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Abstract 

Green and sustainable development of industry has 
gradually become an essential factor for economic 
development, effective improvement of industrial carbon 
emission efficiency (ICEE) has a contributing role in 
realizing industrial carbon emission reduction and 
sustainable economic development. According to this 
study, the spatial correlation characteristics and driving 
factors of ICEE in the Yangtze River Delta (YRD) urban 
agglomeration are analyzed by using social network 
analysis and the QAP model. Empirical results show that 
(1) the spatial variation of ICEE in YRD urban 
agglomeration is large, showing a decreasing trend from 
the southeastern cities to the northwestern cities. (2) The 
spatial correlation network presents a pattern of 
development from core cities to edge cities, with Suzhou, 
Changzhou, Hangzhou, etc. as the center to the south and 
west cities of YRD urban agglomeration. (3) The ICEE 
substructures in YRD urban agglomeration have four 
plates, namely "inflow plate", "outflow plate", 
"bidirectional outflow plate" and "agent plate". (4) The 
spatial correlation network of ICEE is significantly 
influenced by the matrix of differences in research and 
development capabilities, environmental regulation, and 
rate of foreign investment. 

Keywords: Industry carbon emission efficiency; the YRD 
urban agglomeration; super-SBM model; social network 
analysis; block model; QAP model 

1. Introduction and literature review 

Protecting the environment is an imperative means and 
method of achieving harmonious development between 
human society and the natural environment. Global 
warming is an issue that countries around the world 
should pay attention to, which is closely related to both 
socioeconomic growth and natural environmental 
processes (Freeman et al, 2018). China is the largest 
developing and manufacturing country; it has emerged as 
one of the leading contributors to carbon emissions. The 
Chinese central government has pledged to overcome the 
contradiction between economic expansion and 
environmental conservation by establishing a goal of 
attaining a "carbon peak" in response to the global 
climate change challenge, and its core is to ensure that 
carbon dioxide emissions start to gradually reduce after 
peaking in the future, and aim to reach the maximum 
level of carbon dioxide emissions by about 2030 (Chen et 
al., 2020). The YRD urban agglomeration is not only one of 
the districts that has the greatest amount of urbanization, 
but it is also a highly active zone in China's economic and 
social advancement. It is known for its highly intensive 
industrial system and strong economic strength. However, 
the industrial industry, as the main consumption industry 
of fossil resources, has made a huge contribution not only 
to GDP but also to carbon emissions (Yang et al., 2021). 
Consequently, ICEE can be improved by decreasing 
industrial energy consumption during the industrial 
production process; this is critical for China and the entire 
world to reach its carbon peak objective.  

Currently, the idea of carbon emission efficiency primarily 
focuses on two key factors: single factor emission 
efficiency and total factor emission efficiency. This 
highlights the pressing need for researchers to thoroughly 
assess and enhance the efficiency of energy use within the 
framework of carbon emission reduction and sustainable 
development advancement. The carbon emission 
efficiency defined by the single-factor concept was 
proposed in 1993 (Kaya and Yokobori, 1993), who 
believed that the ratio of carbon emissions and GDP 
during a given period was carbon emission efficiency, also 
known as carbon productivity. Some scholars have also 
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chosen carbon emissions for each energy unit used as a 
measurement indicator and compared it with developed 
countries to study the contributions of developing 
countries to the world's carbon reduction and sustainable 
development (Mielnik and Goldember, 1999). Although 
single-factor emission efficiency indicators are easier to 
measure, the diversity of measurement indicators tends 
to lead to disputes over different issues. Zhou et al. (2009) 
argued that the single factor method to assessing carbon 
emission efficiency is limited in its ability to capture all 
elements of carbon emission efficiency. Consequently, 
they introduced the notion of considering all components 
in evaluating carbon emission efficiency. Ramanathan 
(2002) believed that to guarantee the rationality of carbon 
emission efficiency calculation, the calculation elements 
need to include key factors such as economic 
development, population size, resource availability, 
carbon emissions, and energy consumption. Currently, in 
the academic community, DEA and SFA are widely 
recognized calculation methods for total factor carbon 
emission efficiency. SFA is a highly subjective non-
parametric method, and the form of production function 
needs to be set before calculation (Sun and Huang, 2020). 
The advantage of SFA is that it is stochastic in nature, and 
the efficiency value is more accurate when considering 
random error calculation (Sun et al., 2020). Herrala and 
Goel (2012) assessed the carbon emission efficiency of 
170 countries worldwide using the SFA method. However, 
SFA still has limitations, specific production functions need 
to be established when using model to calculate to realize 
the measurement (Zeng et al., 2019). DEA models have 
two methods, radial distance function and non-radial 
function, including models such as SBM, CCR, BCC, etc 
(Wang et al., 2019a). Marklund and Samakovlis (2007) 
used a DEA model to develop a radial distance function in 
order to assess the cost of reducing carbon emissions in 
EU nations. Xue et al (2021) used an EBM model including 
Hybrid distance to measure the city-level carbon emission 
efficiency and its spatial and temporal evolution in the 
BTH region of China. Liu et al (2023) used the Undesirable-
SBM model to calculate the carbon emission efficiency 
and spatial correlation of China's provincial thermal power 
sector. Yuan et al (2024) measured the carbon emission 
efficiency of the construction industry in various provinces 
of China using the super-Slacks-Based Measure model. 
Wu et al (2024) measured the spatial differences and 
influencing factors of carbon emission efficiency of three 
major urban agglomerations in China using the super-SBM 
model. 

Research on carbon emission efficiency in China's 
industrial sector mostly focuses on two key areas, with 
one being the regional level. Huang et al. (2023) examined 
the influence of industrial intelligence on the Industrial 
Comprehensive Energy Efficiency (ICEE) in 11 provinces 
located in Yangtze River Economic Belt in China. Lin et al. 
(2023) examined the level of carbon emission efficiency in 
282 cities in China's industrial sector and assessed the 
influence of environmental regulations on these cities. Xie 
and Zhang (2022) studied the impact of digital economy 
growth on ICEE using Chinese province data from 2003 to 

2018. The second is the study of industries that have a 
significant energy consumption and contribute to high 
levels of pollution. Zhu et al. (2021) studied the spatial 
and temporal patterns and determinants of carbon 
emission efficiency in energy-intensive industries, 
including chemical manufacturing, and nonferrous metal 
manufacturing and processing at the province level in 
China. Zhang et al (2023) investigated how the imbalance 
in labor and energy allocation affects the carbon emission 
efficiency of 32 industrial sectors in China. Hu et al (2024) 
measured the carbon emission efficiency of 27 
manufacturing industries in China and analyzed the causes 
of inefficiency. 

Social network analysis is an effective approach for 
studying the intricate structure of networks connecting 
individual nodes. It is extensively used in several research 
fields such as social sciences, energy, and environment 
(Zhang et al, 2021). Spatial Correlation Network is an 
approach derived from social network analysis to describe 
the complex network formed by elements in geographic 
space. The spatial correlation network of carbon emission 
efficiency is to investigate the structure of the network of 
carbon-related factors in geographic space by taking the 
interaction of factors affecting carbon emission as the 
research object. Zhang et al (2022) studied the spatial 
attributes of carbon emission efficiency and the intricate 
network structure of the China's Yangtze River Economic 
Belt between 2008 and 2020. Some other scholars used 
social network analysis to explore the spatial correlation 
network structure and determining variables of carbon 
emission efficiency in the provincial transportation 
industry, construction industry and railroad transportation 
industry in China (Zhang et al., 2022; Gao et al., 2023; 
Zhang et al., 2023). 

Prior research has examined carbon emission efficiency to 
a certain degree, uncovering spatial variations and factors 
influencing carbon emission efficiency. The YRD urban 
agglomeration, which is the most expansive industrial 
urban agglomeration in China, has yet to be the subject of 
spatial correlation structure research pertaining to its 
ICEE. Hence, drawing from prior research, this paper 
employs social network analysis to construct a 
comprehensive picture of the spatial network attributes of 
ICEE in the YRD urban agglomeration. Additionally, it 
examines the spatial variations and prospective durability 
of carbon emission efficiency. A proposal is presented to 
facilitate coordinated carbon emission reduction in urban 
agglomerations. This proposal seeks to reveal the 
interrelated network structure of carbon emission 
efficiency across regions and its impact for collaborative 
carbon emission reduction. The research findings can 
serve as a reference for decision-makers as they strive to 
achieve regional collaborative targets for carbon emission 
reduction and develop policies that align with those aims. 

2. Materials and methods 

 Study 

The YRD urban agglomeration comprises the provinces of 
Jiangsu, Zhejiang, Anhui, and the municipality of Shanghai, 
which is directly governed by the central government. 
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Jiangsu has nine cities: Nanjing, Suzhou, Changzhou, Wuxi, 
Nantong, Yancheng, Zhenjiang, Yangzhou, and Taizhou. 
Zhejiang has nine cities: Hangzhou, Ningbo, Jiaxing, 
Wenzhou, Shaoxing, Huzhou, Jinhua, Taizhou, and 
Zhoushan. Anhui has eight cities: Hefei, Maanshan, Wuhu, 
Chuzhou, Tongling, Chizhou, Anqing and Xuancheng. The 
total economic volume is 29 trillion, accounting for 24.1% 
of China, and the total population of 2.4 billion people 
accounts for 17% of China's population. In China, the 
urban agglomeration known as YRD is the most developed 
and the biggest of all urban agglomerations at the 
moment. Figure 1 is the map of the distribution of YRD 
region and YRD urban agglomeration. 

Figure 1. Map of the distribution of YRD urban 
agglomeration and YRD region 

 ICEE Measurement 

The research used the super SBM model to compute the 
ICEE, using the Max DEA 9 program. Currently, the 
predominant method for calculating carbon emission 
efficiency is data envelopment analysis (DEA). It evaluates 
decision units by considering various input and output 
indicators in a linear fashion. However, the general DEA 
model focuses on low input and high output as indicators 
of high efficiency, overlooking unexpected outputs like 
CO2 emissions, dust, and other pollutants. To address this 
limitation, Tone (2001) introduced the SBM model, which 
incorporates slack variables into the DEA model. Tone 
argued that economic production often results in 
significant pollutant emissions, and incorporating 
unexpected outputs into the SBM model resolves the 
issues of input slack and inefficiency related to 
unexpected outputs. However, there are instances in 

which the efficiency decision-making unit's utmost 
efficiency value may surpass 100%, or 1. Conventional 
SBM models are incapable of differentiating these 
efficient decision-making units with the same degree of 
effectiveness in this instance. In order to tackle this 
concern, Andersen and Petersen (1993) introduced a 
more effective super SBM in which the effective decision-
making unit typically possesses a super efficiency value 
exceeding 1. The equations (1) and (2) present the super 
SBM model incorporating unexpected outputs. 



−

=

+ −

= =

−

=

+ +
+



 

1
0

1 1

1
1

1
1 ( )

m i

i
i

q hr k

r k
ro ko

S

m x
min

S S

q h y b
 

(1) 

  −

=

+ = = 
1

  1,2, , ;
n

j ij j io
j

S i m

 
 

  +

=

− = = 
1

  1,2, , ;
n

g
j rj r ro

j

S y r q

 
(2) 

  −

=

+ = = 
1

  1,2, , ;
n

b
j kj k ko

j

S b k h

 
 

− + −   0, 0, 0, 0i r k jS S S
 

 

In equation (2):ρ is the ICEE value;Si
−, Sr

+, SK
− are slack 

variables of the input, desired output and unexpected 
output, respectively:λ is the weight vector.  

 ICEE measurement indicator system 

This study selected 27 cities within the Yangtze River Delta 
urban agglomeration from 2011 to 2020 as the research 
objects. The data used includes statistical yearbooks from 
the official websites of the provincial governments of 
Jiangsu, Zhejiang, Anhui, and Shanghai, as well as 
statistical yearbooks and economic development 
statistical bulletins from various cities. For the indicator 
selection, this study selects the fixed asset stock of 
industrial enterprises in the year, the energy consumption 
of industrial enterprises, and the number of employees of 
industrial enterprises for input indicators. For output 
indicators, the value added of industry is chosen as the 
desired output, and industrial carbon emission is chosen 
as the non-desired output, and Table 1 displays the 
detailed indicator system for measuring ICEE. 

 

Table 1 ICEE measurement indicator 

Indicator  Primary indicator Secondary indicator Unit 

Input indicator 
Capital  Fixed capital stock Billion yuan 

Labor force Year-end employment Million people 

 Energy consumption Industrial power consumption kW/h 

Output indicator 
Expected output Value added by industry Billion yuan 

Unexpected output Industrial CO2 emissions Million tons 

 

Regarding the accounting method of carbon emissions, 
since the IPCC theoretical method is more detailed in 
classifying fuels for carbon emissions, such a technique 
offers a globally acknowledged approach to accounting for 

carbon emissions and has received endorsements from 
many researchers. (Yang et al., 2021). However, because 
there is only limited data available on the energy usage of 
different types of industrial enterprises in prefecture-level 
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cities, the primary factor influencing industrial energy 
consumption is electricity usage. Therefore, industrial 
electricity consumption is selected as a substitute 
indicator for measuring the energy usage of enterprises. 
The quantification of industrial carbon emissions relies on 
the carbon emission factor data obtained from China's 
National Development and Reform Commission (NDRC), 
which is based on the average emissions of carbon in 
China's regional power grids. China's power grid locales 
are categorized into five distinct regions for this purpose, 
and in this study, the carbon emission factor of the east 
grid is selected to be multiplied with the industrial 
electricity consumption, which is to obtain the industrial 
carbon emissions of the respective cities.  

 Decomposition modeling of regional differences in 
industrial ICEE 

Cities within the YRD exhibit diverse degrees of economic 
and industrial development across various areas, owing to 
disparities in geographical position, political status, 
population size, and resource endowment (Yin et al, 
2023). This paper examines the variations in ICEE among 
different regions within the YRD urban agglomeration. It 
also offers recommendations for enhancing and 
modernizing industries in the YRD area, as well as 
strategies for conserving energy and reducing emissions. 
The coefficient of variation (CV) is a statistical metric that 
quantifies the extent of variation across observations 
from various samples. It is often used to describe the 
variations in geographic data over space and time, and 
may indicate the relative level of balance within a dataset. 
The coefficient of variation is chosen as the analytical 
technique to compute the regional disparity features of 
ICEE in the YRD urban agglomeration. The formula used 
for computation is: 
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In the above equation: CV represents the coefficient of 
variation, S represents the standard deviation of ICEE, Ē is 
ICEE average value, n is the city samples, Ei stands for the 
value of industrial ICEE of i city. The size of the coefficient 
of variation value is positively correlated with the 
variability, and the larger the value, the larger the gap, 
and vice versa. 

 Social network analysis 

The relationship between ICEE and environmental impact 
factors in urban agglomeration encompasses not only 
elements such as sustainable economic growth and 
carbon emissions, but also the spatial disparities in 
industrial carbon emissions among various cities and the 
effectiveness of industrial carbon emissions within cities. 
A social network is a network of elements interacting with 
each other, with the flow of elements constituting the 
connecting lines between nodes, and the city nodes 
separated within the network acting as nodes. The YRD 
urban agglomeration has a dense transportation network, 
including the Shanghai-Nanjing Expressway, Shanghai-
Hangzhou Expressway, and railroads. Although multiple 
modes of transportation have shortened the distance 

between cities, geographical distance is still a major 
obstacle to cross-regional economic development. In this 
study, the traditional gravity model is cited and modified 
by using the geographic distance between cities combined 
with economic level and population size as the basis for 
the social network of ICEE. This modified approach is a 
research model for measuring the strength of spatial 
correlation and constructing spatial correlation networks, 
as modeled below:   
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In the above equation, yij is the intensity of spatial 
correlation of industrial ICEE of city i and j, Ei and Ej are 
ICEE of city i and city j, Pi, and Pj are the number of 

employees in industrial enterprises of city i  and city j, Gi 

and Gj are the GDP of industrial enterprises of city i and j, 
Dij

2 denotes the geographic distance between city i and 
city j, ai and aj denotes per capita income of industrial 
enterprises in city i and city j. 

In this study, the spatial correlation intensity of industrial 
ICEE in the YRD urban agglomeration, as determined by 
Equations (4)-(5), serves as the foundation for the 
individual and overall network structure analyses. Overall 
network structure is used to describe the overall evolution 
trend of the spatial network, including Network density, 
Network efficiency, Network hierarchy, Network 
connections; Individual network structure describes the 
significance and location of node cities within the 
network, and this paper mainly analyzes the network 
centrality, with indicators including Degree centrality, 
Closeness centrality, Betweenness centrality. 
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n is the nodes, N is the inaccessible node pairs 
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Network Hierarchy
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C and max c denote the symmetric accessible pairs and 
the maximum symmetric reachable pairs 

= − /( 1)Degree centrality o n  (10) 

o denotes the quantity of nodes inside the network that 
are linked to a certain node 
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ijk and j < k, gij is the quantity of relations between city i 
and j, gij(k) is the quantity of cities that traverse the 
relational path between cities i and j. 

 Evaluation of ICEE's influence factors 

Due to the potential presence of multicollinearity in the 
variable data utilized in this research, employing the QAP 
(Quadratic Assignment Procedure) model for correlation 

and regression analysis is more reliable. The correlation 
analysis of QAP relies on the substitution of matrix data, 
whereby the components of two matrices are compared 
to compute the correlation coefficients between them. On 
the other hand, the regression analysis of QAP aims to 
examine the regression connection between a single 
matrix and numerous matrices. Referring to the existing 
research results (Shi & Xu, 2022; Wang et al., 2022; Jiang 
et al., 2022; Lin et al., 2023; Wang et al., 2021b), this 
study selects the following possible influencing factors: 
industrial structure, environmental regulation, rate of 
foreign investment, productivity level, research and 
development, and energy consumption intensity. In Table 
2, the definitions of each variable are listed. 

 
Table 2 Definitions of variables 

Variables  Variable names Variable Descriptions 

IS Industrial structure Industrial GDP/Total GDP 

ER Environmental regulation Investment in environmental control/Total GDP 

FIR Rate of foreign investment Foreign Industrial Direct Investment/Total Industrial Investment 

PL Productivity level Industrial added value/Number of employees in industrial enterprises 

RD Research and development Industrial enterprises' R&D investment/Total industrial GDP 

ECI Energy consumption intensity Industrial enterprises' energy consumption /Total industrial GDP 

Table 3 YRD urban agglomeration ICEE from 2011 to 2020 

City 2011 2013 2015 2017 2020 Average Rank Annual change 

Shanghai 1.27 1.33 1.32 1.18 1.36 1.303 1 0.76% 

Suzhou 0.41 0.47 0.72 0.81 1.24 0.759 6 13.08% 

Nanjing 0.95 1.06 1.05 1.03 1.15 1.075 2 2.15% 

Wuxi 0.74 0.79 0.62 0.64 1.09 0.767 5 4.40% 

Nantong 0.24 0.31 0.29 0.23 0.31 0.277 17 2.88% 

Changzhou 0.35 0.34 0.32 0.38 0.36 0.358 14 0.31% 

Yangzhou 0.26 0.24 0.24 0.17 0.21 0.217 24 -2.35% 

Yancheng 0.18 0.17 0.2 0.23 0.26 0.206 25 4.17% 

Zhenjiang 0.27 0.24 0.23 0.2 0.28 0.243 21 0.40% 

Taizhou 0.25 0.22 0.27 0.24 0.29 0.257 18 1.66% 

Hangzhou 1 0.98 0.86 1.12 1.38 1.073 3 3.64% 

Shaoxing 0.72 0.66 0.62 0.65 0.67 0.655 10 -0.80% 

Ningbo 0.67 0.64 0.64 0.85 0.86 0.726 7 2.81% 

Wenzhou 0.79 0.74 0.67 0.74 0.76 0.725 8 -0.43% 

Huzhou 0.43 0.51 0.54 0.52 0.58 0.519 13 3.38% 

Jiaxing 0.65 0.52 0.52 0.58 0.62 0.562 12 -0.52% 

Jinhua 0.68 0.73 0.68 0.62 0.75 0.688 9 1.09% 

Zhoushan 0.91 1.01 0.91 0.84 0.83 0.936 4 -1.02% 

Taizhou 0.54 0.68 0.59 0.6 0.62 0.624 11 1.55% 

Hefei 0.26 0.28 0.29 0.27 0.31 0.287 16 1.97% 

Wuhu 0.3 0.28 0.27 0.2 0.21 0.256 19 -3.89% 

Ma'Anshan 0.32 0.31 0.3 0.27 0.25 0.292 15 -2.71% 

Tongling 0.3 0.26 0.25 0.22 0.2 0.242 22 -4.41% 

Anqing 0.21 0.18 0.18 0.17 0.21 0.189 26 0.00% 

Chuzhou 0.26 0.24 0.22 0.2 0.26 0.234 23 0.00% 

Chizhou 0.18 0.15 0.15 0.14 0.2 0.165 27 1.18% 

Xuancheng 0.22 0.21 0.27 0.25 0.24 0.244 20 0.97% 

Average 0.49 0.50 0.49 0.49 0.57 0.51 / 1.12% 

 

In this study, 2011-2020 is selected as the observation 
year, the mean value of the dependent variable (ICEE) 
from 2011 to 2020 is taken to build the mean matrix, and 
the mean value of each independent variable is taken to 

build the absolute difference to build the difference 
matrix, and the constructed QAP model is as follows: 

= ( , , , , , )Q f IS ER PL RD FIR ECI
 (13) 
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In Equation (13), Q is the spatial network relationship of 
industrial ICEE in YRD urban agglomeration, IS denotes the 
industrial structure, ER denotes the environmental 
regulation, FIR denotes the rate of foreign investment, PL 
denotes the productivity level, RD denotes the research 
and development, and ECI denotes the energy 
consumption intensity. 

3. Results and analysis 

 Measurement of ICEE 

The ICEE of the YRD urban agglomeration is calculated 
through MaxDEAUltra software and super-SBM formulae 
(1) and (2), which take non-desired outputs into account. 
Table 3 displays the mean yearly growth rate of the index 
of ICEE for the 27 cities within the YRD urban 
agglomeration from 2011 to 2020, which stands at 1.12%, 
showing a stable growth trend, but the level of the ICEE 
varies significantly from city to city. This indicates that 
industries in the YRD urban agglomeration are gradually 
realizing sustainable development, and the differences 
among cities might be due to political status, geographic 
location differences, and natural and human resources. 
Shanghai has the highest average annual ICEE and Chizhou 
has the lowest, with a difference of 113.8% between the 
two cities. The reason is that Shanghai, as the economic 
center of China, not only has advanced industrial chain 
and senior technicians, but also the government's strict 
environmental protection policy makes its industrial 
enterprises have excellent environmental protection 
treatment equipment, so that its industrial industry can 
maintain high speed and green development. The mean 
yearly growth rate of ICEE of Suzhou is 13.08%, which is 
17.49% higher than that of the last place, Tongling (-
4.41%). This is because Suzhou is geographically close to 
Shanghai, and the economic development of Shanghai 
and Suzhou has formed a linkage. Among them, industrial 
development is rapid, and the input of Shanghai's high-
tech resources has enabled Suzhou to maintain high-
speed and high-quality economic development. 

The temporal and spatial variation of ICEE in the urban 
agglomeration of YRD between 2011 and 2020 is 
compared in Figure 2. The value of ICEE is represented by 
the depth of the color, which can be seen that the spatial 
differentiation characteristics of the 27 cities are obvious. 
In general, the ICEE decreases in a gradient from the cities 
in the southeast to the cities in the northwest of the YRD, 
and this difference tends to widen when comparing 2011 
and 2020. In 2011, the northern and western portions of 
the YRD urban agglomeration showed a concentration of 
cities with low ICEE values. Cities with medium efficiency 
were found in the southern part, while Shanghai, Nanjing, 
and Hangzhou comprised the majority of high-efficiency 
cities. The ICEE values for cities in the northern portions of 
the YRD urban agglomeration, as well as the majority of 
cities in the western portions, remain mostly at low levels 
in 2020. The reason for this is that these cities have a 
slower economic development, and they continue to 
depend on an economic development framework 
characterized by substantial resource use, excessive 

consumption, and significant emissions throughout the 
progression in advancing industrialization and 
urbanization. The ICEE in Shanghai, Suzhou, Nanjing and 
Hangzhou increase dramatically in 2020. The 
environmental Kuznets curve demonstrates that as 
economic development progresses, the environmental 
quality first deteriorates but eventually improves beyond 
a certain threshold of economic growth. Although these 
cities have the fastest industrial development, they have 
many universities and research institutes, well-developed 
emerging technology industries, and high resource 
utilization efficiency, leading to high ICEE, which ensures 
high-quality industrial development. A pattern has 
emerged in the YRD urban agglomeration, wherein the 
high-value core comprises Shanghai, Suzhou, Nanjing, and 
Hangzhou, while the ICEE progressively declines in the 
surrounding areas. 

 

Figure 2. ICEE spatial distribution of YRD urban agglomeration in 

2011 and 2020 

 Analysis of spatial variability in ICEE 

The coefficient of variation method is able to quantify the 
variability of ICEE between different regions and time 
periods by calculating the ratio of the standard deviation 
to the mean of ICEE data. Through standardization, data 
from different regions can be compared at the same scale, 
helping to analyze the unevenness of carbon emissions 
and thus providing a basis for subsequent model 
construction and prediction. The formula for calculating 
the coefficient of variation was combined with ArcGIS 
software and the natural breakpoint method was used to 
categorize the coefficient of variation into five classes, as 
shown in Figure 3, which are, in order, low volatility zone 
(0.0711-0.1790), lower volatility zone (0.1791-0.3121), 
medium volatility zone (0.3122-0.5771), higher volatility 
zone (0.5772-0.8242), and high volatility zone (0.8243-
1.0945). 

The coefficients of variation of ICEE changes in the YRD 
urban agglomeration range from 0.0711 to 1.0945, 
showing a trend of mostly low to medium fluctuations and 
less high fluctuations, with the degree of equilibrium 
decreasing from the north to the south, with significant 
geographical differences. 

The high volatility and higher volatility areas are located in 
urban areas in central Jiangsu Province and central Anhui 
Province, accounting for 33.3% of all cities, indicating that 
the ICEE spatial differences of the cities in this region are 



INDUSTRIAL CARBON EMISSION EFFICIENCY IN CHINESE CITIES: SPATIAL CORRELATION NETWORKS  7 

significant, which is attributed to the fact that these cities 
are resource-based cities within the urban agglomeration 
with rich coal mining resources and well-developed 
metallurgical industry, and in recent years, the Anhui 
Province government has implemented several policies 
pertaining to the metamorphosis of resource-based cities. 
Each city exhibits significant disparities in technological 
advancement and environmental restrictions, including 
the promotion of intelligent manufacturing and the 
growth of the new energy sector, so the cities have a big 
gap between the level of industrial development in recent 
years has led to differences in industrial ICEE. 

Cities in the low volatility zone and the lower volatility 
zone are located in Zhejiang and the south of Jiangsu 
Provinces, accounting for 51.86% of the urban 
agglomeration, indicating that the ICEE spatial differences 
of the cities in this region are not significant since most of 
these cities are along the coast and have many harbors, 
and the foreign trade is well developed, and most of the 
cities are dominated by the manufacturing and processing 
industry in terms of economic development, and they 
have been the regions with the largest volume of trade in 
and out of China. The reason is that most of these cities 
are coastal and have many ports. Therefore, they have 
high similarity in industrial structure and technology level, 
which makes the ICEE between cities have small 
differences. 

Figure 3. Variation coefficient of ICEE from 2011 to 2020 

 Spatial correlation network structure of ICEE 

The gravity matrix of every city in the YRD urban 
agglomeration is computed in this study utilizing a 
modified gravity model. The resulting network connection 
diagrams are then visualized in 2011 and 2020, with a 
total of 191 connections in 2011, and 196 connections in 
2020. According to Figure 4, the YRD urban agglomeration 
ICEE shows a multilinear and multiflow network structure, 

in which Suzhou, Changzhou, Hangzhou, and Nanjing are 
centrally located inside the network and have a significant 
number of affiliations. These cities are in the center of the 
YRD urban agglomeration, they have perfect 
transportation facilities, convenient and fast flow of 
resources, and strong connections with other cities, while 
the other edge cities have relatively fewer affiliations and 
form a spatial network structure of "center-edge" with 
them. 

 

Figure 4. ICEE spatial network structure in 2011 and 2020 

in the YRD urban agglomeration 

 Overall structural characteristics 

The values of the overall structural features' indicators for 
ICEE social network in the YRD urban agglomeration are 
computed using the Ucinet 6.0 software. According to 
Figure 5, there has been an increase in the quantity of 
spatial correlation network connections and network 
density of industrial ICEE in the YRD urban agglomeration 
of year 2011 and 2020. This shows that the spatial 
interactions of ICEE have strengthened and that the 
spatial network correlation of ICEE in the YRD urban 
agglomeration has been enhanced. 

The increase of network connections indicates that the 
spatial correlation between nodes in the network is 
becoming increasingly close, and the factors such as 
capital, labor, and economic output will realize the full 
flow, so that the value of the number of network 
connections should be as large as possible. Although the 
number of network connections has increased to 196, 
there is a big gap of 506 from the total number of 702 
relationships, which indicates that there is still significant 
potential for enhancing the spatial correlation connection 
of ICEE; if sufficient spatial correlation relationship has 
been formed among all cities in YRD urban agglomeration, 
then relying on the convenient flow channels of the 
factors, such as the developed railroads, high speeds, 
airlines, and river transportation, the YRD urban 
agglomeration will realize the optimal allocation of all 
kinds of factors related to ICEE. In addition, although the 
increase of network density is conducive to the 
enhancement of ICEE interactions, the connections 
exceed the capacity of ICEE spatial correlation network, 
which will impose constraints on the flow of factors 
related to ICEE in the YRD urban agglomeration, so the 
increase of network density should not be over-pursued, 
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and the network density should be systematically raised in 
accordance with the assurance of a progressive rise in 
network connections. 

The network hierarchy for the ICEE of YRD urban 
agglomeration has shown a gradual weakening trend from 
0.5858 in 2011 to 0.5785 in 2019. This indicates that the 
hierarchical structure of the network is becoming less 
rigid, and the nodes that hold a dominant central position 
are losing their "controlling" role over time. The tendency 
suggests that the general stability for spatial correlation 
network of YRD urban agglomeration has been enhanced. 

Figure 5 does not depict the spatial correlation network of 
ICEE within the YRD urban agglomeration due to the 
network correlation reaching a stable value of one. This 
indicates that all 27 node cities are located in the overall 
network for a long period of time, there is no unreachable 
node in the network, and the correlation network formed 
by ICEE has a high degree of robustness and a strong 
spillover effect. 

Overall, the network efficiency of ICEE exhibits a marginal 
decline, with minor fluctuations observed throughout the 
period. By 2020, the network efficiency will have 
decreased from 49.45% in 2011 to 47.94%. This study 
concludes, in conjunction with an examination of the 
outcomes of high network density, high network 
correlation, and low network hierarchy, that the spatial 
correlation for ICEE of YRD urban agglomerations tends to 
be tighter. Each network node can be connected and thus 
form spatial correlation and generate spatial spillover. The 
cross-regional circulation of urban advantageous 
resources and industrial carbon emission spillover make 
the spatial correlation structure of ICEE relatively stable 
and develop in a balanced way. 

 

Figure 5. Results of overall network characteristics indicators 

from 2011-2010 

 Individual network characteristics 

In this paper, the individual networks (degree centrality, 
closeness centrality, betweenness centrality) of the ICEE 
in YRD urban agglomeration between 2011 and 2020 are 
measured using Ucinet 6.0 software, which reveals the 
roles of each city in the social network. 

1. Degree Centrality quantifies the centrality of a 
node in terms of its ability to hold a place within 
the network. In Table 4, In-Degree and Out-
Degree correspond to accepting relationships 
and overflow relationships, respectively. The 
Centrality average value as a whole grows from 
36.752 in 2011 to 37.322 in 2020. The cities of 
Shanghai, Nanjing, Hangzhou, Suzhou, Wuxi, 
Changzhou and Jiaxing have been at a level 
higher than the average, they are more 
connected to other cities and are at the center of 
the network of ICEE because they are more 
economically developed and have relatively good 
transportation facilities. This is due to the fact 
that these cities have greater economic 
development, have a superior geographic 
location, and have sound transportation facilities, 
which have created a "siphon effect" on 
neighboring cities. Tongling, Anqing, Chuzhou, 
and Chizhou are marginalized in the spatial 
correlation network because their ICEEs are less 
connected to other cities and their centrality 
values are lower than the average. 

2. The concept of closeness centrality quantifies the 
degree to which a node within a network is 
impacted by other nodes. A relatively 
insignificant change occurs as the aggregate 
average value of Closeness centrality rises from 
47.04 in 2011 to 47.26 in 2020. Cities such as 
Nanjing, Wuxi, Changzhou, and Suzhou are larger 
than the average value, and these cities have the 
geographical advantage of having a shorter 
distance from other cities, so that they can be 
connected to other cities quickly. The values in 
Tongling, Anqing, Chuzhou, and Zhoushan are all 
below the mean. These cities are situated at the 
periphery of YRD urban agglomeration, which is 
determined by their geographical location and 
level of economic development; consequently, 
their ICEE is less susceptible to the spillover 
effects of other cities. 

3. The concept of betweenness centrality is 
employed to quantify the extent to which a node 
in a social network exerts influence over other 
nodes. The overall average of Betweenness 
centrality ranges from 36.519 in 2011 to 33.037 
in 2020. Cities such as Hangzhou, Changzhou, 
Nanjing, Suzhou, and Xuancheng are larger than 
the average, which are critical network nodes 
with substantial influence over the spatial 
connectivity of other nodes. The cities of 
Zhoushan, Wenzhou, Yancheng, Anqing, and 
Taizhou have significantly lower than average 
betweenness centrality, and have weaker control 
over the resources of other node cities. These 
cities are located on the periphery of the YRD 
urban agglomeration and have a limited 
economic foundation, which makes them unable 
to act as "intermediaries" for other node cities. 
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Table 4 Centrality analysis of social network of ICEE 

City 
Degree Centrality 

Closeness Centrality Betweenness Centrality 
In-degree Out-degree Centrality 

Year 2011 2020 2011 2020 2011 2020 2011 2020 2011 2020 

Shanghai 12 11 6 6 46.154 42.308 56.52  55.32  44.824 36.449 

Suzhou 19 16 5 6 73.077 61.538 78.79  72.22  62.064 51.186 

Nanjing 10 10 7 11 46.154 53.846 65.00  68.42  83.583 109.192 

Wuxi 13 13 6 6 50.000 50.000 66.67  66.67  34.533 30.632 

Nantong 6 7 7 5 26.923 26.923 52.00  50.98  31.204 19.594 

Changzhou 14 17 7 8 53.846 65.385 68.42  74.29  85.650 104.678 

Yangzhou 8 6 8 8 38.462 34.615 61.91  56.52  32.196 10.882 

Yancheng 3 3 7 8 26.923 30.769 54.17  55.32  0.450 12.275 

Zhenjiang 9 10 6 6 38.462 42.308 61.91  59.09  16.694 12.200 

Taizhou 6 8 7 7 26.923 34.615 54.17  56.52  4.851 12.123 

Hangzhou 9 10 11 10 50.000 53.846 66.67  68.42  144.180 150.974 

Shaoxing 9 9 8 8 38.462 38.462 54.17  54.17  31.511 25.608 

Ningbo 8 8 7 8 34.615 34.615 53.06  53.06  36.050 40.834 

Wenzhou 2 2 8 7 30.769 26.923 52.00  47.27  0.000 0.167 

Huzhou 5 6 7 7 30.769 30.769 56.52  59.09  32.090 22.371 

Jiaxing 11 10 7 8 46.154 46.154 56.52  56.52  45.579 26.461 

Jinhua 4 5 8 6 30.769 23.077 52.00  46.43  9.791 21.760 

Zhoushan 1 1 6 6 23.077 23.077 49.06  49.06  0.000 0.000 

Taizhou 6 5 8 7 34.615 30.769 53.06  48.15  16.993 7.104 

Hefei 7 8 8 7 38.462 34.615 52.00  50.00  60.103 52.414 

Wuhu 7 8 6 7 34.615 38.462 50.00  50.98  30.511 27.482 

Maanshan 7 8 6 6 34.615 34.615 50.00  50.00  27.138 19.793 

Tongling 4 4 6 7 23.077 26.923 44.83  48.15  18.028 17.283 

Anqing 3 3 6 5 23.077 19.231 44.83  46.43  9.194 7.833 

Chuzhou 3 3 7 8 26.923 30.769 49.06  50.00  22.403 2.293 

Chizhou 2 2 6 8 23.077 30.769 52.00  56.52  19.160 11.638 

Xuancheng 3 3 10 10 42.308 42.308 63.42  63.42  87.220 58.774 

Average 7.07 7.26 7.07 7.26 36.752 37.322 56.25  56.04  36.519 33.037 

Table 5 Plate correlations in spatial correlation networks of ICEE 

Plates City 

In-flow relation Out-flow relation Expected 
internal 

relationship 

Actual 
internal 

relationship 
Inside plate 

Outside 
plate 

Inside plate Outside plate 

Plate I 

Anqing, Chizhou, 

Chuzhou, Hefei, 

Ma’anshan, Tongling, 

Wuhu, Xuancheng 

33 6 31 25 26.92% 28.21% 

Plate II 

Changzhou, Nanjing, 

Taizhou, Wuxi, 

Yancheng, Yangzhou, 

Zhenjiang 

35 32 35 19 23.08% 29.91% 

Plate III 

Hangzhou, Jiaxing, 

Jinhua, Ningbo, 

Shaoxing, Taizhou, 

Whenzhou, 

Zhoushan 

40 10 40 20 26.92% 34.19% 

Plate IV 
Shanghai, Suzhou, 

Nantong, Huzhou 
9 31 9 15 15.38% 7.69% 

 

 Analysis of substructures within the YRD urban 
agglomeration 

Based on the ICEE matrix in 2020, Ucinet 6.0 software was 
used to establish the Block model and use the CONCOR 
method for cohesive subgroup analysis, to explore the 

plate correlation relationship of ICEE spatial correlation 
network. The initial proposition of Block Model analysis 
was made by White in 1976 (White, 1976). This method 
enables the examination of the elemental transfer 
pathway and the placement of individual plates within a 
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matrix network. As shown in Table 5, the matrix of 27 
cities in YRD is divided into 4 plates. 

There are a total of 196 associative relationships in the 
social network, of which 117 are In-flow relationships and 
79 are Out-flow relationships. 

Plate I contain a total of 33 internal relations, receives 6 
relations from outside the plate, and sends out 25 
relations. The quantity of relations sent out is greater than 
the received. The actual proportion of internal relations is 
28.21% greater than the expected proportion of 26.92%, 
so Plate I is an "out-flow Plate". 

Plate II has a total of 32 internal relations and receives 19 
external relations. It only sends out 32 relations to outside 
the plate. The proportion of actual relations within the 
plate is 29.91%, which is higher than the expected 
proportion of 23.08%. Additionally, the cities within the 
plate have a higher number of relations both inside and 

outside the plate. Therefore, Plate II can be classified as a 
"bidirectional outflow Plate".  

Plate III contains a total of 40 internal relations and 
receives 10 relations from outside the plate. It also sends 
out 20 relations outside the plate. The proportion of 
actual internal relations, which is 34.19%, is higher than 
the expected proportion of 26.92%. Therefore, Plate III is 
classified as an "agent Plate". 

Plate IV has a total of 9 internal relations, 30 relations 
received from outside the plate, and 15 relations sent 
outside the plate. Therefore, the number of receiving 
relationships is significantly greater than the number of 
overflow relationships. The proportion of actual internal 
relationships is 7.69%, which is smaller than the expected 
internal relations of 15.38%. Thus, Plate IV is classified as 
an "inflow Plate". 

 

Table 6. Density and image matrices for spatial correlation plates of ICEE 

Plates 
Density matrix Image matrix 

Plate I Plate II Plate III Plate IV Plate I Plate II Plate III Plate IV 

Plate I 0.589 0.375 0.031 0.063 1 1 0 0 

Plate II 0.089 0.833 0.018 0.464 0 1 0 0 

Plate III 0.016 0.054 0.714 0.5 0 0 1 1 

Plate IV 0 0.286 0.219 0.75 0 1 0 1 

Table 7. Correlation matrix between driving factors 

Variables IS ER FIR PL RD ECI 

IS 1.000*** 0.846* 0.544** 0.241*** 0.058** 0.174** 

ER 0.846* 1.000*** 0.142 0.037* 0.257** 0.018*** 

FIR 0.544** 0.142 1.000*** 0.538* 0.161** 0.223* 

PL 0.241*** 0.037* 0.538* 1.000*** -0.436* 0.808*** 

RD 0.058** 0.257** 0.161** -0.436* 1.000*** -0.457** 

ECI 0.174** 0.018*** 0.223* 0.808*** -0.457** 1.000*** 

Note: * * *, * *, * * are significant levels of 0.01, 0.05, and 0.1 

 

In this paper, to explore the transmission law of the 
factors of ICEE changes, based on the above Table, the 
density matrix of four plates is computed and then 
transformed into the Image matrix. Any value in the 
density matrix that exceeds the overall density of the 
network (0.2792) is designated as 1, while all other values 
are allocated as 0. Further information can be found in 
Table 6. In the image matrix of the plate I, the value "1" 
points to plate II and has an internal correlation, which 
acts as an "outflow" plate and transmits the elements of 
ICEE growth to plate II. The cities in Plate I are mostly 
situated in the western region of the YRD urban 
agglomeration in Anhui province. These cities are 
considered economically underdeveloped compared to 
other cities, particularly in terms of industrial sector, while 
the seven cities in Plate II are in Jiangsu province, which is 
geographically close to the cities in plate I, and has always 
been relatively developed in the YRD urban agglomeration 
in terms of industrial industry, which has a high demand 
for the resources of cities in plate I. Plate II has an internal 
correlation, as a developed area of industrial industry, 
with a high degree of industrial agglomeration and mutual 

resource spillover between cities. Plate III has an internal 
correlation and points to plate IV, which regulates its own 
ICEE through the "outflow" and "inflow" of factors, and 
becomes the "agent plate" of the four plates. Plate IV, as 
an "inflow plate", has an internal correlation and points to 
Plate II, which, as a "bidirectional outflow plate", provides 
factors of ICEE growth to Plate IV. Being the most 
economically advanced area in the YRD urban 
agglomeration and China overall, it serves as the focal 
point for economic and social progress and exerts a 
"dominant" influence on the growth of high-efficiency 
industries. The ICEE of YRD urban agglomeration shows a 
clear "hierarchical" character. 

4. Analysis of driving factors 

 QAP analysis 

To analyze the driving factors through regression, the QAP 
model is employed. Prior to commencing the regression 
analysis, a correlation analysis of the influencing factors is 
conducted utilizing the QAP model. The presence of 
multicollinearity among the variables is evident in Table 6. 
In order to mitigate this issue, the QAP model is employed 
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for the regression analysis. The correlation coefficients of 
environmental regulation, the rate of foreign investment, 
and R&D are all positively correlated at a 1% level of 
significance, as shown in Table 7. This indicates that the 
variables in question are extremely correlated with the 
ICEE correlation network. At the 10% significance level, 
the correlation coefficient of industrial structure is 
negative, indicating a negative correlation with the spatial 
correlation network of ICEE. The relationship between 
energy consumption intensity and productivity level is not 
influenced by the ICEE spatial correlation network. 

 QAP regression analysis 

For the regression analysis on the driving factors of ICEE, 
10,000 random permutations of the matrix were utilized. 
Parameter estimation and testing were then conducted to 
derive the regression results. The regression equation 
achieves an overall fit level of 0.507, signifying that six 
influencing factors account for 50.7% of the variance in 
the strength of spatial correlation among ICEE in YRD. 

The regression coefficient of the industrial structure 
matrix differences is negative and it is not significant, the 
industrial structure differences between cities have no 
significant effect on the strength of spatial correlation of 
industrial ICEE, which may be due to the fact that the 
industrial industry in the YRD urban agglomeration 
maintains a stable growth rate year-round and the 
internal industrial structure is fixed. This might be 
attributed to the consistent yearly growth rate of 
industrial sectors in the YRD urban agglomeration and the 
unchanging industrial composition. Matrix of Differences 
in Environmental Regulation is significantly positive at 5% 
level of significance, suggesting that variations in 
environmental regulation influence the spatial correlation 
of ICEE. This may be attributed to the tendency of 
industrial enterprises from cities with stringent 
environmental regulatory policies to relocate to cities with 
more lenient policies, thereby inducing a degree of carbon 
transfer. At the 1% significance level, the regression 

coefficient of the matrix of differences in the rate of 
foreign investment is substantially positive, showing that 
an increase in the foreign investment rate differences can 
strengthen the correlation of ICEE between cities, which 
may be due to the fact that foreign enterprises have 
exerted their technological outflow effect and played an 
exemplary leading role for local enterprises, which 
improves the correlation of ICEE. The regression 
coefficient for the Matrix of differences in productivity 
level is positive, but lacks statistical significance. This 
suggests that disparities in productivity do not have an 
impact on the establishment for the ICEE spatial 
correlation network, which means that different types of 
industrial industries have different forms and efficiencies 
of personnel organization and management systems, and 
specific ICEE correlations cannot be formed among cities. 
The regression coefficient of the Matrix of differences in 
R&D capabilities is positive at the 1% level significantly, 
cities with large differences in R&D promote the 
formation for spatial correlations of industrial ICEE. This 
may be due to the fact that in the process of industrial 
enterprises responding to the low-carbon transition 
policy, the expanding differences in low-carbon 
production technologies promote the flow of production 
technologies and senior technicians between cities, which 
strengthens the linkage of industrial ICEE. The regression 
coefficient of the Matrix of differences in energy 
consumption intensity is negative but lacks statistical 
significance, suggesting that energy consumption intensity 
does not have a major impact on the establishment of 
spatial correlation of ICEE in the YRD urban 
agglomeration. The reason for this might be attributed to 
the shift in the industrial chain of the YRD area from rapid 
expansion to a steadier growth phase. As a consequence, 
the level of energy consumption has also stabilized, 
leading to little variations in energy consumption intensity 
between cities. 

 

Table 8. QAP model analysis results 

Variables 
Correlation Analysis Regression Analysis 

Coefficient p-Value Coefficient p-Value 

IS -0.4019* 0.077 -0.3816 0.879 

ER 0.2620*** 0.000 0.3481** 0.041 

FIR 0.3971*** 0.003 0.3022*** 0.002 

PL 0.0877 0.328 0.8230 0.341 

RD 0.4450*** 0.000 0.4194*** 0.000 

ECI -0.3069 0.216 -0.2627 0.372 

Note: * * *, * *, * * respectively represent significant levels of 0.01, 0.05, and 0.1; R2=0.507 

 

5. Conclusions and policy recommendations 

The ICEE of YRD urban agglomeration is assessed using the 
Super-SBM model between 2011 and 2020. The QAP 
model is then employed to examine the driving factors by 
analyzing the evolutionary characteristics of the spatial 
correlation network of ICEE of YRD urban agglomeration 
via the modified Gravity model and social network 
analysis. The following are the primary findings of this 

study: the average ICEE for the YRD urban agglomeration 
raised from a value of 0.49 in 2011 to 0.57 in 2020, 
exhibiting a varying upward trend. In general, the spatial 
differentiation features are clearly evident, with a 
noticeable overall pattern of a decreasing gradient from 
the southeastern cities to the northwestern cities. 
Moreover, the disparities between the cities are 
progressively growing with each passing year. The 
coefficient of variation of ICEE changes in the urban 
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agglomeration of the YRD ranges from 0.0711 to 1.0945, 
showing a trend of predominantly low and medium 
fluctuations and less high fluctuations, with the degree of 
equilibrium decreasing from north to south, and there are 
significant geographical differences. The YRD urban 
agglomeration's ICEE has a spatial network correlation 
structure known as "center-edge," where Suzhou, 
Nanjing, Hangzhou, and Changzhou serve as the central 
hubs that extend their influence to the surrounding 
regions. The network density exhibits an increase from 
0.2721 to 0.2792, suggesting a reinforcement of the 
spatial interaction of ICEE inside the YRD urban 
agglomeration. The network hierarchy exhibits a marginal 
decline from 0.5858 to 0.5785, indicating an improvement 
in the general stability of the spatial correlation network 
of ICEE in the YRD urban agglomeration. The total network 
efficiency exhibits a gradual decline. The QAP correlation 
study reveals that the matrix of variations in research and 
development, environmental regulation, and rate of 
foreign investment significantly affect the shape of the 
ICEE spatial correlation network. However, the matrix of 
variations in industrial structure, productivity level, and 
energy consumption intensity do not significantly affect 
the ICEE, and their influence mechanisms need to be 
further explored. 

Given the above conclusions, to promote the smooth 
promotion of low-carbon development of industrial 
industries, combined with the obvious spatial correlation 
and heterogeneity of ICEE in the YRD urban 
agglomeration, this study proposes the following 
recommendations:  

1. Due to the high energy consumption of industrial 
sectors for YRD urban agglomeration and the 
ICEE spatial correlation, the development of 
industrial industries among cities not only 
depends on their energy resources, but also is 
influenced by the surrounding cities, so the 
government departments should act as 
intermediaries to facilitate the connection 
between industrial enterprises in different cities, 
and rationally allocate resources between 
different cities to ensure that the economy of 
resource-rich regions can continue to develop in 
a green and sustainable way, while energy-poor 
cities can obtain the guarantee of energy supply, 
so that the cities in the YRD urban agglomeration 
can form the advantage of resource integration 
to improve the ICEE of the industry. 

2. Shanghai, Nanjing, Suzhou, and Hangzhou hold 
prominent positions within the individual social 
network and possess evident resource 
advantages. Under the coordination of the 
government, these cities can provide technical, 
personnel, and financial support to cities in other 
regions to ensure the reasonable flow of various 
resource elements. For cities with different levels 
of economic development, differentiated 
emission reduction policies should be 
implemented, and economically developed 

regions should take the lead in implementing 
regulations to reduce industrial carbon emissions 
to provide reference and experience for 
surrounding cities. 

3. In promoting the development of the 
environmental industry and optimizing the 
energy mix, inter-city collaboration can be 
promoted by identifying key city nodes, 
understanding their linkages and resource flows, 
and accelerating smart transformation and clean 
energy applications. This will help to optimize 
resource allocation, promote technology 
diffusion and assess the differences in carbon 
emissions between cities so that differentiated 
policies can be formulated to reduce reliance on 
traditional energy sources. 

The empirical research in this paper has made some 
progress, but the validity of the results still needs to be 
further verified due to the limitations of the scope and 
focus of the study. The social network analysis method 
and modeling parameters used in this study may have 
certain errors, and the construction of the network 
structure and the setting of the node weights may fail to 
fully reflect the actual situation, resulting in certain bias in 
the results of the analysis of spatial relationships. This 
study focuses on the YRD urban agglomeration, and 
although the region has a high degree of economic activity 
and carbon emission representation, the findings may not 
be directly generalizable to other regions. In view of the 
limitations of this study, it is necessary for scholars in 
related fields to further deepen the research questions 
and continue to study them. 
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