Constant value 

𝒮 -> Standard value of parameter 𝒾 

 

In Eq. (1) were using to be calculated k for each parameter 𝒾. The Unit weight value for each 

parameter was calculated by Eq.2 

Unit Weight (𝒲𝒾) = 
𝜅

𝒮𝒾
           ------------------- (2) 

In Eq.3 were using to be calculated the quality rate for each parameter 𝒾. To find the quality rate 

of each parameter as follows: 

Quality Rate (𝒬𝒾) = 
𝒱𝒾− 𝒱𝑖𝑑𝑒𝑎𝑙

𝒮𝒾− 𝒱𝑖𝑑𝑒𝑎𝑙
      -------------------------- (3) 

The following formula was used to determine the WQI by using Eq.4  

𝑊𝑄𝐼 =
∑ 𝒬𝒾∗ 𝒲𝒾

𝑁
𝒾

∑ 𝒲𝒾
𝒩
𝒾=1

           ------------------------------------ (4) 

In the given context, N denotes the total count of parameters included in the calculations of the 

water quality index. Qi represents the quality rating of each individual parameter i, which is 

determined using equation (3), while the unit weight for each parameter i is computed using 

equation (2). 

 

Table 1. The acceptable thresholds for the parameters included in the calculation of WQI 

 

S.NO PARAMETER LIMITS 

1 pH (range) 6.5-8.5 

2 
Turbidity 

(NTU) 
1.0-5.0 

3 Hardness(mg/l) 200-600 

4 Chloride (mg/l) 250-1000 



 

 

5 Sulphate(mg/l) 200-400 

6 Calcium(mg/l) 75-200 

7 TDS (mg/l) 500-2000 

8 TSS (mg/l) 500-2000 

9 Iron(mg/l) 1.0-2.0 

10 Copper(mg/l) 0.05-1.5 

Table 1 shows the list of the parameter to analyses the water quality prediction in lake water and the 

permissible limits of each parameter. Table 2 shows the Water Quality Index Classification. 

Table 2: Water Quality Index Classification 

 

 

 

 

2.6 Z- Score Calculation 

 

The process of normalisation might facilitate the simplification of calculations. The given 

statement undergoes a conversion process from a dimensional form to a scalar form. Z-score 

normalization, sometimes referred to as normalization score, is a commonly employed technique for 

data normalization [24,25]. It involves utilising the mean and standard deviation values of the data 

being tested in order to normalise the parameters. The computation can be expressed in Eq. (5)  

Z-Score Calculation = 
(Χ− 𝜇)

𝜎
 --------------------- (5) 

In this context, x represents the numerical value assigned to the parameter i in the samples that were 

subjected to testing. 

 

2.7 Prediction of WQI 

 

The construction of the water quality prediction model involves analyzing patterns within the 

dataset of lake water quality using a range of techniques, including decision tree regression, random 

forest, linear regression and support vector regression. To accomplish this goal, the ANN model of 

WOI Range Classification 

 
0-24 Excellent  

25-50 Good  

51-75 Poor  

76-100 Very poor  

Above 100 
Unfitting for Drinking 

Water 
 



 

 

NARNN-LSTM (nonlinear autoregressive neural network- long short-term memory) for the purpose 

of predicting the water quality score [26]. 

 

2.7.1. LSTM Model 

Recent studies using deep learning models, particularly LSTM networks, have shown significant 

promise in predicting water quality. For instance, the combination of LSTM and other techniques like 

the attention mechanism or convolutional neural networks (CNNs) has been applied successfully to 

predict key water quality parameters like dissolved oxygen, nitrogen, and phosphorus concentrations.  

These models can capture temporal dependencies and nonlinear patterns in water quality data, 

providing more accurate predictions than traditional models. In one study, LSTM models were used 

in the Nakdong River Basin to predict water quality with high accuracy [27,28]. The combination of 

CNN for water level and LSTM for water quality achieved a Nash–Sutcliffe efficiency value above 

0.75, which indicates very good performance in predicting pollutant variations. Another case study 

on the Burnett River in Australia used LSTM with an attention mechanism to enhance prediction, 

showing that this approach improved prediction accuracy compared to a standard LSTM model . 

2.7.2 Proposed NARNN-LSTM Techniques 

The strong performance of the NARNN-LSTM model in water quality prediction stems from its 

ability to effectively handle the temporal and nonlinear characteristics of water quality data. 

Parameters such as pH, turbidity, and dissolved solids often exhibit time-dependent patterns 

influenced by seasonal and environmental changes. The NARNN component utilizes its 

autoregressive nature to analyze sequential relationships, feeding past outputs into future predictions, 

while the LSTM component excels at capturing long-term dependencies through its memory cells. 

Together, these features allow the model to identify trends, periodic variations, and interactions in 

the data, which are essential for accurate water quality forecasting. 

 

Another significant advantage of NARNN-LSTM lies in its robustness to noise and missing data, 

common issues in water quality datasets. Noise, arising from sampling errors or inconsistencies, is 

smoothed during the learning process, enabling the model to focus on meaningful patterns. The 

architecture’s regularization techniques, such as dropout, further improve its ability to generalize, 

reducing overfitting to noisy data. Additionally, LSTM’s capability to handle variable time intervals 

without requiring extensive interpolation makes it particularly suitable for datasets with irregular or 

incomplete temporal records. These qualities ensure consistent and reliable predictions across diverse 

data conditions. 



 

 

The NARNN-LSTM model is widely recognized as a prominent example of a multilayer feed-

forward network. The process commences by initializing the weight value with an estimated value, 

which is subsequently refined by the incorporation of observed data. Consequently, the prediction 

process of the neural network model incorporates a certain degree of stochasticity. The network 

undergoes multiple training iterations with varying random initialization values, and the resulting 

outcomes are subsequently averaged. The identification of the number of hidden layers and nodes is 

a prerequisite in the NARNN-LSTM paradigm. The NARNN-LSTM time series model is described 

by Equation (7). 

 

𝑌(𝑡𝑖𝑚𝑒) = ℎ(𝑌(𝑡𝑖𝑚𝑒 − 1), 𝑌(𝑡𝑖𝑚𝑒 − 2), ⋯ , 𝑌(𝑡𝑖𝑚𝑒 − 𝑃)) +  𝜀(𝑡𝑖𝑚𝑒) ------------ (7) 

 

 

Figure 4: Calculation of the NARNN-LSTM model. 

 

When using the p observation values of the series, y(t) is the value of the time-series data at time t. 

The network weights and neuron bias are optimized using the function (h). The error derived from 

the model at time t is known as e(time). 

 

The model’s ability to model complex feature interactions and seasonal dynamics further enhances 

its effectiveness. Water quality parameters often exhibit nonlinear relationships, such as correlations 

between turbidity, total dissolved solids, and pH, which are difficult for simpler models to capture. 

NARNN-LSTM’s layered structure processes these interactions while emphasizing sequential 

dependencies. Moreover, the model is adept at detecting seasonal patterns, such as increased turbidity 

during monsoons or temperature-driven changes in dissolved oxygen levels. Empirical results, 

including high accuracy metrics and low residual errors, demonstrate its superior predictive 

capabilities. These strengths make NARNN-LSTM an optimal choice for addressing the inherent 

complexities of water quality data. 



 

 

The present work involved the development of the NARNN model for the purpose of predicting the 

WQI. The NARNN model, in contrast to other Artificial Neural Network (ANN) models such as the 

forward neural network, is specifically designed for time series analysis and forecasting of stationary 

time series. The utilization of the NARNN model is proposed as a means to predict the WQI, as the 

parameters of the WQI exhibit characteristics of a time series. Table 3 presents the pertinent 

parameters for model building. Figure 4 illustrates the architecture of the NARNN model that has 

been built. 

Table 3:  Parameters of the developed NARNN Technique. 

No. of hidden layers 11 

No. of delays 1:9 

Max. number of iterations 100 

Max. number of epochs 11 

No. of gradients 1.724 * 103 

 

2.8 Monitoring a Water Quality Classification using XGBoost Techniques 

 

XGBoost has incorporated regularization techniques, including regularized boosting, which has 

proven to be quite effective in mitigating the issue of overfitting. Compared to K-NN, XGBoost offers 

the advantage of parallel processing, resulting in significantly improved speed. In contrast to SVM 

and K-NN classification, Users of XGBoost can create unique optimization goals and assessment 

standards [29,30]. This flexibility enables the inclusion of additional dimensions in the model, thereby 

avoiding any constraints on data processing. During data collection, the presence of various artificial 

or experimental defects often leads to data loss. Hence, the use of XGBoost is attempted as a substitute 

for the prior classifier in order to construct a water quality classification model. Preprocessing of the 

acquired feature data is a necessary step prior to the formation of the model, as it serves to enhance 

both an accuracy and the training speed of the model. To begin with, a process known as Smoothing 

was conducted in order to generate a set of feature samples. XGBoost is a very effective decision tree 

classifier that leverages the scoring and objective function to evaluate the model's performance. 

 

XGBoost is a classification model for water quality shows in Equation (8) & (9) 

 

𝑂𝑏𝑗𝑒𝑐𝑡 =  −
1

2
∑

𝑔𝑎𝑖𝑛𝑗
2

ℎ𝑗+ 𝜆

𝑡
𝑗=1 +  𝑡𝛾   ----------------------------- (8) 

 

𝐺𝑎𝑖𝑛(𝐺) =  
1

2
[

𝑔𝑙
2

ℎ𝑙+ 𝜆
+  

𝑔𝑟
2

ℎ𝑟+ 𝜆
+  

(𝑔𝑙+ 𝑔𝑟)

ℎ𝑙+ 𝜆
] −  𝛾  ----------------------------- (9) 



 

 

 

The following stages were used in this paper to create a model for monitoring water quality:  

 

• The feature parameter set served as XGBoost's training input.  

• The most effective number of boosting rounds was obtained using the cross validation 

method.  

• The model was analysed and assessed using the tree structure and the characteristic score.  

 

This paper outlines the sequential process employed to create a water quality monitoring model.  The 

input for training XGBoost consisted of the feature parameter set.  The cross-validation technique 

was engaged to regulate the most suitable number of enhancing iterations. The utilization of the tree 

structure and the typical score facilitated the analysis and evaluation of the model [31]. 

  

2.9 Assessment of an Individual's Performance in a Model. 

 

The evaluation of the effectiveness of the constructed models in predicting and classifying the water 

quality index is conducted in order to choose the optimal algorithm. The prediction algorithms that 

exhibit the highest efficiency are typically characterized by a very low Root Mean Square Error 

(RMSE) value. Similarly, the evaluation of the best classification model is commonly conducted by 

assessing its accuracy [32]. The statistical parameters employed in the analysis were as follows: 

 

• Mean Square Error (MSE) 

    MSE =
1

𝑁
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑁

𝑖=1  ----------------------------------- (11) 

  

  

• Root Mean Square Error (RMSE) 

RMSE = √∑
(𝑦−𝑦̂)2

𝑁
𝑁
𝑖=1   ---------------------------------- (12) 

  

    

Let n represent the total number of input variables. The variable x refers to the observation input data 

from the initial batch of training data, while y represents the observation input data from the second 

set of training data. R denotes the Pearson's correlation coefficient. 

 



 

 

• Accuracy 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
× 100%   (13) 

• Specificity 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝐵
× 100%    (14) 

• Sensitivity 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100%    (15) 

• Precision 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100%    (16) 

• F-score 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =
2∗𝑝𝑟𝑒𝑖𝑠𝑖𝑜𝑛∗𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑝𝑟𝑒𝑖𝑠𝑖𝑜𝑛+𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
× 100%   (17) 

 

 

The True Positive, True Negative, False Positive, and False Negative are represented by the variables 

TP, TN, FP, and FN, respectively. The aforementioned equations and data from river water are used 

to evaluate how well machine learning algorithms perform in providing water quality indicators for 

prediction and categorization. 

 

2.10 Correlation Analysis 

 

In order to investigate the relationship that exists between two or more variables, a statistical 

technique known as correlation analysis is utilized. The Pearson correlation coefficient approach is 

used, which involves assessing the strength and direction of the correlation, in order to evaluate the 

degree of correlation that exists between the significant parameters of the dataset that are utilized in 

the process of forecasting the WQI values. 

 

𝑅 =  
𝑛 ∑(𝑥1×𝑥2)−(∑ 𝑥1)(∑ 𝑥2)

[𝑛 ∑(𝑥12)−∑(𝑥12)]×[𝑛 ∑(𝑥12)−∑(𝑥12)]
× 100%  --------------------- (18) 

Where: 

 

𝑅: The approach utilized in this study is Pearson's correlation coefficient. 

𝑥: Enter the values for the first batch of training data. 

𝑦: Please provide the input values for the second batch of training data. 

𝑛: The overall quantity of input variables. 



 

 

 

3 Results and discussions 

In this study, Physiochemical parameters such as pH, turbidity, hardness, chloride, sulphate, 

calcium, Total Suspended Solids (TSS), Total Dissolved Solids (TDS), iron, and copper were 

analyzed. The descriptive WQI and WQC are presented. 

3.1 Experimental Analysis of Proposed Techniques 

 

The primary objective of water purification is to ensure the provision of potable water that is free 

from contaminants. The adherence to appropriate filtering procedures is crucial due to the potential 

accumulation of runoff, animal excretions, and pollutants from boats and machinery in lake water. 

The potability of lake water is often limited but, by the implementation of appropriate filtration 

techniques, it is possible to obtain water that is both safe for consumption and possesses desirable 

taste qualities. The utilization of lake water holds significant advantages for several businesses, as it 

may be employed in a multitude of procedures. 

Table 4: Characteristics of Raw Sample 

PARAMETER 
RAW SAMPLE 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 

pH (range) 7.61 7.7 6.9 7.8 7.4 7.5 6.9 6.8 7.4 7.7 7.6 7.8 6.8 7.8 7.6 

Turbidity(NTU) 2.49 2.65 3.56 2.8 2.95 2.6 2.78 2.85 2.9 2.57 2.54 2.56 2.57 2.58 3.5 

Hardness(mg/l) 242 252 254 251 252 240 248 246 243 250 251 256 258 253 257 

Chloride (mg/l) 258 260 255 258 254 260 255 256 248 295 256 250 253 252 256 

Sulphate(mg/l) 230 235 240 236 239 234 215 225 265 234 256 254 251 257 258 

Calcium(mg/l) 85 79 82 84 83 81 80 81 82 86 85 82 82 86 85 

TDS(mg/l) 650 660 550 574 589 620 623 587 635 659 625 654 594 653 620 

TSS(mg/l) 750 756 758 779 820 824 780 789 753 745 785 754 756 785 795 

Iron(mg/l) 1.378 1.2 1.4 1.6 1.25 1.35 1.45 1.56 1.58 1.38 1.96 1.5 1.45 1.58 1.25 

Copper(mg/l) 1.3 1.1 1.3 1.2 1.6 1.5 1.4 1.6 1.45 1.25 1.5 1.3 1.36 1.24 1.25 

 

The data pertaining to the collecting of water samples from the lake, as well as the subsequent analysis 

of these samples using ten parameters, is presented in Table 4. In this present study we have checked 

the feasibility of Hemidesmus indicus root as a filter media for lake water treatment. Lake water 

quality analysis have been conducted in the laboratory for parameters such as pH, turbidity, total 

dissolved solids, total suspended solids, hardness, iron, chloride, sulphate, copper, calcium. Table 5 

shows that filtration of lake water samples by using Hemidesmus indicus. 



 

 

 

Table 5: Filtration of Hemidesmus indicus using raw samples 

PARAM

ETER 

RAW SAMPLE 

S1 S2 S3 S4 S5 S6 S7 S8 S9 
S1

0 

S1

1 

S1

2 

S1

3 

S1

4 

S1

5 

pH (range) 
6.5

6 
6.5 6.8 7.1 7.2 6.9 6.2 7.5 6.6 6.3 7.2 

6.

8 

7.

2 

7.

6 
7.5 

Turbidity(

NTU) 

1.8

1 
1.8 2.2 2.3 2.5 1.7 1.9 2.6 3.2 3.3 3.5 

1.

5 

1.

7 

1.

9 
3.5 

Hardness(

mg/l) 

25

6 

25

8 

25

9 

30

1 

33

0 

33

5 

42

5 

25

9 

28

9 

36

9 

34

9 

37

8 

34

9 

37

8 

39

8 

Chloride 

(mg/l) 

21

2 

22

0 

22

5 

26

9 

35

9 

38

9 

38

5 

34

8 

37

9 

48

7 

48

3 

38

9 

34

7 

48

7 

49

6 

Sulphate(

mg/l) 

22

6 

22

9 

22

6 

22

8 

31

0 

31

5 

32

9 

30

5 

29

8 

29

7 

32

4 

32

6 

31

4 

30

0 

35

9 

Calcium(

mg/l) 
80 82 85 96 95 84 89 82 89 86 83 94 98 96 98 

TDS(mg/l

) 

54

5 

52

0 

52

2 

54

8 

56

9 

57

8 

61

2 

62

3 

64

8 

58

9 

62

5 

67

8 

69

3 

67

8 

68

9 

TSS(mg/l) 
53

6 

54

0 

58

9 

54

8 

56

3 

59

8 

58

7 

59

6 

53

2 

68

5 

69

8 

64

8 

65

9 

67

5 

69

8 

Iron(mg/l) 
1.0

2 

1.0

5 

1.0

6 
1.1 

1.1

6 

1.1

7 

1.1

8 

1.1

6 
1.1 1.5 1.6 

1.

4 

1.

8 

1.

9 
1.8 

Copper(m

g/l) 

1.1

1 
1.2 1.3 

1.1

2 
1.4 1.2 1.3 

1.1

6 

1.1

8 

1.1

6 

1.3

5 

1.

2 

1.

3 

1.

2 

1.2

5 

 

 

3.2 Water Quality Index Prediction Model 

 

The proposed techniques NARNN-LSTM model, consisting of 10 hidden layers, demonstrated a 

favourable concert in predicting the values of the WQI. As previously mentioned, it exhibits the 

following attributes: The number of delays is 1:8, and the number of epochs is 12. The LSTM model 

that was built consists of a total of 200 hidden layers, with a maximum number of epochs set at 150.  



 

 

Table 6 presents a summary of the performance parameters of the generated models for predicting 

WQI. It is observed that the LSTM model exhibited somewhat higher prediction accuracy for the 

testing data compared to the training data. Furthermore, it has been shown that the LSTM model 

generally exhibits a somewhat superior performance in comparison to the NARNN model, as 

indicated by the Mean Squared Error (MSE) values. However, in terms of value, the NARNN model 

has demonstrated better prediction of R%>91.83. 

 

Table 6: Performances of the NARNN-LSTM models to predict WQI. 

 

Models 
Training Data Testing Data 

MSE R (%) MSE R (%) 

NARNN 0.2714 94.87 0.1242 95.18 

LSTM 0.1217 91.83 0.1049 94.31 

 

The NARNN model's histogram error is depicted in Figure 5, which may be found here. Finding 

faults in the goal values and the anticipated values of training and testing datasets can be accomplished 

with the help of the histogram metric. The overall error range has been segmented into twenty smaller 

bins, and the y-axis of each bin displays the number of samples that are contained inside that bin. 

Figure 6 presents the histogram metric as well as the mean errors that were generated by the LSTM 

model during the training and testing periods [33,34]. The mean error and the histogram metric are 

utilized in order to determine the degree to which the observed values deviate from the values that 

were anticipated by the training and the testing. 

 

 

 

Figure 5: Histogram Model of NARNN technique 

 



 

 

 

 

Figure 6: LSTM training and testing histogram and mean errors. 

 

Figures 7 and 8 shows NARNN and LSTM regression charts for training, testing, and entire datasets. 

This graphic shows the predicted-actual relationship. The plot's "target" values are the dataset, while 

the "output" values are NARNN and LSTM model predictions. As seen in both panels, the projected 

WQI values match those estimated from measured parameters (NARNN and LSMT). Both models 

are highly efficient. 

 

Figure 7: NARNN Regression 

 

 

Figure 8: LSTM Regression 

 

 

 

 



 

 

3.3 Prediction of Water Quality Classification 

 

In order to obtain the result using XGBoost, the classification model that was used for the initial 

data 4 was employed. Table 7, which was provided, is a table that provides the attributes of the 

parameters that are related with the code for the model. Figure 9 presents a display of the scores 

obtained for each distinguishing parameter included in the model. 

 

Table 7: XGBoost's performance in terms of classification. 

Samples 
Accuracy 

(%) 
Time/s 

S1 97.25 0.052 

S2 99.1 0.049 

S3 98.51 0.0559 

S4 97.62 0.055 

S5 98.26 0.053 

S6 99.02 0.0545 

S7 98.36 0.052 

S8 97.45 0.062 

S9 99.3 0.059 

S10 98.71 0.0659 

S11 97.82 0.065 

S12 98.46 0.063 

S13 99.22 0.0645 

S14 98.56 0.062 

S15 97.35 0.054 

 



 

 

 

Figure 9: XGBoost's performance in terms of classification. 

3.4 Comparison Analysis  

We compared XGBoost to SVM, a standard classifier that has historically performed well in 

classification problems, to demonstrate its performance. Table 8 shows the efficacy of the employed 

machine learning models in forecasting WQC. XGBoost uses original data, therefore SVM must be 

further normalized to work best. WQC prediction Machine learning algorithm performance as shown 

in Figure 10. 

 

Table 8: The efficacy of the employed machine learning models in forecasting WQC 

Models 
Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Precision 

(%) 

F-score 

(%) 

XGBoost 97.01 99.23 97.78 94.93 98.54 

SVM 

[11,12] 
83.63 84.73 94.93 87.50 85.84 

KNN[21] 75.20 77.76 91.65 78.08 81.51 

 

96 96,5 97 97,5 98 98,5 99 99,5 100
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S11

S12
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Accuracy (%) Time/s



 

 

 

Figure 10: WQC prediction machine learning algorithm performance 

 

4 Conclusions 

 

The modelling and prediction of water quality play a crucial role in safeguarding the environment. 

The utilization of sophisticated artificial intelligence algorithms can be employed in the development 

of a model to assess the prospective water quality. The present study employed advanced artificial 

intelligence algorithms, specifically the NARNN-LSTM models, to forecast the WQI. A set of motion 

characteristic parameters were computed to serve as indicators for water quality assessment. During 

the parameter analysis, it was shown that certain features may effectively differentiate between 

normal and abnormal water quality conditions. The establishment of a water quality monitoring 

model was built on XGBoost classifiers, as proposed by this concept. Following an extensive series 

of studies, this model has demonstrated its ability to efficiently, precisely, and readily classify water 

quality. In comparison to the preceding classifier, XGBoost shown greater prominence. Nevertheless, 

the comprehensive procedure of monitoring water quality lacks the ability to attain complete closure. 

Consequently, we must depend on continuous training and the handling of human errors. As a result, 

the entire system falls short of achieving real-time monitoring capabilities. Furthermore, it is possible 

to degrade the experimental conditions and improve the resilience of the system. 
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