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Abstract 

Due to the methane emission from the mining of coal and 
industrial byproducts including CFCs, depletion of the 
ozone layer causes raised global warming and worsens 
climate change. One chlorine atom can lead to the 
destruction of 1,00,000 ozone molecules causing 
depletion at a much faster rate than natural replacement. 
The research studies the impact of industrial expansion of 
Delhi on ozone depletion through the development of 
hybrid predictive modeling by the integration of 
Convolutional Neural Networks (CNN) and Bi-directional 
Long Short-Term Memory (Bi-LSTM) networks. While the 
CNN extracts important spatial features, the Bi-LSTM 
captures temporal dependencies, thus achieving precise 
forecasts. To further improve the extraction of relevant 
data from encoded sequences, a multi-head attention 
layer is placed between encoder layers. The model 
performance was assessed using Mean Absolute Error 
(MAE), Root Mean Square Error (RMSE) and Normalized 
Root Mean Square Error (NRMSE). The simulation results 
indicate that the CNN-Bi-LSTM model is characterized by a 
MAE of 0.214, an RMSE of 0.268, and a MAPE of 34.22%, 
and esteems it to be better than the traditional models, 
such as LSTM, SVR, and Random Forest. The model 

predicts ozone depletion for short and long periods of 
time, thus ensuring accurate future projections and 
reliable monitoring. The developed system was tested in 
various conditions for 2100 hours and found to be 
accurate, reliable, and robust. These findings would 
indicate the suitability of the system for real-time 
monitoring and forecast at an appropriate time for policy 
intervention and recommendation to minimize further 
depletion. 

Keywords: Air pollution, convolution neural network, 
delhi regions, long short-term memory, ozone layer 
depletion, ozone layer monitoring 

1. Introduction 

In recent years, ozone depletion is the dangers to the 
earth faces, which has the effect of increasing the amount 
of different solar rays, including ultraviolet rays, which are 
entering the atmosphere. Specifically, it has a significant 
impact on the health of a variety of living species, with the 
skin being the most affected. The creation of the ozone 
hole and its ongoing expansion can be attributed to a 
number of different factors. Recently, a noticeable 
increase in awareness, and governments from a variety of 
countries have expressed their concern regarding this 
matter. Additionally, it is one of the factors that 
contribute to various forms of pollution, agricultural risk, 
climate change, and global warming, all of which have the 
potential to have an indirect influence on life on earth 
(Chakraborty et al., 2017). When it comes to pollution, for 
example, the use of high-resolution quality of air models 
in the Andes Region is quite limited. This is especially true 
in the medium-sized towns of South America, which are 
experiencing rapid urbanization, which in turn raises the 
risk associated with air pollution periods (González et al., 
2018).  

For the same reason, determining the extent of the ozone 
(O3) threat to vegetation is essential for informing policy 
decisions in the context of agricultural concerns. The 
availability of both phosphorus and nitrogen in the soil 
has the potential to alter stomatal conductance, which is 
the primary factor in the capacity of a leaf to take in 
oxygen. Additionally, the availability of both phosphorus 
and nitrogen could have an effect on photosynthesis and 
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growth, which would result in a change in the sensitivity 
of plants to oxygen based on the quantities of nitrogen 
and phosphorus in the soil (Zhang et al., 2018). To be 
more specific, humans have been responsible for the 
emission of ozone-depleting chemicals (ODSs), which has 
resulted in the continual depletion of the ozone layer on a 
worldwide scale. This has resulted in significant concerns 
for both the environment and the human population. In 
light of this, it is essential to investigate the impact of 
each unique ODS in order to make an estimate of the 
ways in which this load may shift in the future (Singh and 
Bhargawa, 2019).  

Solar radiation and related meteorological variables are 
other environmental elements that have substantial 
impacts, alongside ODSs. Because of its impact on energy 
production, food safety, the ozone layer, and other 
industrial applications, solar radiation and related climatic 
variables have garnered increasing attention over the 
years. Therefore, numerous places have made it a priority 
to study how to forecast these factors both in the long 
and short term utilizing different fusions of recorded 
meteorological parameters. But it's still not easy to create 
and choose a reliable model to estimate solar radiation 
using a number of weather characteristics (Abayomi-Alli et 
al., 2019). The present review compiles what is known so 
far about the interplay between climate change and 
ozone-depletion as it pertains to aquatic ecosystems, 
specifically how these two factors influence UV radiation 
exposure in both freshwater and saltwater environments. 
Additionally, it discusses the ways in which the loss of 
ozone in the stratosphere is influencing southern 
hemisphere climate and the far-reaching consequences 
this has on aquatic environments (Williamson et al., 
20119).  

Continuing to reduce the ozone-depletion gases 
concentration in the atmosphere is essential to the 
process of restoring the ozone layer in the stratosphere. 
The second-most prevalent trichlorofluoromethane (CFC-
11), chlorofluorocarbon, has seen a significant decrease in 
atmospheric levels since the second half of the 1990s. On 
the other hand, there has been a halt in the reduction of 
CFC-11 air concentrations after 2012, which indicates that 
emissions on a worldwide scale have accelerated (Rigby et 
al., 2019). Since the 1970s, the amount of ozone in the 
Earth's isothermal layer has been steadily declining, falling 
by five percent every decade. There is a growing ozone 
hole in Antarctica and other rarefied ozone regions due to 
the widespread usage of chlorofluorocarbons in modern 
industries. Since the 1980s, a number of meteorological 
satellites have been launched by several national space 
ministries to track this topic of environmental change. 
Unfortunately, scientists typically manually record such 
ozone hole data from satellites, which is a rather wasteful 
process (Zhu et al., 2020).  

Increased manufacture and usage of elements that consist 
of chlorofluorocarbons (CFCs), halons, and other 
compounds comprising both bromine and chlorine, which 
are commonly referred to as ozone-depleting substances 
(ODSs), have been the primary contributors to the loss of 

the ozone layer in the stratosphere, which was first seen 
in the 1980s (Chipperfield et al., 2020). Within the context 
of the Montreal Protocol (MP) and the United Nations 
Sustainable Development Goals, the interacting impacts 
of solar ultraviolet (UV) light, climate change, and the 
stratospheric ozone layer are discussed. Topics covered 
include the effects of climate change on air and 
atmospheric quality, biogeochemical cycles, solar power, 
human wellness, materials used in outdoor building, and 
fabrics, as well as ecosystems of both land and water. 
Changing seasonal patterns and more frequent and severe 
weather events are two ways in which climate change is 
already having an impact (Bernhard et al., 2020).  

Many people die each year as a result of air pollution, 
which is one of the biggest threats to human health in the 
modern era. The ozone layer is one of our most dangerous 
atmospheric pollutants among many others. Breathing 
heavily, asthma, inflammatory disorders, and premature 
death are all examples of the serious health problems it 
can bring about (Aljanabi et al., 2020). As the amount of 
biologically effective solar UV, that reaches Earth's surface 
increases due to ozone depletion, remote sensing has 
been essential in understanding the impacts of this 
phenomenon on biogeochemical cycles around the world 
(Varotsos et al., 2021).  

The worldwide map of ozone concentration is one of the 
two components that are included in Figure [1]. The color 
scale on this map ranges from 100 to 500 Dobson units.  
The amount of ozone that is present in the atmosphere of 
the Earth is quantified using Dobson units, abbreviated as 
DU. The amount of ozone that would be required to 
produce a layer that is 0.01 millimeters thick at standard 
temperature and pressure (STP) is referred to as one 
Dobson unit. This layer would normally extend from the 
surface to the top of the ozone layer, which is 
approximately 20-30 kilometers above the surface of the 
Earth. The other is a diagrammatic representation of the 
ozone profile in the atmosphere, which shows the 
tropospheric ozone layer at the lower altitude and the 
stratospheric ozone layer at the higher altitude. 

The Earth's stratospheric ozone layer is being depleted 
because ozone-depleting chemicals remain mostly 
unaltered in the lower atmosphere. Unfortunately, they 
are photosensitive and are dissolved to release free 
chlorine atoms because of this. Chlorine monoxide (CIO) 
and oxygen are byproducts of the reaction between this 
free chlorine atom and an ozone molecule (O3). After 
then, one ozone molecule reacts with ClO to produce an 
atom of chlorine and two molecules of oxygen. 
Perpetuating the cycle of ozone deterioration, the free 
chlorine atom can once again interact with ozone (Aslam 
et al., 2021). After the Montreal Protocol phased out the 
manufacture of ozone-depleting chemicals, the 
atmospheric concentration of CFC-11 began to decline. 
Suddenly, rising emissions since 2013 probably from 
undocumented production slowed the fall in CFC-11 
quantity, which, if continued, might postpone the 
recovery of the ozone stratospheric. Global mean CFC-11 
concentrations, as measured in the atmosphere at several 
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locations across the globe, are expected to fall sharply in 
2019 and 2020, according to recent data (Montzka et al., 
2021).  

 

Figure 1. Global Ozone Concentration Map and Atmospheric 

Ozone Profile Schematic 

Massive weather systems, like the Asian summer 
monsoon, sweep across most of Asia every summer. The 
Asian summer monsoon anticyclone (ASMA) carries 
pollutants from Asia's fast industrializing nations into the 
tropical upper troposphere, according to recent studies. A 
greater than anticipated mixing ratio of ODSs is being 
transported into the upper troposphere as well as lower 
stratosphere by the Asian monsoon, which is likely to have 
an effect on the stratospheric ozone layer (Adcock et al., 
2021). Because of its high absorption capacity, O3 in the 
stratosphere protects life on Earth from the deadly 
ultraviolet (UV) rays that would otherwise reach the 
surface. Though nearly all ultraviolet light in the 200–280 
nm band is absorbed, some of the 280–300 nm and 320–
400 nm bands do reach the surface. Smoke from flames 
generated by nuclear weapons could induce climatic 
change that lasts up to fifteen years, endangering food 
supply, in addition to the immediate fatalities caused by 
the explosion, temperatures and radiation. This has the 
potential to deplete our ozone layer, which might take ten 
years to replenish, and then expose us to dangerously 
high levels of ultraviolet radiation at the surface for 
numerous years, posing a further threat to human 
wellness and availability of food (Bardeen et al., 2021).  

As part of the UN Environment Programme, the Montreal 
Protocol's Environmental Effects Assessment Panel 
studies how variations in surface UV rays as well as 
changes to the stratospheric ozone layer affect 
ecosystems and human health. Scientific developments 
formed the basis for the most recent revision. The article 
goes on to talk about the interplay between climate 
change, UV radiation, and stratospheric ozone depletion, 
as well as the inverse relationship between the two. Air 
pollution, carbon sinks, ecosystems, human health, and 
synthetic and natural materials are used to evaluate the 
consequent interconnected impacts of ultraviolet 
radiation, climate change, and stratospheric ozone 
depletion. Gathering input characteristics that affect 

variations in ozone concentration is essential for creating 
an accurate prediction model. Consequently, it is 
necessary to construct a very accurate model with very 
few input parameters. The deterministic method and 
statistical regression are two of the many methodologies 
used to predict ozone depletion on a global scale. To 
identify ozone depletion, it is preferable to employ 
artificial intelligence methods, such as deep learning 
methods, which are far more effective while requiring less 
computational time and resources. There have been 
advancements in the model of neural networks that offer 
a stable prediction method (Neale et al., 2021). Hazardous 
air pollutants, namely benzene, toluene, ethylbenzene, 
and xylene (BTEX), are of grave concern for human health, 
which is a catalyst for the air-quality monitoring and 
control scheme (Kamani et al., 2023). Membranes from 
advanced polymeric nanocomposites, for instance, 
Pebax/PEG/NCS with high CO₂ selectivity and 
permeability, are also useful in the degradation of air 
pollutants (Delavari et al., 2024). These conclusions also 
underscore continuous ozone monitoring and prediction 
modeling as matters of importance in minimizing air 
pollution and impacts on climate. The proposed CNN-
BiLSTM hybrid model enhances the prediction of ozone-
depleting events in real time, leading to improvements in 
strategic environmental policymaking and public health 
safety. 

The context of this study highlights the significance of the 
ozone layer in shielding life on Earth from damaging UV 
radiation and the role that industrial pollution plays in 
hastening its depletion. The previous monitoring 
techniques lacks in precisely forecasting and monitoring 
the ozone depletion over time. To address this research 
gap, the cutting-edge hybrid strategy is proposed for 
ensuring the real-time ozone monitoring. The motivation 
of this study is to address the ozone layer's continuous 
depletion, that mostly caused by human activities as coal 
mining and industrial pollutants. A hybrid predictive 
model is designed, which involves CNN and Bi-directional 
Long Short-Term Memory (Bi-LSTM)-based prediction for 
more effective ozone depletion forecasting than 
traditional models. While CNN networks extract shallow 
spatial features, Bi-LSTM networks capture long-term 
temporal dependencies, thereby enhancing predictive 
performance. A first-of-its-kind application of multi-head 
attention layer integration between encoder blocks 
enhances the model capacity to focus on important parts 
of the encoded sequences, thus improving its 
performance. The model also dynamically adapts to 
environmental data and assures continuous ozone 
monitoring with higher efficacy, reliability, and 
robustness. 

2. Related works 

In the article (Osipov et al., 2021), the authors utilized 
simulations demonstrate that the emission of sulphur into 
the stratosphere as a result of the Toba supereruption 
74,000 years ago produced a significant loss of ozone in 
the stratosphere. This loss was induced by a radiation 
attenuation process that only modestly depends on the 
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amount of the emission. In the tropical regions, where 
conditions of extraordinarily low ozone levels persisted for 
more than a year, the Toba plume had a significant impact 
on the process of oxygen photolysis, which in turn served 
to suppress ozone synthesis. When this effect is combined 
with the phenomenon of volcanic winter in the 
extratropics, it is possible to explain the effects that 
supereruptions have on environments and people inside 
these natural environments.  

Polar stratospheric clouds (PSCs) are newly discovered 
clouds that form in the polar stratosphere in the months 
of winter and first weeks of the spring when the air is still 
cold enough to allow clouds to be created despite the 
extreme dryness (as emphasized by the authors of 
(Tritscher et al., 2021)). As a result of these datasets, 
advancements have been made in understanding how 
PSCs are formed and their impact on atmospheric 
dynamics. Additionally, improvements have been made in 
how global models simulate intricate cloud processes. In 
the long run, this will result in improved forecasts for the 
rate at which the ozone layer in the stratosphere is 
recovering from the effects of human activity as the 
climate of the entire planet changes. 

The study (Park et al., 2021) examines regional CFC-11 
concentrations from model simulations. In 2019, CFC-11 
concentrations dropped 10 ± 3 gigagrams per year from 
2014-2017, but they climbed back up to levels seen before 
2013 in 2008-2012 (7.2 ± 1.5 gigagrams per year, ±1 
standard deviation). In addition, it was found that 
pollutants of dichlorodifluoromethane (CFC-12) and 
carbon tetrachloride (CCl4), which could be linked to the 
manufacturing of CFC-11, were greater than anticipated 
after 2013 and then decreased in the year or two 
preceding the fall in CFC-11 concentrations. Taken 
together, the evidence points to CFC-11 manufacturing in 
eastern China following the worldwide phase-out that was 
authorized, with subsequent output falling in 2017 and 
2018. Final estimates put eastern China's CFC-11 bank 
(the quantity of CFC-11 created but not yet emitted) at 
112 gigagrams more likely due to increased production in 
the past few years.  

Through the utilization of a multidimensional chemical 
transport model and satellite measurements, the authors 
of (Feng et al., 2021). conducted an investigation into the 
depletion of ozone in the Arctic over the winter months 
and spring months of 2019/20 and compared their 
findings to those gained from past years. The model 
simulation, which includes the peak recorded 
stratospheric total bromine and chlorine loading from the 
middle of 1990 demonstrates that the slow recovery of 
the ozone layer over the last two decades has helped to 
alleviate the polar cap ozone depletion that occurred in 
March 2020 by around twenty degrees below the equator.  
Furthermore, this model was utilized to differentiate 
between the roles that transport and chemistry played in 
the process of creating the low ozone percentages. In 
addition, it provides a quantitative analysis of the 
magnitude of the ozone recovery signal in the Arctic 
region.  

The researchers were primarily concerned with a peculiar 
increase in the levels of trichlorofluoromethane, also 
known as CFC-11, that were found in the air (Tollefson, 
2021). In addition, it was suggested that China has 
reduced the amount of an ozone-depleting chemical that 
it was producing, which is a positive development for the 
international accord to protect the ozone layer. An 
atmospheric travel model was developed as a method of 
facilitating the identification of the primary contributor to 
rogue emissions and the implementation of actions to 
control the generation of these emissions.  

Within the framework of (Malinović-Milićević et al., 2021), 
the authors detailed the creation and implementation of 
feedforward neural network models that could be utilized 
for making predictions one day in advance regarding the 
maximum 1-hour ozone concentration (1hO3) and 8-hour 
average ozone concentration (8hO3) at one traffic and 
one background station in the Novi Sad, Serbia urban 
area. Ozone concentrations from the day before the 
forecast, the number of days in the year, the number of 
weekdays for which the ozone prediction was made, and 
the six meteorological variables from the day before the 
predicted event and the day of the prediction itself were 
all used as inputs.  

The study (Gilik et al., 2021) aims to create a supervised 
model for air pollution prediction using actual sensor data 
and transfer the model between cities. To predict the 
concentration of air pollutants in various parts of a city 
utilizing spatial-temporal correlations, a convolutional 
neural network and a long short-term memory deep 
neural network model were combined. Two strategies 
have been used: the multivariate model incorporates 
information on all contaminants and meteorological data 
for forecasting, whereas the univariate model only 
includes information on one pollutant. To evaluate the 
quality of ambient (outside) air, a thorough investigation 
is necessary, based on observations of the concentrations 
of the main pollutants obtained from several monitoring 
stations.  

To achieve this goal, the investigators of (Narasimhan and 
Vanitha, 2021) put forth a model based on ensembles to 
evaluate the air quality in from 2000 to 2016. Here, we 
used ensemble approaches to fix problems with 
imbalanced dataset preliminary processing and boost 
system efficiency overall. We checked the suggested 
model against the ones that were already out there. 
Experimental results show that the suggested model 
performs better than competing systems in terms of 
accuracy and error rate. 

As proposed in (Deng et al., 2022), a clustering-based 
spatial transfer learning Multilayer Perceptron (SPTL-MLP) 
can be used to predict the ozone concentration at the 
target observation station over the next three days. The k-
means clustering technique was then used to find 
comparable stations and train them together, resulting in 
a rudimentary model for spatial transfer learning. For real-
world applications, a weighted loss function has been 
created with an emphasis on reducing mistakes in the 
prediction of high ozone concentrations. When employing 
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historical data from German stations, the SPTL-MLP model 
offers greater prediction accuracies of ozone exceedances 
(improved by 8.21% and 16.9%) and a smaller error 
(reduced by 9.13%) than MLP (without spatial transfer). 

The CNN-Transformer model is a hybrid model that was 
proposed by the authors of (Chen et al., 2022) and is 
based on a CNN technique and a Transformer model. This 
model was designed to predict the ozone concentration. 
As a result, it is clear that this model performs better than 
other models because it produces exceptional results on 
both the short-term forecast (RMSE = 7.75) and the long-
term forecast (RMSE = 16.27).  

On this hybrid model approach, the researchers of (Tu and 
Wu, 2022) also suggested using a Bayesian Optimized 
CNN-RNN hybrid model to accurately forecast when the 
air quality will be at its worst. This would allow them to 
take preventative measures to reduce the amount of 
pollution that is coming into the environment. To 
circumvent the issues that are typically associated with 
the manual modification of hyperparameters in neural 
networks, the researchers concluded that this technique 
would be the most effective. Both of these algorithms are 
examples of machine learning. When all was said and 
done, the BO-CNN-RNN was capable of outperforming the 
other models, and it did so even better as the predictions 
were made further beyond the present.  

The research presented in (Zohdirad et al., 2022) 
undertakes an analysis of consecutive measurements of 
O3 and NOx (NO+NO2) levels to enhance our 
comprehension of the development of ozone over the 
summertime of 2017 to 2019. To capture the variability of 
O3 and NOx concentrations, the k-means clustering 
technique was utilized to choose five typical data 
collection locations for air quality monitoring in Tehran. 
The results of the investigation indicate that none of the 
locations that were looked into were able to satisfy the 
ozone non-attainment requirement. In the examination of 
differences between weekdays and weekends in the years 
2017, 2018, and 2019, the ozone weekend impact was 
observed. However, in 2019, this effect was not observed, 
which may be related to a change in the production 
regime for ozone. The examination of the summertime 
mean variation can also be utilized to infer the existence 
of this regime change.  

The researchers of (He et al., 2023) took ambient air 
samples at 20 different places in the PRD region during 
the winter (November to December 2019) and summer 
(August 2020) seasons. Their objective was to gather 
pertinent data and improve their understanding of the 
ODS emissions situation in the PRD region. In order to 
assess the emissions of ozone-depleting compounds (ODS) 
and ascertain their spatial-seasonal variability, this sample 
was examined. Following the analysis, the researchers 
showed that, with the exception of CFC-114, which largely 
remained at the same level throughout the entire 
observation, the average mixing ratios of the target ODS 
in the PRD region were 16.5%–92.5% lower than their 
reported values in 2001.  

The authors of (Li et al., 2023) also detailed the process 
and features of CNN-ILSTM, a model for AQI prediction 

that combines CNN with Improved Long Short-Term 
Memory. To avoid learning supersaturation, ILSTM 
improves upon LSTM by eliminating its output gate and 
adding a Conversion Information Module (CIM) to its 
input and forget gates. Training time is reduced, accuracy 
in predictions is improved, and efficient learning of 
historical data is achieved via ILSTM. Effective eigenvalue 
extraction from input data is achieved via CNN. This model 
was tested using air quality data collected in Shijiazhuang 
City, Hebei Province, China, from 00:00 on January 1, 2017 
to 23:00 on June 30, 2021. It was compared to eight other 
prediction models, after 85.3 seconds of training, the 
experimental findings reveal an MAE of 8.4134 for CNN-
ILSTM, an MSE of 202.1923, and an R2 of 0.9601. The 
results of this experiment show that this model 
outperforms the others. 

However, an effective, reliable, and exceptionally precise 
additive hybrid model was used by the writers of the 
aforementioned work (Pradhan et al., 2023). For the 
purpose of AQI forecasting, this model is introduced as an 
additive-ARFIMA-SVM, which combines a Support Vector 
Machine and an Autoregressive Fractionally Integrated 
Moving Average with functionally enlarged inputs. In 
addition, a meta-heuristic approach based on the group 
best leader strategy (GWOA-GBL) was suggested for 
optimization of gradient whales. In addition, the ARFIMA-
SVM model outperforms SVM (43.47%), LSTM (40.39%), 
ARIMA (16.34%), Multiplicative-ARIMA-SVM (8.64%), 
ARFIMA (14.47%), and XGBoost (33.96%), when taking 
symmetric mean absolute percentage error into account.  

The research team of (Lakshmipathy et al., 2024) 
recommended MPR-RSA and EAQP, which stands for 
ensemble-based air quality prediction, as a way to build 
an automated system for predicting air quality. Methods 
including data cleansing, data transformation, and data 
imputation are used to accomplish the preliminary 
processing. The important features extracted from the 
preliminary information. Statistical, geographical, and 
temporal features are used for extraction. The suggested 
MPR-RSA algorithm optimizes the weight parameter, 
which is used in weighted feature selection to increase 
predictive accuracy. Afterward, EAQP completes the 
classification process by optimizing the hyper-parameters 
using the same MPR-RSA technique. Support vector 
regression, recurrent neural networks, extreme learning, 
bidirectional LSTM, and MLP neural networks are the 
individual Prediction approaches used to build the 
ensemble model in this case. In the end, we look at the 
performance with several parameters, and we find that 
the RMSE is 9.96%, which is lower than some of the 
various heuristic algorithms out there. Consequently, the 
suggested prediction model achieves low MAE and RMSE 
values, providing prompt predictions of ambient air 
pollution to avoid environmental harm.  

Finally, researchers analyzed a dataset on CO2 emissions 
using deep learning, univariate and multivariate time-
series models, and advanced machine learning 
approaches in the study (Prakash and Singh, 2024). Coal 
supply statistics, CO₂ emissions, peak demand, and peak 
met are all part of the dataset that was retrieved from the 
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central power authority. Various performance metrics 
have been employed to assess the efficacy of the 
implemented models. These metrics include MAE, MSE, 
SMAPE, RMSPE, RAE, RMSE and MAPE. To do training and 
testing, the researchers made use of a dataset that covers 
the years 2005 to 2021. In addition, they have projected 
CO₂ emissions from 2022 to 2050 using the top-
performing models. 

Emission from river-atmosphere interaction has remained 
an interesting area of research over the years. However, 
efforts to effectively estimate CO₂ fluxes from rivers have 
been complicated by spatial and temporal variability 
(Xiong et al., 2024). It will also help in better climate 
predictions by understanding the altitude effect of stable 
isotopes and how it is controlled by the moisture sources 
that are complicated in the high mountains (Chen et al., 
2024). Drought characterization in global river basins 
states the trend toward increasing severity and duration 
of droughts mainly in high-latitude regions (Feng et al., 
2025). Advanced air pollution monitoring models using 
images, such as IAPM, involve multiscale perception for 
high detection accuracies, thus providing brilliant 
opportunities for innovations in the real-time assessment 
of environments (Gu et al., 2025). Bayer red mud and 
yellow phosphorus emulsions have excellent 
desulfurization and denitration potential, which can 
greatly reduce SO₂ and NOx emissions from industrial 
sources (Li et al., 2021; Tao et al., 2019). Additional 
studies concerning phosphorus migration in reservoir 
sediments, when micro-pressure conditions are imposed, 
increase phosphorus release, particularly from Fe-P-S 
cycling, which may potentially lead to harmful algal 
blooms (Zhuo et al., 2023). It throws light on safe disposal 
and resource recovery with CO₂ atmospheres enhancing 
the alcohol production and reducing harmful emissions 
under the pyrolytic digestion of vancomycin fermentation 
residue (VFR) under varied atmospheric conditions (Huang 
et al., 2024). These point to the need for the installation 
and integration of these advanced technologies for 
environmental monitoring and pollutant control in 
addressing some of the most urgent problems facing the 
ecology today. 

3. Methods and materials 

3.1. Methodology 

One of the main causes of ozone layer's thinning is 
discharge of harmful gases into the atmosphere. The 
ozone depletion significant factors are industrial 
emissions, creation of chlorofluorocarbons (CFCs) from 
refrigeration and aerosol propellants. Methane gas 
released by coal mining operations that harms the 
stratosphere layer makes the issue worse. The production 
of bromine and chlorine atoms from the industrial 
processes speeds up decomposition of ozone molecules, 
that becomes crucial for preventing damaging UV rays. 
These substances accelerate the rate of ozone depletion 
by significantly disrupt the natural equilibrium of ozone 
replenishment. The nitrous oxide and halons gases also 
can destroy the ozone layer due to the Industrial 
operations, aerosol propellants, and agricultural method 

that produce these gases. International agreements as 
Montreal Protocol controls the manufacture and 
utilisation of compounds might deplete the ozone layer. 
Another initiative is an adoption of ozone-friendly 
substitutes for industrial and agricultural practices. 

Part one of the ozone layer depletion system is data pre-
processing, part two is training the model, and the final 
part is evaluating it on test sets. As a first step, the raw 
data pre-processed to transformed into training-style 
data, which includes labeled data and input sequence 
data. After that, dimensional impacts between features 
are removed using a min-max normalizing method. Train 
the Bi-directional LSTM algorithm's encoder and decoder 
layers using the normalized input data. Ozone depletion 
solely serves as a univariate variable in the course of 
training, although multivariate data is also used. In the 
end, the CNN-Transformer model's efficiency is evaluated 
by applying the trained model to the test set, 
renormalizing the outputs, and comparing them to 
labeled measurements. A structural representation of the 
deep learning model that has been proposed for ozone 
layer prediction is depicted in Figure [2]. An input layer, 
an imputer layer, a convolutional neural network, a 
dropout layer, a Bi-LSTM network, an output layer, and a 
prediction layer are the components that make up this 
system. 

 

Figure 2. Proposed Architecture of the Deep Learning Model for 

Ozone Layer Prediction 

• Univariate dataset: When we are constructing the 
dataset, we simply give the ozone concentration 
feature to the time intervals. We divide the data into 
two halves, each with its own unique sequence, by 
introducing a sliding window of length N+1. The 
examples will compare the outputs of the CNN-

Transformer model based on T_1,,T_(m+N-1), with 
T_(m+N) serving as labeled data and T_m, ⋯, and 
T_(m+N-1) as historical data. Once we've inspected all 
the data, we'll generate the next sequential sample 
by sliding the window one step at a time. With n 
being the length of the sequence and S_i being the i 
th sample, the sliding window has a length of 3. 

• Multivariate dataset: When we are constructing the 
dataset, we make the assumption that the number of 
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features, also known as dimensionality, is L at time 
T_m. We next express the data as a vector with the 
values T_m1, T_mL. The approach for the univariate 
dataset and its sliding window method also applies to 
the subsequent steps, which are very similar to one 
another. We present 9 features that are included in 
the multivariate dataset. These features are as follows: 
highest and lowest temperatures, CO, NO, SO_2, 
NO_2, wind (speed and direction), and ozone 
concentration. utilizing a window size of three, a 
sequence length of n, and a feature size of m at the 
same time. For the i th sample, the notation S_i is 
used. 

3.2. Data preprocessing 

We convert raw past information into a format needed for 
the next training stage during data preliminary processing. 
The raw data is transformed into various sequences along 
two dimensions such as the time dimension and the 
feature dimension. The sliding window technique is used 
to construct both univariate and multivariate datasets in 
our work. The feature dimension is significant for 
collecting different data attributes which affects ozone 
layer depletion. The feature space extended by the model 
that precisely captures the intricacy of environmental 
elements that affects ozone layer variations, as 
temperature, humidity, UV rays, and industrial pollutants. 
More accurate predictions offered by the model's ability 
to identifies an complex correlations in the data by the 
larger feature dimension. 

3.3. Methods Using Artificial Intelligence to Identify Ozone 
Depletion  

3.3.1. SVR 

The theory of statistical learning serves as the foundation 
for the machine learning technology known as support 
vector machine. There are several applications for time-
series prediction that make use of SVR, which is a type of 
SVM. Some examples of these applications include load 
prediction, weather prediction, and fault prediction. 
Additionally, the SVR is utilized for the purpose of 
monitoring the temperature of the ocean. Because of this, 
the SVR can be utilized for the depletion of the ozone 
layer. To monitor the depletion of the ozone layer, this 
work utilizes the SVR model. Assume a time-series data 
set that is presented as follows: 

( ) , , where 1i iD X y i N=    
(1) 

In equation (1), Xi refers input vector, that comprised of m 
elements, and yi represents the value that is obtained as a 
result. In light of this, the regression formula can be stated 
as: 

( ) ( )T
i if X W X b= +

 
(2) 

In equation (2), W represents the weight vector, ϕ(Xi) 
utilized to map input data to higher-dimensional features, 
b refers bias. It is possible to acquire the answer to the 
optimization problem that is posed by W and b by using 
the following formula: 
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In equation (3) and (4), the symbol  is used to indicate the 
threshold, while C denotes parameter that represents the 
relationship between the simplicity of the model and its 

capacity to generalize. Additionally, iς  and εi are the 

slack variables that are used for determining the cost of 
errors. 

3.3.2. ANN 

Artificial neural networks (ANNs) are extensively 
employed in many different applications, such as rainfall 
and electricity demand forecasting. An ANN is a learning 
model that draws inspiration from the structure and 
operation of the brain's internal nervous system. Learning 
patterns is the responsibility of a hidden layer in ANN. 
Nonetheless, a single-hidden layer feedforward neural 
network (SLFN), the most basic ANN model, can be 
constructed using only one hidden layer. This single-layer 
network consists of an input layer, a hidden layer, and an 
activation function. Calculating the output of this network 
is done as follows: 

1

h

jo j j
j

y g w v
=

 
= + 

 
 b

 

(5) 

In equation (5), the hidden layer output, vj, is represented 

by the function f
1

,
n

ij i i

i

w x
=

 
 +
 
 
 b  where Xi refers input, f, 

and g denotes non-linear activation function, n refer 
features count, h refers hidden layer counts, and w_ij 
refers weight  

3.3.3. RF 

When it comes to classification and regression, Random 
Forest (RF) is a combined learning strategy. Multiple 
prediction systems also use the random forest-based 
regression method. For this kind of issue, random forests 
typically employ bagging and random subspace 
approaches. Random forest methods frequently employ 
bagging. These ensemble approaches state that after 
training individual learning models with bootstrap 
samples taken from the initial training data, the results 
are combined. The random forest makes use of the built 
decision tree to pick m features out of a total of n 
characteristics. Once the features are partitioned across 
the feature axis, the feature impurity criterion is utilized.  

3.3.4. DBN 

Common deep learning models used nowadays include 
DBNs, CNNs, and stacked autoencoders. Among the many 
varieties of neural networks, the DBN is notable for its 
many hidden layers. To get the discriminant features, the 
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DBN model uses an unsupervised feature extraction 
method. The next step is to build a supervised learning 
model on top of DBN. In a similar vein, stacked 
autoencoders are a specific kind of neural network that 
has multiple sparse autoencoder layers connected at the 
output layer. Each step's encoding is described as: 

( ) ( )( )l l
a f z=

 (6) 

( ) ( ) ( ) ( )1 ,1 ,1l l l l
z W a b

+
= +  

(7) 

In equation (6) and (7), The activation function in layer l is 
denoted by a(l), the weighted sum of inputs for layer l is 
denoted by z^((f)), the weight value is denoted by W^ ((l, 
k)), and b^ ((L, k)]. 

3.4. Proposed deep learning model for prediction 

In order to forecast when the Delhi Region's ozone layer 
will be depleted, we offer a deep learning algorithm. The 
proposed models selected due to their ability of precisely 
capturing the temporal and spatial data for ozone 
depletion prediction. CNN method is excellent in 
extracting insightful features from input data, while LSTM 
maintains the sequential dependencies for enhanced 
prediction accuracy. This hybrid approach ensures robust 
performance, outperforms other methods. In most cases, 
the issues with regression model forecasting can be stated 
as: 

( );y x = F
 

(8) 

The forecasting scope involves the evaluation of influence 
of industrial operations, the possible results of the 
mitigation method, and projecting future ozone depletion 
levels depends on the historical environmental data. The 
model assists the forecasting of future patterns and offers 
a prompt actions by offering an insight with different 
variables interact over time. In equation (8), Using pairs of 
training samples, the pattern is learned using the 
parameters of the mapping function F {(x_n, y_r) ∣r=1, … 
R}, where x denotes input vector and y refers anticipated 
output. Minimize prediction mean squared error (MMSE). 
The MMSE function is stated as: 

ˆ
2
2

1

1 R

r r
r

y y
R


=

= −  (9) 

In equation (9), the input class is represented by y and the 
projected output class is y. To learn the parameters, this 
work employs a method based on deep neural networks. 
In order to train their networks, deep neural networks use 
a feedforward neural network model that incorporates 
hidden units. 

Pattern recognition relies heavily on recurrent neural 
networks (RNNs) with deep bi-LSTM networks. The RNN 
models store data for processing time-series data in a 
memory unit that is informed by contextual knowledge. 
On the other hand, RNNs have trouble with gradient-
induced long-range dependencies. To get around this, 
scientists have developed a pattern that uses memory 
cells to tackle the dependency problem; this model is 
called LSTM. Three multiplicative gates aid in forgetting 

and data storage in the cell states in this paradigm. The 
whole suggested deep Bi-LSTM model for ozone layer 
depletion prediction is shown in Figure [2], which is 
provided above. This study employs a CNN-Bi-LSTM 
hybrid. The CNN layers receive input data that has been 
processed by the missing value imputation model. 
Following processing by Bi-LSTM layers, the anticipated 
output is produced by fully connected layers based on the 
CNN layer's output. Two max-pooling layers follow two 
one-dimensional layers in the first module. The 
computational complexity of feature extraction is reduced 
by this combination. Because of the interconnected 
nature of the perceptrons, traditional approaches that 
employ MLPs (multilayer perceptrons) as feature 
extractors through feed forward neural network processes 
often fall short of the desired results.  

CNNs are a subset of multi-layer perceptrons (MLPs) that 
do not necessitate inter-neuron communication. Each of 
these neurons is sized and stride-dependently linked to a 
certain area of the input data. In this case, we use CNN 
filters to detect the various sites by sharing parameters 
and weights. CNN layers use training-derived weights and 
biases to merge neurons. We feed the neurons several 
layer depletion settings in this model. After that, a non-
linearity function is applied, and then the dot product 
operator. The model's architecture includes a fully linked 
layer, a pooling layer, and a 1D convolution layer (Prakash 
and Singh, 2024; Gupta et al., 2023; Ganiya et al., 2024). 
CNNs take time series data in the form of one-dimensional 
data ordered as consecutive time instants as input. The 

input vector is supplied as x = {x1, x2, x3,, xn} where x 

nRd are the variables of dataset. The input layer 
depletion data with filter w∈R^d is used by the ID 
convolutional layer to build a feature map, where f 
represents the intrinsic features, using conv operators. It 
is possible to derive a new feature map f_m from an 
existing one by rewriting the expression as: 

( )1tanhf f
i zi fhf w x b+ −


= +

 (10) 

In equation (10), the bias is represented by b and hRn−f+1, 
For each f in the input data, the filter hl is applied as {x1: f, 

x2: f+1,, xn−f+1}, resulting in a feature map as hl = [hl1, 

hl2,,hln−f+1]. By combining the weighted inputs that have 
been compromised through multilinear transformation, 
the output of the convolution layer may be derived. In 
most cases, non-linear functions are preferable for 
learning than linear ones since linear transformations miss 
the intricate structure of input data. Each input is 
processed using the ReLU activation function in this study 
(Chiranjeevi and Rajaram, 2022; Baskar and Rajaram, 
2022; Saravanan et al., 2024). After that, the max-pooling 
layer processes the convolution layer's output, and then 
we apply it to each feature map individually to conduct 

down sampling, as  maxhl hl= . The most crucial 

features can be selected with the help of this process. We 
can define the result of the max-pooling layer as: 

( )' CNNi ix x=
 

(11) 
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In equation (11), the input vector xi comprises the layer 
depletion parameters, and the output of the CNN model, 

xi, is then supplied to the Bi-LSTM network. Here is the 
representation of this structure: 

 ( )( )1,t i t ti W x y −=
 

(12) 

 ( )( )1,t f t tf W x y −=
 

(13) 

( )( )0 1,t t to W x y −=
 

(14) 

 ( )( )1tanh ,t g t tg W x y −=
 

(15) 

1t t t tc f c i g−= +  (16) 

( )tanht t ty o c=
 

(17) 

From equation (12) to (17), we express a variety of gate 
types, such as input, forget, output, and input modulation 
gates, using the variables i, f, o, g, and c (Pushpavalli et al., 
2024; Rajaram et al., 2024; Chandrika et al., 2024). The 
fully connected neural networks Wi, Wf, Wo, and Wg 
respectively, represent the input, forget, output, and 
input modulation gates, while σ represents the sigmoid 
function. The element-wise product is denoted by ⊙ 
Traditional LSTM often only handles one-way sequences, 
which reduces their efficiency; however, data that can be 
processed in both directions can often yield useful 
insights. Therefore, we use Bi-LSTM, which combines both 

directions in the data sequence, to overcome these 
problems (Chandrika et al., 2024). These bidirectional data 
processing aids in capturing each informational change on 
layer depletion data. The LSTM classifies the elements of 
the layer depletion parameter sequence x as x = {x1, x2, 

x3,, xn} in the forward direction and as {xn, xn−1, xn−2, 

x1}. in the backward direction (Pradeep et al., 2024). 
During training, each of these components is taught 
independently, and then their results are combined by 
combining the two sets of training results. One way to put 
it is: 

( ) ( ) ( )1F By t y t y n t=  − +
 

(18) 

In equation (18), the forward and backward directions are 
represented by yF and yB respectively; the integration 

operator is ; and the expected output at time t is y(t) 
The proposed hybrid CNN and LSTM model has ability to 
handle the uncertainty influencing ozone layer depletion. 
These models dynamically adjusting the unpredictable 
character, trends and pattern in the data. Furthermore, 
CNN and LSTM's structure enables enhanced 
management of temporal and spatial uncertainty. While 
the variables change, the system has ability to handle the 
real-time environmental data ensures accurate forecasts. 
This adaptability nature ensures accurate forecasts 
despite the variability in contributing factors. 

 

 

Table 1. Simulation Parameters for Proposed Deep Learning Model 

Simulation Parameter  Value 

Number of epochs  2500 

Number of hidden units 250 

Batch size 120 

Activation Layer Relu 

LSTM activation Tanh 

Training ratio 70% 

Training function Bayesian regularization 

Learning rate 0.001 

Loss function Mean absolute error 

Padding  Same 

Activation function Tanh 

 

Table 2. Parameters of several methods for simulation 

LSTM Hidden layer LSTM nodes = 4 

 Batch size is 1, verbose is 2, and the activation function is sigmoid with 100 epochs. 

ANN optimizer = "msprop", Dense layers nodes = 32, 64, and 64  

SVM C = 1.0, Kemel = rbf, gamma = "scale" 

DLBL-WQA input_shape = (13, 1), Filters = 32, kernel = 2, dropout = 0.25, activation function = "relu,"  

Linear regression Default 

CNN-LSTM input_shape = (13, 1), Filters = 32, activation function =  relu, kernel = 2,  

Random forest bootstrap = true, n_estimators = 100, max_features = "auto"  
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4. Results and discussion 

The simulation parameters for the suggested model are 
displayed in Table 1 and include daily data of Delhi's 
ozone layer depletion from 2014 to 2021. Wind speed and 
direction, as well as lowest and maximum temperatures, 
are some of the meteorological variables that are 
considered. Other air pollutants, such as CO, NOx, and 
SO2, were also taken into account due to their possible 
impact on ozone layer depletions. Our main objective is to 
test how well Bi-directional LSTM and CNN can forecast 
the highest 8-hour average ozone layer depletions for a 
given day. When it comes to time series prediction 
challenges, we evaluate our model alongside LSTM, CNN, 
and Transformer-based models. Here is the outline of our 
experimental procedure: We start by finding out how long 
the time series data goes back. After that, we compare 
the suggested CNN-Transformer model to the previous 
models and assess its performance. The models are then 
evaluated using corresponding data sets for both short-
term and long-term prediction. Here, we include the 
predictions for the near and distant future: 

Short-term Prediction:  Predicting the maximum 8-hour 
average ozone layer depletion for the next day based on 
past data within a specific time range is an example of 
short-term forecasting. To illustrate the point, if we have 
data from Monday through Saturday of a particular week, 
we may use it to forecast Sunday's ozone layer depletion. 

• Long-term Prediction: Using previous data within a 
particular time frame, we can anticipate the 
maximum 8-hour average ozone layer depletion for 
the next three days. For example, ozone layer 
depletion from Friday to Sunday can be forecasted 
using a collection of historical data from Monday to 
Thursday. When testing predictions for the future, we 
utilize a multivariate dataset; however, when testing 
predictions for the near future, we use either a 
univariate or multivariate dataset. Given the multi-

factor nature of ozone layer depletion, the 
discrepancy in datasets can be understood. A perfect 
reflection of the interaction of the various elements 
cannot be achieved by relying solely on historical 
ozone layer degradation. Furthermore, concluding 
future ozone layer depletion only from past ozone 
layer depletion is typically not realistic. 

Table 2 lists simulation settings for ozone layer forecast 
methods. Four hidden layer nodes, a sigmoid activation 
function, and 100 epochs of training with a batch size of 
one produce verbose output at level two in the LSTM 
model. Three dense layers with 32, 64, and 64 nodes use 
the "msprop" optimizer in the Artificial Neural Network 
(ANN). SVR uses a RBF kernel with C=1.0 and gamma as 
"scale." To prevent overfitting, the Deep Learning-Based 
Water Quality Assessment (DLBL-WQA) method uses 32 
filters, a kernel size of two, a ReLU activation function, an 
input shape of (13,1), and a dropout rate of 0.25 This 
CNN-LSTM model has 32 filters, a two-kernel size, a ReLU 
activation function, and a (13,1) input shape. The Random 
Forest model has 100 estimators, automatic feature 
selection, and bootstrap sampling. For comparison, the 
Linear Regression model is set to default values. 

We simply utilize the multivariate dataset for the long-
term forecast in order to provide more accurate and 
useful predictions. For research involving short-term 
prediction, however, matching the model to historical 
data does help. To compare the performance of various 
models and assess the accuracy of the results, the 
following metrics are used: Scilicet, mean absolute error 
(MAE), root mean square error (RMSE), and normalized 
root mean square error (NRMSE).  

Table 3 presents the prediction performance results for 
various models, showing their respective various values. 
In the time-series sequence under consideration, the 
anticipated value and actual value at time t are 
represented by y(i) and y(i). 

 
Table 3. Performance Measurement 

Parameter Computation 

Mean absolute error (MAE) 
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Root mean square error (RMSE) 
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Table 4. Methods for Improved Prediction Performance 

Methods MSE MAE RMSE MAPE 

CNN-BiLSTM (Proposed) 0.012 0.102 0.109 18.45 

DLBL-WQA 0.015 0.115 0.117 20.32 

LSTM 0.328 0.358 0.401 46.82 

Support vector regression 0.491 0.596 0.711 54.28 



IMPROVING OZONE LAYER DEPLETION FORECASTING WITH HYBRID BI-DIRECTIONAL LSTM WITH CNN CLASSIFIER MODEL  11 

Random forest 0.487 0.614 0.568 53.24 

Linear regression 0.401 0.556 0.480 51.29 

Artificial neural network 0.566 0.521 0.652 54.21 

 

Table 4 shows summary of the performance metrics of 
various predictive modeling strategies that are utilized to 
forecast the depletion of the ozone layer. The goal of this 
experiment utilizes previous 10 days data to forecast the 
maximum 8-hour average ozone layer depletion for the 
next three days. Since historical data can only be used to 
determine seasonal or temporal trends, it is unreliable to 
feed the forecasting engine with data on ozone layer 
depletion alone. The forecasting algorithm will be too 
insensitive to detect a fast shift in other climatic 
conditions that impact ozone levels on a given day, 
leading to a cumulative error. So, to investigate how well 
long-term forecasts work, we exclusively employ 
multivariate datasets. Differentiation of prediction models 
is represented in Table 4; CNN-Bi LSTM (Proposed) is the 
best performer under most metrics. CNN-Bi LSTM has the 
lowest MSE of 0.012, MAE of 0.102, RMSE of 0.109, and 
MAPE of 18.45%, thus being considered, certainly, the 
best predictive model. DLBL-WQA follows this with MSE, 
MAE, RMSE, and MAPE of 0.015, 0.115, 0.117, and 
20.32%, respectively. The LSTM model does try to show 
some predictive abilities, although with comparatively 
much higher error rates of MSE 0.328 and MAPE 46.82%. 
Both support vector regression and random forest models 
fall under almost similar results, with MAPE values of 
54.28% and 53.24%, respectively, showing the poorest 
prediction ability. Linear regression and artificial neural 
networks were among the worst-performing models with 
MAPE values above 51% and 54%, indicating their lower 
reliability within the confines of this study. The CNN-
BiLSTM has, thus, shown the ability to minimize prediction 
errors while also outperforming other models. The feature 
extraction capabilities of attention-based models are 
drastically reduced as the time series data to be 
forecasted becomes longer, as this proves. Even though 
the CNN model gathered legitimate information, the 
encoder in the model still has a hard time recognizing and 
using it. 

 

Figure 3. Comparison of Predicted and Observed Ozone 

Concentrations 

A comparison of the observed values and the CNN 
Transformer model's predicted values is displayed in 

Figure 3. Our model is more likely to disregard the 
potential causes of certain mutations since its attention 
mechanism learns global information, in contrast to the 
LSTM model. Even if the raw data is unstable, our model 
still performs admirably. In other words, with more 
trustworthy data, our model can guarantee accurate long-
term prediction outcomes, but at the cost of model 
complexity. Future research could investigate and develop 
a new deep learning model to increase the algorithm's 
sensitivity to mutation spots and prediction accuracy. 

5. Conclusion 

This system is a prediction hybrid as far as ozone layer 
depletion prediction is concerned and has been proposed 
by us using the combination of the CNN model and the 
Transformer model for better accuracy of prediction. The 
CNN component takes advantage of the shallow as well as 
valuable features which hinders the encoder from 
learning other irrelevant information. The Transformer, 
further implementing a multi-head attention layer 
between several encoder layers, enhances the feature 
extraction more from the encoded sequences, capturing 
the short and long dependency states well along the short 
and long time. Outstanding performance was indicated 
with the proposed hybrid CNN-Transformer model across 
multiple datasets, registering MSE of 0.012, MAE of 0.102, 
RMSE of 0.109, and MAPE of 18.45% in comparison with 
the best-performing state-of-the-art models such as 
LSTM, CNN-Transformer, or DLBL-WQA. In contrast, the 
DLBL-WQA model achieved an MSE value of 0.015 with an 
MAPE of 20.32%. LSTM produced a lower predictive 
power reflected by MSE at 0.328 and MAPE of 46.82%. 
Nevertheless, it is unable to determine mutation spots or 
sudden changes in infiltration patterns of ozone 
depletion, and this limits the application of the model as 
the changes in environment suddenly might result in 
lesser accuracy. Also, the computational complexity that is 
involved in the multi-head attention in the transformer 
increases the training time and hardware requirements, 
which reduces its efficiency in real-time applications.  
Future work will target over these limitations by adopting 
an adaptive attention mechanism that would Peter be 
able to capture dynamic variations better and further 
reduce model complexity via optimized architecture. 
Further, real-time data assimilation addition to the system 
will be done along with further enhancing the anomaly 
detection techniques to further advance the reliability and 
applicability of the system in ozone layer depletion 
monitoring. 
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