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Abstract 

Droughts represent a significant and escalating challenge 
to communities due to their gradual onset over several 
years. These climatic events adversely affect agriculture, 
leading to severe socio-economic consequences. This 
study aims to develop a comprehensive model to assess 
and delineate drought conditions in Babylon City, utilizing 
an integrated approach of GIS and remote sensing for 
effective water resource management and drought 
mitigation strategies. We applied the Analytical Hierarchy 
Process (AHP) integrated with GIS, analyzing twelve 
parameters: elevation, slope (degrees), land cover/land 
use (LCLU), normalized difference vegetation index 
(NDVI), land surface temperature (LST), normalized 
difference moisture index (NDMI), normalized difference 
building index (NDBI), soil moisture index (SMI), annual 
rainfall (mm), evaporation, relative humidity, and 

Standardized Precipitation Index (SPI). We employed the 
QGIS plugin to assess drought prevalence using Multi-
Criteria Analysis (MCA), addressing financial and 
technological challenges for analysts and planners in 
developing countries. The MCA model demonstrated 
strong performance in identifying drought conditions in 
Babylon, achieving a kappa value of 1 in the "ideal 
location" scenario. The study classified the area into four 
drought prevalence zones: mild, moderate, severe, and 
extreme. Findings indicate that 55.4% of the region 
experiences extreme drought, 16.1% mild drought, and 
only 3.3% shows no signs of drought. Notably, 59.57% of 
the study area falls within the high drought zone, 
highlighting the variable water deficits across the region. 

Keywords:  AHP, QGIS plugin. MCDA model's, normalized 
difference vegetation index (NDVI) 

1. Introduction 

Global climate alteration and the resultant rise in 
temperature are inducing a range of extreme weather 
phenomena, including droughts (Buras et al., 2018; 
Guldberg et al., 2018). Drought is an extended arid phase 
in the natural climatic cycle, marked by insufficient 
precipitation resulting in considerable water scarcity.  It 
affects health, agriculture, economy, energy generation, 
and the environment. (https://www.who.int/health-

topics/drought#tab=tab_1&nbsp; No Title). Categories 
encompass meteorological, agricultural, hydrological, and 
social droughts. Causes may be natural or anthropogenic, 
encompassing climate variability and inadequate water 
management. Drought can result in food poverty, health 
hazards, and economic detriment, particularly affecting 
the agricultural and energy sectors. The duration and 
intensity of droughts can fluctuate, affecting prediction 
and management efforts (Khoi et al., 2021; Jasim et al., 
2024).  

Further, droughts have affected 1.5 billion people globally 
between 1998 and 2017, causing economic losses of up to 
USD 124 billion. The imbalance of natural components has 
made climatic events more irregular and destructive, 
leading to an alarming situation. Climate change has also 
increased the frequency and intensity of hydro-
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meteorological hazards, resulting in acute water crises 
(Rehman et al., 2022; Hasan et al., 2022; Rather et al., 
2022). Drought and climate change forecasts highlight an 
increase in global drought frequency and severity, 
emphasizing the need for urgent drought management 
strategies (UNCCD, 2022; Haile et al., 2020). 

Literature on drought management emphasizes the 
significance of proactive strategies (FAO, 2019). Countries 
have been focusing a lot of emphasis on drought and 
climate change in the last few decades as they try to find 
better ways to deal with these issues and adapt to them 
(Beroho et al., 2023; Bhaga et al., 2020). Repeated 
droughts in Iraq over the past few decades have wreaked 
havoc on the country's ecosystem, water supplies, and 
overall water balance (Al-Saedi et al., 2023; Rasheed and 
Al-Ramahi, 2021).  

In recent years, anthropogenic mass has surpassed all 
living biomass on Earth, with artificial structures 
exceeding the entire weight of trees and bushes 
(Elhacham et al., 2020; Jasim et al., 2019). Drought is 
caused by both natural and human-induced factors, 
including population expansion, agricultural and industrial 
activity, and overexploitation of water. The effects of 
these factors fluctuate across various time intervals. Wet 
periods may follow severe drought phases, necessitating a 
precise understanding of temporal climate fluctuations. 
Studies demonstrate that the occurrence and severity of 
droughts can vary considerably due to both natural 
variability and human-induced factors (IPCC, 2021)(Legg, 
2021). The impacts of drought vary by region. Certain 
regions may exhibit more vulnerability to drought owing 
to climatic or geographic factors, whereas others may 
experience reduced impactse. Arid and semi-arid regions 
are at increased risk due to factors such as soil moisture 
retention and water availability (WMO, 2020)(Stock et al., 
2020). It affects surface and subsurface water resources, 
water quality, power generation, and range production. 
Spatial and temporal factors are crucial components of 
drought vulnerability. Remote sensing and geographical 
analysis can help process large amounts of data efficiently 
and reduce time (Quan et al., 2021). Multiple models have 
been employed to create drought susceptibility maps for 
diverse use, including the Composite Drought 
Vulnerability Indicator (CDVI), Enhanced Vegetation Index 
(EVI), Standardized Precipitation Index (SPI), Standardized 
Precipitation Evapotranspiration Index (SPEI), Palmer 
Index (PI), Composite Index (CI), and multi-spectral 
indicators utilizing vegetation and temperature (Cao et al., 
2022).  

Among various metrics, the Standardized Precipitation 
Index (SPI) is the most widely used technique for drought 
evaluation (Gaikwad et al., 2022). This indicator is less 
intricate than other indices as it relies on precipitation 
data. Consequently, the SPI is advocated as the principal 
metric for global drought assessment.  Introduced in 2010, 
the Standardized Precipitation-Evapotranspiration Index 
(SPEI) is another tool for assessing drought conditions by 
incorporating precipitation and potential 
evapotranspiration (Ojeda et al., 2021). It is widely used in 

agriculture for drought monitoring and management 
decisions, and water managers use it for planning and 
allocation strategies. It is also increasingly used in climate 
change studies to analyze the relationship between 
climate variability and drought occurrence (Mousavi et al., 
2023). Its comprehensive methodology and integration 
into climate modeling make it crucial for addressing 
climate variability challenges (Zhao et al., 2021). 

Given that drought affects people's lives directly and 
indirectly, it is essential to monitor the spatiotemporal 
variations of drought and create susceptibility maps to 
reduce vulnerability and formulate adaptation strategies. 
Various approaches, including regression, artificial 
intelligence (AI), and multi-criteria decision analysis 
models, have been employed to investigate the 
consequences of drought. Regression models analyze the 
relationship between drought conditions and 
environmental factors, providing valuable insight for 
farmers and policymakers. AI, using machine learning 
algorithms, predicts drought occurrences and assesses 
their impacts, enhancing drought predictions and 
improving water management strategies (Popović et al., 
2025). Support Vector Machines (SVM) excel in 
recognizing high-dimensional data, especially in 
multispectral images, and surpass Multi-Layer 
Classification (MLC) in classification accuracy, especially 
with complex data. SVM's versatility in data management 
allows for simple adjustments for various contexts, 
making it suitable for various applications in land sensing, 
tree species categorization, land use analysis, and 
environmental change monitoring (Kadhum et al., 2020; 
Naghadehi et al., 2021). 

The rapid advancement of remote sensing technology has 
made it essential to develop efficient prediction methods, 
especially for managing large datasets of high-resolution 
images. The deep neural network (RNN) and Extended 
Elman Spiking Neural Network (ExESNN) efficiently predict 
the probability, severity, and extent of flooding. The 
system outperforms standard methods in accuracy, 
precision, recall, and execution time (Babu et al., 2024; 
Karthik et al., 2025). On the other hand, the integration of 
VANET-MARL enhances the system's adaptability, while 
the Archimedes algorithm for performance optimization 
and the Quantum Aggregate Convolutional Neural 
Network for Route Extraction (AOA-QDCNNRE) overcome 
the challenges of remote sensing imagery (Sundarapandi 
et al., 2024). In addition, the DTODCNN-CC technique 
offers a promising solution for accurate crop classification 
using remote sensing imagery, opening up potential 
applications in agriculture, food security, and 
environmental monitoring (Alotaibi et al., 2024). 

By addressing the limitations of traditional gauge 
observations and leveraging high-resolution geo-
environmental data, the model aims to provide more 
reliable insights into drought conditions, ultimately aiding 
in better management and mitigation strategies. This 
approach is particularly 

relevant in regions experiencing significant climatic 
changes, where accurate data is crucial for effective 
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decision-making (Shihab et al., 2020; Al-Hameedawi et al., 
2022; Adimalla and Taloor et al., 2020).  

The main objectives are: a) Analyze a range of 
environmental and social variables to identify regions 
most vulnerable to drought. b) assessing meteorological 
drought in Babylon city based on precipitation using SPI 
and 12 parameters at six meteorological stations for 1990-
2020, and c) Utilize the MCE model to assess drought risk 
by assigning varying weights to key factors, identifying 
regions most susceptible, and analyzing climate change's 
effects on future drought patterns.  

2. Materials and methods 

2.1. Geographic region of study 

The current research displayed the study region's 
geographic boundaries on the map. Babylon Province is 
located between 44°2'43" E and 45°12'11" E and 32°5'41" 
N and 33°7'36" N, and it is around 100 km south of 
Baghdad geographically. Babylon Province is characterised 
by relatively flat topography, with elevations generally 
ranging from 30 to 100 meters above sea level. The region 
features low-lying plains that are part of the 
Mesopotamian alluvial plain, which is formed by sediment 
deposited by the Tigris and Euphrates rivers. The gentle 
slopes and the proximity to these rivers contribute to the 
area's fertile soil, making it historically significant for 
agriculture. However, there are also some elevated areas 
and small hills, particularly towards the western and 
southern parts of the province, that can influence local 
climate conditions, including variations in rainfall patterns 
and temperature. 

the study region (Babylon Province, Iraq) covers an area of 
about 5,338 km2, we also conducted on a random sample 
from the governorates of the central region of Iraq: 
Baghdad, Wasit, Holy Karbala, Najaf and Babylon with 

total area of (23576.78km(, geographically situated 
(45°49'33.5" E – 44°2'54.78" E and 33°15'28" -31°18'22" S) 
with total area 23576.78 km2 is distinguished by an arid 
climate with elevated temperatures, particularly during 
summer, and scarce rainfall. The region is surrounded by 
the Euphrates River, one of the two main rivers in Asia 
and the Middle East. The region experiences extreme heat 
and dry weather, with temperatures approaching 50°C 
and relative humidity levels as low as 15%. The region 
receives about 160 millimeters of rainfall annually, 
primarily in winter, characterized by inconsistency. The 
region's climate is characterized by high temperatures, 

drought, and erratic rainfall. The city has evolved into a 
technological center, presenting opportunities for 
economic expansion and industrial advancement. 
Nonetheless, it undergoes considerable temperature 
variations, characterized by elevated summer 
temperatures in May, June, July, and August, and frigid 
winters in December and January (Issa et al., 2014; 
Aquastat, 2009). As shows in Figure 1. 

 

Figure 1. Location of the site is Babylon Province, Iraq, and a 

metrological station 

2.2. Available data 

The General Authority of Meteorology and Seismic 
Monitoring (GMSM) supplied monthly climate data, 
including rainfall (R) in mm, maximum and lowest 
temperatures (T) in °C, evaporation (Ev) in mm/day, wind 
speed m/s, and solar radiation W/m²). sources of 
information as illustrated in Table 1. and Table 2. 

3. The elements and procedures 

The current research included 11 variables for drought 
risk assessment: evaporation, annual rainfall (mm), land 
surface temperature (LST), relative humidity, normalized 
difference vegetation index (NDVI), normalized difference 
building index (NDBI), SPI, SMI, and rainfall (mm). 
Thematic maps were created for each of these variables. 
The maps that are generated from parameters other than 
the LULC parameter have been created utilizing pertinent 
data gathered from various sources. 

 

Table 1. Compilation of data and the sources of information utilized in the study 

Data Source Type Time/period 

Climate data: rainfall and 

evaporation min. and max. 

temperature 

General Authority of Meteorology and Seismic 

Monitoring (GMSM) 
Grid data 1990–2020 (30 years) 

Digital elevation model http://gdem.ersdac.jspacesystems.or.jp/search.jsp 
Satellite-borne 

sensor ASTER 

ASTER GDEM V 2.0, Sep. 

2014, (30 m) 

Multi-temporal satellite images 
NASA/USGS-Earth.Explorer 

(https://earthexplorer.usgs.gov/)\\ 

LT05 & LC08 (TM, 

OLI/TIRS, ETM) 

1990, 2000, 2010, 2020 

(30 m).  

* TM. = Thematic Mapper; OLI = Operational Land Imager; TIRS i = Thermal Infrared Sensor; SRTM i DEM = “Shuttle Radar Topography 

Mission Digital Elevation Model. ” 

 

https://earthexplorer.usgs.gov/)/
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Table 2. Details on Meteorological Selected Stations around the study area 

No. Station name Easting Northing Elevation Data availability (Year-Year) 

1 Ramadi 43° 18' 1" 33° 25' 14" 48.0 1990-2020 

2 Baghdad 58  "21 °'44  "18 '33  °54  32.0 1990-2020 

3 Karbala 44° 0' 32" 32° 36' 4" 34.6 1990-2020 

4 Hilla 44° 25' 36" 32° 28' 31" 33.0 1990-2020 

5 Najaf 44° 30' 18" 32° 0' 18" 46.4 1990-2020 

6 Diwaniyah 31° 57' 48" 44° 55' 28" 25.5 1990-2020 

 

The researchers in this study opted for supervised 
multispectral classification because it makes use of a 
priori probabilities acquired from ground data. The 
process of classification was carried out using two distinct 
algorithms: Support Vector Machine (SVM), and 
Maximum Likelihood Classification (MLC) using ArcGIS 
10.8. To find the spectral classes that represent the 
information classes, supervised classification first 
identifies the classes of information. Based on the ratings, 
these maps are categorized into different levels of 
drought danger. After that, the factors are graded based 
on how important they are for dividing the research 
region into distinct drought groups. A comprehensive 
approach is laid out in Figure 2. 

 

Figure 2. The flow diagram depicts the approach employed in 

the present study 

3.1. Analytical hierarchy process 

A conditional variable pairwise matrix was generated 
using the AHP method. One well-known way to deal with 
the complex problems caused by drought susceptibility is 
the AHP method (Sivakumar et al., 2021). The approach 
ordered parameters hierarchically for pairwise 
comparison, using a comparative scale of integer numbers 
ranging from 1 to 9. A 12 x 12 pairwise reference matrix 
was used to compare each unit's value, with remaining 
values reflecting the relative significance of remaining 
variables. The ranking of each parameter was established 
by the comparison matrix, relative weight matrix, and 
normalized main eigenvector (Saaty, 2008). The matrix of 
pairwise comparisons is used to estimate the relative 
priority of alternatives based on specific criteria. This 
process, known as synthesis, calculates a composite 

weight for each alternative, with the highest overall rating 
being the final solution Table 3. The normalized principal 
eigen vector was estimated by dividing column values 
with the relative weight matrix, and effect percentages for 
each thematic layer were calculated. The consistency ratio 
(CR) was used to check the accuracy of the relation, with a 
ratio less than 0.1 indicating an appropriate reciprocal 
matrix and a ratio greater than 0.1 indicating matrix 
modification (Kahkashan et al., 2016). The user's 
expertise, proficiency, and discernment, derived from 
previous experience, dictate the evaluation, fulfillment of 
the criteria, and decision-making process. Consequently, 
establishing the criteria and their rankings necessitates a 
logical technique. This subjective method requires it. This 
study utilized GIS for the geographical analysis of drought 
in the regional area. The Analytic Hierarchy Process (AHP i) 
was employed to construct pairwise comparison matrices 
and to calculate the weight factors for each parameter. 
This study calculates the weights and presents a list of 
them. The Table 1 delineates the assumptions for each 
criterion. 

( )    /Consistency ratio CR CI CR=
 

(1) 

where, CI refers to consistency index and RI is the random 
consistency index (Yahaya et al., 2010). 

3.2. Multi-criteria evaluation 

The amalgamation of GIS and MCDA has given rise to a 
novel study domain, referred to as GIS-MCDA. It 
harnesses both “hard” and “soft” data and is considered 
the most widely adopted method for LUSA today (Luan et 
al., 2021; Shihab et al., 2020). Multi-criteria analysis 
(MCA) begins with identifying a criterion, which can be a 
constraint or factor. This step requires extensive literature 
and expert knowledge. Criteria used in MCA come from 
different fields and have different units of measurement. 
To keep the tutorial simple, all criterions should be scaled 
or weighted into a common scale.  

A minimum of criterions is used to ensure suitability. This 
project applied a Multi-Criteria Approach (MCA), GIS-
based multicriteria decision analysis (GIS-MCDA) is one of 
the most widely applied techniques in land use suitability 
analysis. QGIS integrates GIS and (MCDA) for real-time 
data processing, layer management, customizable 
weighting, and dynamic visualization. It allows 
simultaneous application of MCDA methods on spatial 
data, assigning weights based on stakeholder priorities, 
and supports geospatial analysis tools like overlay and 
proximity analysis. The Tightly Coupled approach 
enhances MCDA capabilities without extensive 
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programming or external tools (Solaimani et al., 2023). It 
is pivotal that planners and analysts in the developing 
world have adequate support in conducting such analysis. 
Using Annual rainfall, Land Surface Temperature (LST) and 
Normalised Differenc Vegitation Index (NDVI) to assess 
the occurrence and spatial distribution of drought in 
Babylon city. Ultimately, Land Use and Land Cover 
Classification (LCLU) was employed to assess the impact of 
Precipitation (P) and NDVI. This strategy facilitates the 
organization and analysis of intricate decisions by 
prioritizing the significance of each variables within the 
study environment as Figure 3 

The subsequent approach was utilized to construct this 
model:  

(a) Identifying and choosing variables that signify drought 
intensity in the study area.  

(b) Processing of distinct parameters in ArcMap.  

(c) Evaluation and allocation of weight values to factors  

(d) Reclassifying and evaluation of research variables  

(e) Estimation of drought prevalence (pattern and 
strength)  

(f) Validation of the 'MCE' model in the aforementioned 
section (e) 

In this study, two intelligent methods, namely Support 
Vector Machine SVM and Multi-Criteria Evaluation 
(MCE)were used to extract the drought vulnerability map 
of the central part of Iraq. Numerous studies have sought 
for possible groundwater zones by combining (GIS) and 
resource selection (RS) with multi-criteria decision-making 
analysis (MCDMA). 

3.3. NDVI, NDMI, LST, and NDWI 

The NDVI is a commonly utilised vegetation index in 
studies on the environment., based on the reflections of 
plant cell structures. Healthy vegetation reflects more NIR 
radiation, while less in the red region. The greener a plant, 
the greater its reflectance, distinguishes surface materials 
(Wolff et al., 2021)]. NDVI is calculated for each image, 
regardless of the presence of red and “near-infrared” 
wavelength bands. NDVI images range from -1 to +1, with 
-1 indicating saturated water. And +1 signifies healthy 
vegetation. the NDVI for each image was calculate, 
regardless of the presence of red and near-infrared 
wavelength bands (Alwan et al., 2020; Sresto et al., 2021).  

( ) ( )    /    NDVI NIR RED NIR RED= − +
 

(2) 

The most severe drought was observed in the most 
districts, as indicated by the Land Surface Temperature 
(LA).  

( ) ( )   –   /    NDWI NIR Green NIR Green= +
 

(3) 

Since it computes using (NIR) and (SWIR) reflectance, it is 
responsive to variations in the amount of water vapour 
and porous mesophyll within plant canopies. (Kahkashan 
et al., 2016). The NDMI index was employed to ascertain 
the moisture content in plants, calculated using equation 
(4). This measure is valuable for evaluating plant vitality 

and moisture levels, aiding in the management of 
agricultural resources as equations (Gaikwad et al., 2022;  
Ojeda et al., 2021). 

( ) ( )  4  5 /  4  5NDMI Band Band Band Band= − +  (4) 

The NDBI was utilized to identify built-up or urban regions 
(Grigoraș and Urițescu, 2019). as equation below: 

( ) ( )   –  /   NDBI SIWR NIR SIWR NIR= +
 (5) 

LST denotes the radiation skin temperature of the 
terrestrial surface, ascertained by a distant sensor. It is 
significantly contingent upon the measured surface, 
encompassing albedo, vegetation cover, and soil 
moisture. Factors like rooftops, forests, and agricultural 
areas significantly influence the surface temperature. LST 
is often measured using remote sensing satellites for 
large, quick, and cost-effective measurements. The LST 
was generated from Landsat 8 thermal band (Band 10) (Al 
Kafy et al., 2020)(Grigoraș and Urițescu, 2019).  

 

Figure 3. Flowchart for the present model 

Conversion to Top-of-Atmosphere (TOA) Radiance 

( ) ( )( )–  /  –  2PV NDVI NDVI min NDVI max NDVI min=
 (6) 

Where: 

L(λ): TOA spectral radiance 

ML: Radiance multi-plicative band (from MTL txt) 

AL: Radiance add band #10 (from MTL txt) 

Oi: correction value (for Landsat 8 Band#10 its = 0.29) 

Conversion to Top-of-Atmosphere (TOA) Brightness 
Temperature 

( )

2
 – 273.153

1
1

K
BT

k
ln

L 

=
 

+  
 

 

(7) 
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Table 3. Partial scores for each parameter based on the severity of the drought 

S. No. Parameter Range value Weight Ranks 

1 NDMI 

0.3548 - 0.6403 

0.6403 - 0.6787 

0.678 - 0.7291  

0.7291 - 0.7939 

0.7939 - 0.9666 

0.243 

4 

3 

2 

1 

2 ELEVATION 

0 - 16.768       

16.76 - 20.75 

20.75 - 25.73 

25.73 - 31.70 

31.70 - 85 

0.0641 

1 

2 

3 

4 

3 Annual rainfall (mm) 

70.496 - 77.883  

77.883 - 82.270  

82.270 - 85.7330  

85.733 - 90.465 

90.465 - 99.931 

0.25 

4 

3 

2 

1 

4 LST 

23.467 - 31.693  

31.693 - 36.275  

36.275 - 39.502 

39.50 - 42.626  

42.626 - 50.019 

0.0693 

1 

2 

3 

4 

5 HUMIDTY 

2,168.7 - 2,443.8 

2,443.8 -2,648.1 

2,648.1 - 2,785.6 

2,785.6 - 2,935.7 

2,935.7 - 3,231.6 

0.032 

4 

3 

2 

1 

6 NDVI 

-0.7304- -0.1500 

-0.1500 - -0.0149  

-0.0149 - 0.10012  

0.10012 - 0.1901 

0.1901 - 0.545 

0.3905 

4 

3 

2 

1 

7 Evaporation 

70.3193 - 76.320 

76.32001 - 82.32 

82.3206 - 88.321 

88.3213 - 94.321 

94.321 - 100.32 

0.021 

1 

2 

3 

4 
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* Weights are calculated using eigenvalue method 

* Mild drought—1, Moderate drought—2, Severe drought—3 and Extreme drought—4 

 

8 NDBI 

0.96666 0.7963 

0.79631 - -0.73153 

-0.7315 3-0.68114- 

0.68114- -0.6451 

-0.64515 - -0.35483 

0.1574 

4 

3 

2 

1 

9 SMI 

0.35483 - 0.64035 

0.64035 - 0.6787 

0.6787 - 0.72913 

0.72913 - 0.7939 

0.7939 - 0.9666 

0.0282 

4 

3 

2 

1 

10 SPI 

-0.10173 - 0.02390  

0.02390 - 0.14953  

0.149537 - 0.2751 

0.2751 - 0.4008  

0.40081 - 0.5264 

0.0271 

1 

2 

3 

4 

11 LULC 

Waterbodies 

Vegetation 

Built _up_ Area 

Agricultural 

Baer land 

0.041 

1 

2 

3 

4 

12 Slope (degree) 

1.1483 – 0 

2.1326 – 1.14835 

6.2339 – 3.60913 

3.609 – 2.1326 

41.833 – 6.2339 

0.0169 

1 

2 

3 

4 
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Where: 

BT: Top of Atmosphere brightness temperature Co 

L(λ): TOA spectral radiance K1& K2 constant for band#10 

Normalized Difference Vegetation Index (NDVI) 

Land Surfece Emisivity (LSE) 

( ) ( )( )–  /  –  2PV NDVI NDVI min NDVI max NDVI min=
 

(8) 

5. Land Surface Temperatures (LST)= 

( ) ( )( )   /  1   *  /  2  * LST BT BT C ln E= +
 

(9) 

Where: 

BT:  Top of Atmosphere brightness Temp.  

λ: Wavelength of emitted radiance E: Land Surface 
Emisivity h: Plaink’s constant = 6.626* 10-34Mk s: 
Boltzmani constant = 1.38*10-23JK c: velocity of light = 
2.998*108m/s 

 

 

Figure 4. Thematic layers for drought analysis: NDVI, NDMI, NDBI, and LST 

 

Figure 5. Thematic layers for drought analysis: SMI from 1990-2020 
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4. Weighted overlay analysis 

The weighted overlay approach is a lucid and effective 
technique for assessing probable drought risk areas. 
Twelve environmental element maps were utilized to 
assess drought severity. Map depicting the zonation of the 
research area. The factors, organized by relevance, were 
awarded a numerical value on a scale from 1 to 5. The 
weights and grades were assigned to the classes of the 
factor. Increased weights and ranks signify a greater 
impact on drought events. To generate the drought risk 
zone map, these features were overlaid as thematic layers 
in GIS using the weighted overlay method methodology 
(Word of Mouth). The drought map was ultimately 
generated by multiplying all parameters by their 
corresponding weights. The drought map was categorized 
into five zones: No drought, Mild drought, Moderate 
drought, Severe drought, and Extreme drought.  

1

n

i

D Tj di
=

= 
 

(10) 

where, Tj denotes the weights of each parameter 
multiplied to the drought parameters (di). 

5. Results and discussion 

5.1. NDVI, NDMI, LST, and NDBI 

Nevertheless, the “Normalized Difference Vegetation Index” 
(N) indicates that the dearth was uniformly distributed 
throughout the area of inquiry. In order to make a more 
well-informed decision during a dearth assessment, a 
multi-criteria approach that integrates pertinent 
parameters must be implemented.  

A lack of water can affect the plant canopies during a 
drought, this can severely influence total plant 
development, resulting in reduced agricultural yields in 
farming regions. Identifying plant water stress 
preliminarily aids in averting such outcomes. Figure 4 
Thus, it functions as a more effective indication of plant 
water stress.  

5.2. Soil moisture index SMI 

The most crucial element in agriculture for determining a 
drought indicator is soil moisture (Jasim et al., 2024). 
However, remote sensing methods improve soil moisture 
measurements in many regions. We use the Index of Soil 
Moisture (SMI) to assess drought severity, dividing it into 
"no drought" and "extreme drought" categories (Jasim et 
al., 2024). The SMI was calculated for the study area in 
June 1990, 2000, 2010, and 2020, using the drought 
function to predict the agricultural drought in those years. 
The statistics are appropriate for forecasting agricultural 
dryness, as a genuine drought transpired in the region 
from March to July. the conclusive SMI map was derived, 
also known as the agricultural drought map, All SMI 
operations were performed with ArcGIS 10.8 software as 
shown in Figure 5. 

5.3. Elevation, aspect, slope and curvature 

The supply of water is impacted by terrain altitude, 
therefore digital elevation models are essential for 
tackling climate change and managing emergencies. The 
research utilized SRTM DEM dataset with 30-meter 

resolution from USGS, indicating higher altitudes in the 
northern area and lower elevations in the southern 
region.  

Slope to clarify its role as a modifier rather than an 
indicator of drought.that measures the angle of the 
ground surface relative to the horizontal plane. Water 
runoff is markedly greater across steeper terrain 
compared to the adjacent ground surface. Consequently, 
compared to steep plains, places with gentler slopes 
exhibit reduced sensitivity to droughts. Water runoff is 
considerably greater across steeper terrain compared to 
the adjacent ground surface. Consequently, compared to 
steep plains, places with gentler slopes exhibit reduced 
sensitivity to droughts (Jabbar et al., 2023)(Wolff et al., 
2021). The statistical results indicate that the slope in 
degrees spans from 0 to 6.25, with corresponding mean 
and (standard deviation values = 2.14). Aspect denotes 
the directional slope, with varied degrees of solar 
radiation that affect the hydrology of the research area. 
The hydrology has an effect on this parameter. 
Temperature, humidity, infiltration, runoff, and soil 
evaporation were the factors that were used to establish a 
value for each 

class. The elevation variation from (-42 to 85) meters 
signify geographical diversity, potentially resulting from 
geological activity or fluvial processes that shaped the 
topography.  

Curvature maps are important in identifying regions with 
significant surface runoff and in strategizing water 
distribution. values ranging from (-20.6 to 0) are 
predisposed to water accumulation, influencing water 
availability during arid periods, while values exceeding 
10.3 signify hilly regions; furthermore, Values approaching 
zero signify a more level terrain with a reduced gradient 
(Albana, 2023).  This data can be utilized to evaluate the 
dangers linked to drought and to formulate strategies for 
their mitigation Figure 6. 

5.4. Annual rainfall, SPI, and temperature 

The study collected mean annual precipitation data from 
all meteorological sites in the study area, importing it into 
ArcGIS software for processing. The SPI index, derived 
from precipitation data, ought to incorporate 
supplementary factors such as temperature, humidity, 
ETo, and sunshine duration for improved drought 
assessments. The data was used to produce a map 
showing the regional variation of precipitation levels 
across the region. The data also served as an indicator for 
aridity generating monthly Standard Precipitation Index 
values (SPI). Figure 7 represents the rainfall distribution 
map of the region. Rainfall in this area occurs from June to 
September due to monsoon winds, The temperature in 
these sub-tropical regions is moderate to high. The 
maximum temperature varies from 23°C to 50°C, while 
the minimum temperature goes from 18°C to 28°C. 
Additionally, spatial data on temperature and other 
meteorological variables, including evapotranspiration 
and relative humidity, are taken into account. 
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Figure 6. Thematic layers for drought analysis: a) elevation, b) slope, c) aspect and curvature 

 

Figure 7. Thematic layers for drought analysis: Rainfall distribution, Relative Humidity, Evaporation, SPI 

Table 4. Summary of LULC analysis from 1990-2020 

Class color 1990 sq km 2020 sq km change sq km 1990% 2020% percentage change % 

water bodies 648.53 736.63 88.11 2.9196 3.316 0.3966 

built -up-area 2058.29 6259.00 -4200.71. 28.1770 9.266 -18.9109 

Vegetation 5113.96 3697.50 -1416.46 23.0222 16.646 -6.3767 

Agriculture 7273.81 13232.11 5958.30. 32.7455 59.569 26.8233 

Bare land 2917.84 2488.60 -429.24 13.1357 11.203 -1.9324 
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5.5. LULC use SVM model 

The main way to get information about different forms of 
land cover from remotely sensed pictures (RS) is by 
classification, which turns the data into land cover 
classifications with their own unique bio geophysical 
functions (Jasim et al., 2024; Jasim et al., 2024). Digital 
maps are the initial stage in creating a database 
containing all location measurements and information 
(Jasim et al., 2018; Kadhum et al., 2023). The study 
utilized machine learning algorithms to classify land cover 
in the Babylon Province and surrounding area, evaluating 
and selecting the best algorithm based on accuracy 
assessment matrices. Satellite images from Landsat-5 TM 
for 1990 were used, and ArcGIS 10.8 and ENVI 5.3 
software were used to detect five land cover classes: 
Water Bodies, Built-Up Area, Agriculture and Bare Land. 
SVM is a highly accurate class recognition algorithm, 
particularly in complex data or non-linear boundaries. It 
outperforms other classification algorithms, particularly 

Random Forest, in high-dimensional datasets like remote 
sensing (Statnikov et al., 2008). SVM can adjust class 
weights for imbalanced classes, ensuring 
underrepresented classes are not biased. It handles high-
dimensional data well, making it an excellent choice for 
complex data. SVM can be combined with Random Forest 
to improve overall performance, enhancing classification 
accuracy (Adugna et al., 2022). The results from the SVM 
technique had the most perfect accuracy out of the five 
classification algorithms used. Cultivated water comprises 

3.32%, Built-up Land comprises 14.20 % of the area, 

Vegetation16.65 % of the area, Barren Land comprises 

11.20%, and Agricultural Land comprises 59.57%. 

Consequently, due to its perceived sensitivity to drought, 
the agricultural group has the highest numerical weight 
value. As Table 4, the Thematic layers of LULC for drought 
analysis from 1990-2020 are shown in Figure 8. 

 

 

Figure 8. Thematic layers of LULC for drought analysis from 1990-2020 

 

5.6. Development of ‘MCE’ model 

This work introduces a “multi-criteria decision-making 
(MCDM)” approach for generating an integrated Drought 
Vulnerability Assessment (DVA) map utilizing the Analytic 
Hierarchy Process (AHP) and geospatial methodologies. 
The proposed model for drought assessment uses geo-
environmental parameters from ground-based datasets 
and satellite products. However, gauge observations 
exhibit discontinuity and low spatial resolution. Studying 

drought caused by major climatic changes in this region 
requires trustworthy, high-resolution data. Consequently, 
it is essential to comprehend the gravity and impacts of 
this drought in the research region. This research intends 
to investigate the incidence within the given framework of 
relevance. The regional variability of drought in Babylon.  

The methodology was implemented in the study area, 
yielding an effective drought map. Figure 9 displays the 
results of assessing the drought monitoring model's 
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performance before it was created, using the Multiple 
Resolution Analysis (MCDA) method in QGIS. The figure 
includes the model accuracy measure, showing the 
percentage of correctness and Kappa values across 
several categories. The model correctly classified 42.62% 
of the cases, as indicated. Kappa value reflects the 
model’s agreement with actual conditions. The displayed 
values (0.17563) indicate a relatively poor agreement 
between predictions and reality, indicating the need for 
model improvement. The horizontal lines in the graph 
show the different levels of Kappa, which helps in 
evaluating the effectiveness of the model before 
modifications. On the other hand, Figure 10. reflects the 
results after the model was developed, showing a 
significant performance improvement. The correctness 
percentage reaches 100%, indicating that all monitored 
data were correctly classified, reflecting the effectiveness 
of the model after modifications. The Kappa value is 1.0, 
indicating a perfect fit between the predictions and the 
actual drought conditions. This shows that the model has 
achieved a high level of accuracy and reliability in 
predicting drought conditions in the region. These results 
show how important it is to have enough geographic and 
numerical data to improve drought monitoring models. 
This makes the results from using MCDA more reliable 
when evaluating environmental conditions. Several 
studies, including Mishra and Singh, have employed 
MCDA to examine the effects of drought on agriculture 
(Mishra and Singh, 2011). The results showed a significant 
improvement in the accuracy of the models after 
improving the input data or analysis models. For example, 
before improving the model, the accuracy rate was 
around 50%, but after the modifications, the percentage 
increased to 90%, similar to what was achieved in your 
research. The images above show how the model's 
performance has improved from poor to excellent 
because of research advancements. This highlights the 
value of using spatial analysis tools like QGIS in 
environmental studies. When looking at Figure 9 and 10 
alongside other research using multi-criteria analysis 
(MCDA) for drought monitoring or environmental risk 
assessment, Bai et al. also used the kappa value to check 
how well their model matched real data. Before the 
improvements, the kappa value ranged from 0.2 to 0.6, 
suggesting a moderate fit (Liu et al., 2020). After applying 
the improvements, the study reported a kappa value of up 
to 0.85, reflecting a significant improvement in the 
model's reliability. In their research, they achieved an 
ideal kappa value (1.0) after the improvement, reflecting a 
remarkable superiority in performance. In addition, many 
researchers, such as Zhao et al. (2017), emphasized the 
importance of geographic data as a key indicator for 
drought assessment. Their results showed that using 
multi-source data can enhance the accuracy of models, 
which is consistent with their research that emphasized 
the importance of quantitative and geographic data. 
Other studies, like Mao et al. (2020), have combined 
MCDA with other models, including neural network 
analysis, to enhance predictions (Noureldeen et al., 2020). 
This suggests the potential for expanding your research by 

incorporating additional methods to improve accuracy. 
The comparison shows that your research results are in 
line with general trends in the literature on drought 
monitoring and environmental risk assessment. Your high 
accuracy and strong kappa value from using the MCDA 
approach show great success. This improves the model's 
reliability and highlights the importance of the input data. 
These results support the need to use multiple analysis 
methods to improve our understanding of complex 
environmental conditions.  

 

Figure 9. Evaluation of Drought Monitoring Performance Using 

Multi-Resolution MCDA in QGIS" before developing (by 

researcher) 

 

Figure 10. Evaluation of Drought Monitoring Performance Using 

Multi-Resolution MCDA in QGIS" after developing (by 

researcher) 

The research indicates that AHP and GIS are applicable for 
assessing drought risk, facilitating drought management 
strategies and diminishing crop resilience. This research 
created twelve pairwise comparison matrices to identify 
locations at risk of drought. The matrices were founded 
on criteria, sub-criteria, and elements, including climatic, 
socio-economic, and soil-land usage factors. After ranking 
the options according to the parameters, we used the 
eigenvalue method to find the weights of each matrix. A 
synthesis technique was employed to determine overall 
priorities, wherein each ranking was multiplied by the 
priority of its corresponding criterion or sub-criterion and 
summed to obtain its ultimate priority. This study 
developed twelve pairwise comparison matrices: one for 
the criteria related to the goal, presented in Table 5, and 
eight for the sub criteria. In the analysis presented in 
Table 5, the weights assigned to various parameters are 
important because they determine their significance in 
assessing drought vulnerability. The weights reflect the 
relative importance of each parameter in influencing 
drought conditions in the study area. The weights 
assigned in Table 5 reflect a thoughtful prioritization of 
parameters based on their relevance to drought 
assessment. High weights for NDVI and NDMI, 0.423 and 
and0.251 respectively, indicate their critical roles in 
understanding vegetation health and moisture availability, 
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which are essential for evaluating drought conditions. In 
contrast, parameters like slope and elevation, while 
important for contextual understanding, are less directly 
related to immediate drought impacts, justifying their 
lower weights. Elevation can impact precipitation patterns 
and temperature, while slope affects runoff; however, 
their influence is less direct compared to parameters like 

NDVI and NDMI. Their roles are more about 
contextualizing the landscape rather than directly 
measuring drought severity. This nuanced approach 
allows for a more accurate and comprehensive 
assessment of drought vulnerability in the study area. 

 

Table 5. The chosen parameters for the drought delineation paired-wise comparison matrix 

Factor NDVI NDMI NDBI LST elevation SMI SPI Slope Eigenvalue (Eg) weight 

NDVI 1 3 5 8 7 9 9 8 5.21 0.390 

NDMI 0.333 1 3 7 4 8 7 8 3.25 0.243 

NDBI 0.2 0.333 1 5 3 7 6 9 2.099 0.157 

LST 0.125 0.143 0.2 1 2 5 3 5 0.924 0.069 

elevation 0.143 0.25 0.333 0.5 1 4 3 4 0.855 0.064 

SMI 0.111 0.125 0.143 0.2 0.25 1 2 2 0.375 0.028 

SPI 0.111 0.143 0.167 0.333 0.3333 0.5 1 2 0.361 0.027 

Slope 0.125 0.125 0.111 0.2 0.25 0.5 0.5 1 0.261 0.019 

Total         13.344 1.00 

Number of 

Criteria 
8          

C. I. = 0.116  

R. I. = 1.41  

C. R. % =    8.261              Consistency OK  

Table 6. Pairwise comparison matrix for sub-criteria concerning climatic conditions 

Factor Annual Rainfall Relative Humidity Evaporation LULC Eigenvalue (Eg) weight 

Annual Rainfall 1.000 3.000 5.000 8.000 3.310 0.557 

Relative Humidity 0.333 1.000 3.000 7.000 1.627 0.274 

Evaporation 0.200 0.333 1.000 5.000 0.760 0.128 

LULC 0.125 0.143 0.200 1.000 0.244 0.041 

Total     5.941 1.00 

Numberof Criteria = 4      

C. I. = 0.067      

R. I. = 0.890      

C. R. % = 7.56 Consistency OK    

 

The first sub-criteria matrix, concerning climatic factors 
(annual rainfall, monthly evaporation, LULC, and 
humidity), is provided in Table 5. The matrices for the sub-
criteria under socio-economic factors and soil-land use are 
displayed in Table 6. Ultimately, twelve comparison 
matrices were computed for the four possibilities 
concerning all parameters. In Table 4, the criteria on the 
left are compared sequentially against each criterion at 
the top to ascertain which is more significant in relation to 
the objective of identifying drought risk zones. The 
synthesis technique was employed to determine the 
overall priorities; specifically, each ranking must be 
multiplied by the priority of its corresponding criterion or 
sub-criterion, and the resultant weights for each choice 
must be summed to obtain its ultimate priority. Weight 
values are absolute numbers between zero and 100% 
assigned to study indices, ensuring a 100% sum of weights 
for all parameters. They are often based on expert 
knowledge, analytical procedures, and literature.  

The results of the Pearson correlation coefficient 
calculation are displayed in Table 7. NDMI, NDVI 
elevation, precipitation LST, Relative humidity, 
evaporation, and Aspect were determined to have high 
correlations with each other after comparison. To 

measure the variables for correlation, this research makes 
use of ratio as well as interval scale patterns.  

Figure 11 presents a detailed spatial analysis of drought 
severity within the study area. The map clearly delineates 
various regions classified according to their drought 
conditions. Notably, the southwestern and scattered 
northeastern sections are experiencing moderate drought 
conditions, indicating that these areas are facing 
significant water stress, which can adversely affect 
agriculture, local ecosystems, and water supply. The 
northwest region stands out as the most severely 
affected, marked by intense drought conditions. This 
concentration of severe drought raises alarming concerns, 
as it suggests that a substantial portion of the landscape is 
unable to support vegetation and agricultural activities. 
The map’s color gradient effectively communicates the 
severity of drought, with darker shades indicating areas of 
extreme drought risk. Furthermore, the majority of the 
research area is under substantial drought stress, which 
could have cascading effects on local communities and 
economies. The depiction of drought severity in this figure 
underscores the urgency for immediate and targeted 
interventions. Policymakers must recognise the 
vulnerability of these regions to devise effective strategies 
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for water management and resource allocation Figure 12 
complements the information presented in Figure 11 by 
quantifying the percentage of land areas affected by 
different drought categories. This bar graph succinctly 
breaks down the distribution of drought conditions. A 
serious drought is affecting the area primarily. With about 
59.5% of the region experiencing severe drought and 
acute water shortages for the populace, this degree of 
drought might lead to significant crop loss. If these 
problems persist, regional and municipal leaders must act 
quickly. Although moderate drought is less prevalent than 
severe drought (16.1%), it nevertheless represents a 
crucial area that has to be monitored and perhaps 
addressed. Implementing water conservation methods is 
necessary due to the potential negative impact of this 
level of drought on agricultural output. Still, many areas 
hit hard by the drought (11.2%) were in a precarious 
situation that might get worse quickly if nothing is done. It 
is important to note that climate variability may worsen 
these conditions, even though only 9.5% of the area is 
considered to be under mild drought. Given that only 
3.3% of the region's landmass was unaffected by the 
drought, effective drought control measures are crucial. 
The analysis underscores the necessity for policymakers 
and planners to develop effective strategies to mitigate 
the impacts of drought, particularly in the most affected 
regions given the projections of climate change, which are 
likely to exacerbate these conditions, proactive measures 
are essential. Strategies may include improved water 
conservation techniques, investment in drought-resistant 
crops, and the implementation of policies aimed at 
sustainable land use. The figures serve as a poignant 
illustration of the urgent need for action to address the 
challenges posed by drought in this vulnerable region. 

The current drought analysis was conducted utilising AHP 
and GIS, offering valuable insights on drought monitoring 
in Babylon city and its vicinity. The study relies heavily on 
the researcher's discretion and employs GIS to detect 
drought conditions based on twelve important 

parameters; it also handles problems with parameter 
management and the spatial variability of the input data 
(Naem et al., 2016; Alraheem et al., 2022). The findings 
provided more evidence that central and southern Iraq 
would be the hardest hit by future droughts. Politicians in 
Iraq can use the aforementioned findings to gauge the 
likelihood of future droughts. Creating effective 
adaptation plans to tackle climate change could also 
benefit from this.  

 

Figure 11. Distribution of the research area's susceptibility to 

drought by space 

 

Figure 12. Area proportion of drought categories for the study 

area 

 

Table 7. The Pearson correlation coefficient quantifies the link between different variables 

 NDMI elevation perception LST humidity NDVI evaporation Aspect slope 

NDMI 1 0.1769 -0.022 -0.787 -0.039 0.667 -0.022 -0.031 -0.189 

elevation  .1 0.638 -0.244 -0.238 0.258 0.638 0.014 0.046 

perception   1 -0.103 -0.096 -0.026 1.000 0.005 0.004 

LST    1 0.055 -0.555 -0.103 0.029 0.149 

humidity     1 0.005 -0.096 0.005 0.009 

NDVI      1 -0.026 0.023 0.127 

evaporation       1 0.005 0.004 

Aspect        1 0.062 

slope         1 

 

6. Conclusion 

The research employs AHP and GIS to evaluate drought 
risk in Babylon City and its adjacent regions in Iraq. The 
study found a significant drought in the southwestern 
region, particularly in the northwestern section, which 
affected 70% of the territory with severe drought 
conditions. The study area is devoid of mild drought 

conditions. The AHP and GIS model of drought risk, 
assisting decision-makers, investors, and stakeholders in 
improving water resource management and spatial water 
conservation in arid and semi-arid areas. 
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