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Abstract 17 

The carbon abatement effects of digital finance (DF) have been widely studied, but existing studies 18 

have neglected its impact on the marginal carbon abatement cost (CMAC). The paper uses the SBM 19 

model to measure the CMAC of 264 cities in China for 2011-2021 and then constructs a two-way 20 

fixed effects model and a panel spatial model to explore the nexus between DF and CMAC. The 21 

findings are as follows. Firstly, the magnitude of change in CMAC shows an N-shaped trend of 22 

increasing, decreasing, and rising over the sample period. Secondly, DF can decrease CMAC, which 23 

is mainly achieved through three paths: optimizing industrial structure, promoting green 24 

technological innovation, and improving green production efficiency. Thirdly, the suppression of 25 

CMAC by DF is better when the cities belong to eastern, northeastern, central, non-resource-based, 26 

and large cities. Fourthly, DF has negative spatial spillover effects on CMAC, which helps decrease 27 

CMAC in local and neighboring cities. These findings can help tap the green value of DF and 28 

formulate targeted regional carbon emission reduction policies. 29 

Keywords: digital finance; marginal carbon abatement cost; shadow price; spatial Durbin model 30 

1. Introduction 31 

Realizing carbon emission reduction at minimal economic costs is a key concern of national 32 

governments. To shoulder its responsibility as a major country, the Chinese government attaches great 33 

importance to carbon emission reduction. It has taken achieving carbon peaking and carbon neutrality 34 

as its national strategic goals (“dual carbon goals”) and has undertaken many measures to push for 35 

greenhouse gas emissions reduction. For instance, it has established carbon emissions trading markets, 36 

increased the proportion of renewable energy use, vigorously developed carbon capture and storage 37 

technologies, and implemented green financial and carbon tax policies. However, for developing 38 

countries, large-scale carbon reduction must inevitably come at the expense of a certain level of 39 

economic output, the so-called marginal carbon abatement cost (CMAC). Based on data from the 40 

National Bureau of Statistics, China emitted approximately 11.477 billion tons of carbon dioxide 41 

(CO2) in 2022, accounting for approximately 28.87% of the total global CO2, and it is the world's 42 

largest carbon emitter. Carbon emission reduction efforts are under enormous pressure in China. 43 

Consequently, how to reduce CMAC and balance between energy saving, emission reduction, and 44 

economic growth has been an urgent proposition for Chinese economic development. 45 

Finance plays a vital role in pushing the process of economic greening and decarbonization 46 

(Razzaq and Yang, 2023). With the booming development of information technologies (IT), 47 

traditional finance and IT continue to converge, enabling digital finance (DF) to be the key driver for 48 

enhancing the quality of economic development. DF is a new financial form that applies digital 49 

technologies to provide financial services. Compared with traditional finance, DF can overcome time 50 

and space restrictions and benefit green economic development with its advantages of low-threshold 51 

financing, financial service inclusiveness, service scope accessibility, and mobile payment 52 

convenience (Guo et al., 2023; Liu et al., 2023). From the perspective of inclusiveness and 53 

technicality, DF can reduce production, transaction, and operational costs involved in economic 54 

activities (Sun et al., 2023) by reducing information asymmetry in financial markets and mismatches 55 

in capital factor allocation processes (Razzaq and Yang, 2023). From the perspective of green 56 

attributes, DF can help mobilize the whole society to engage in energy saving and carbon reduction, 57 

such as advocating green production by corporates and assisting consumers to form green 58 

consumption concepts. Then, it will help improve green economic benefits (Li et al., 2023; Zhao et 59 
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al., 2023). However, while DF brings many favorable effects, it also expands the corporate scale and 60 

consumption scale, which may have adverse effects on carbon reduction, energy saving, and 61 

environmental governance (Cheng et al., 2024). This makes the relationship between DF and low-62 

carbon development effectiveness unclear. The question of how DF affects CMAC remains 63 

unanswered in academic studies. Especially in the constraint of the “dual carbon goals”, CMAC is a 64 

critical factor in determining the sustainability of large-scale carbon reductions. Exploring the impact 65 

of DF on CMAC is highly significant in determining whether China can achieve carbon peaking and 66 

neutrality at lower economic costs.  67 

Existing studies related to GF and CMAC are mainly based on the following three points. Firstly, 68 

the measurement of CMAC. CMAC is the economic cost of reducing 1 unit of CO2 (Cui et al., 2022; 69 

Wang et al., 2022a). It is difficult to obtain directly in actual production. Shadow price measures the 70 

expected output sacrificed or inputs added by decreasing 1 unit of pollutant (Lee, 2005), it can reflect 71 

trade-offs between expected and unexpected outputs (Färe et al., 1993). Hence, shadow price is 72 

commonly used to measure CMAC. Specifically, CMAC is obtained by constructing the distance 73 

function and applying dyadic theory, and its estimation is mainly by parametric and non-parametric 74 

methods. The parametric method describes the distance function by presetting specified functional 75 

forms, then uses parametric linear programming or stochastic frontier model estimation to obtain the 76 

CMAC. The non-parametric method applies the Data Envelopment Analysis (DEA) method for 77 

constructing the production frontier on the output distance function. Then, it estimates the CMAC 78 

according to the duality theory. DEA was first raised by Charnes et al. (1978), but it failed to consider 79 

non-zero slack of inputs or outputs. Tone (2001) introduced the Slack Based Measure (SBM) method 80 

to fill this gap. Subsequently, Färe and Grosskopf (2010) further proposed a more universal non-radial 81 

and non-oriented directional distance function for measuring efficiency. Notably, the parametric 82 

method may not be compatible with the actual situation because it needs to preset the functional form. 83 

Thus, the paper will use the non-parametric method to measure CMAC.  84 

Secondly, the impact of DF on carbon emissions. From the aspect of promoting carbon emission 85 

reduction, DF can trace the carbon footprint with the help of intelligent optimization systems, green 86 

financial tools, etc., thus accelerating the commercialization of low-carbon technologies and 87 

promoting consumption changes (Li et al., 2023; Razzaq and Yang, 2023). This helps to optimize 88 

supply chain management, improve transport and logistics routes, reduce high-carbon activities, 89 

enhance environmental governance capacity (Guo et al., 2023), promote industrial structure 90 

upgrading (Zhong et al., 2023), etc., and ultimately help to reduce carbon emissions (Cai et al., 2024a; 91 

Zhao et al., 2023). From the aspect of increasing the potential risk of carbon emissions, DF can 92 

increase the energy consumption of digital infrastructure, stimulate high carbon demand, and expand 93 

the scale of production expansion (Guo and Tu, 2023), thus pushing the overconsumption of high-94 

energy-consuming products (Cheng et al., 2024). Ultimately, this leads to an increase in pollution 95 

emissions. In summary, the impact of DF on carbon emissions is characterized by an obvious two-96 

way dynamic game, and its net effect depends on the trade-offs among the choice of technological 97 

routes, the design of policy frameworks, the speed of industrial structural transformation, the scale 98 

effect, and so on. Therefore, the paper focuses on the impact of DF on CMAC. 99 

Thirdly, the methodology was used to explore the nexus between DF and low-carbon 100 

development. Existing literature mainly tested the correlation between DE and carbon emission 101 

reduction using econometric methods such as two-way fixed effects model (Li et al., 2023; Wu et al., 102 

2023), difference-in-difference model (Cao et al., 2021; Zhong et al., 2023), quantile regression 103 

model (Xu et al., 2023), non-linear threshold model (Bai et al., 2023), and spatial econometric model 104 
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(Wang and Guo, 2022; Zhao et al., 2023). Considering that the two-way fixed effects model can 105 

control for unobservable individual differences and time trends, reduce omitted variable bias, and 106 

facilitate accurately identifying the causal relationship between DF and CMAC, this method is used 107 

in the paper for the benchmark regression analysis. Based on the advantages that the spatial 108 

econometric model can capture interregional spatial spillover effects (e.g. technology diffusion, 109 

pollution transfer, etc.), make up for the inadequacy of the traditional model in ignoring geographic 110 

correlation, and facilitate revealing the indirect impact of DF on CMAC in neighboring regions, so 111 

the paper adopts this method to further analyze the spatial impact of DF on CMAC. 112 

The contributions are summarized as follows. Firstly, existing studies have mainly concerned 113 

the influence of DF on environmental performance (Cao et al., 2021), green economic growth 114 

(Razzaq and Yang, 2023), carbon emissions (Zhao et al., 2023), energy transition (Li et al., 2023), 115 

industrial green transition (Zhong et al., 2023), green technological innovation (Hao et al., 2023), and 116 

other related green development impacts. However, these studies have not yet established a 117 

framework for linking DF with green development costs. Therefore, the paper incorporates DF and 118 

carbon reduction costs into the same analytical framework for the first time and innovatively 119 

examines the relationship between DF and urban CMAC, which can fill the gaps in the existing 120 

studies. Secondly, existing studies have mainly discussed the role of policy preferences (Cui et al., 121 

2022), environmental regulation (Xu et al., 2022), regional integration (He et al., 2018), energy 122 

efficiency (Wang et al., 2017), energy consumption (Wang et al., 2024), carbon productivity (Wang 123 

et al., 2020), and differences in geographic location (He, 2015) on CMAC. However, these studies 124 

ignored the impact of financial development on CMAC. Consequently, the paper systematically 125 

reveals the mechanism of the role of DF on urban CMAC to improve the theoretical system of the 126 

influencing factors of CMAC, which can provide path references for the effective reduction of CMAC. 127 

Thirdly, the paper extends the heterogeneity analysis of the impact of DF on CMAC and captures the 128 

spatial spillover effects of DF on CMAC, thus providing differentiated guidance for lowering CMAC 129 

in cities with different characteristics. Given these, the paper takes 264 Chinese cities as samples from 130 

2011 to 2021. It adopts two-way fixed effects and spatial econometric models for studying the nexus 131 

between DF and CMAC, exploring the mechanism through which DF can act on CMAC. Then, the 132 

paper examines whether there exists a remarkable asymmetry in the influence of DF on CMAC from 133 

three major dimensions: geographic location, resource endowment, and scale of cities. 134 

The remaining sections are arranged as follows. Section 2 introduces the theoretical analysis and 135 

research hypotheses. Section 3 shows the research design. Section 4 reports the empirical results and 136 

analyses. Section 5 presents the research conclusions and policy implications.  137 

2. Theoretical analysis and research hypothesis 138 

In the digital era, DF has gradually become the core of financial development, which is the major 139 

form of providing financial services. It can contribute to overcoming the severe challenges of 140 

economic low-carbon transformation, thus providing opportunities for the faster realization of the 141 

“dual carbon goals”. On the one hand, DF can optimize all aspects of production, distribution, living, 142 

consumption, and investment, which is beneficial for increasing the matching degree of demand and 143 

supply for financial services and reducing resource mismatch problems. This can create good 144 

conditions for enhancing the quality of urban innovation, help optimize resource allocation and use 145 

efficiency, and thus improve environmental performance (Cao et al., 2021), which in turn helps reduce 146 

CMAC. On the other hand, DF supports the digital reform of corporates (Razzaq and Yang, 2023), 147 
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which facilitates the smashing of boundaries between industries and sectors and promotes the 148 

achievement of integrated and coordinated development between industries. This can encourage 149 

corporates in cities to disclose environmental information and technological progress actively (Liu et 150 

al., 2024), thus promoting the transformation of urban industries into knowledge-intensive and 151 

technology-intensive types, which consequently help to reduce CMAC. In summary, DF can create a 152 

favorable financial environment and promote economic growth. Specifically, DF can affect CMAC 153 

through the following three channels. 154 

Firstly, based on the circular economy theory, resources can be recycled, which helps to reduce 155 

pollution emissions (Huang et al., 2018). DF can promote industrial upgrading on the supply side and 156 

cultivate a low-carbon market on the demand side by reorganizing the direction of economic factor 157 

flows, thus forming a systematic carbon reduction pathway. Specifically, DF can use digital 158 

technologies to alleviate the problem of information asymmetry within and between industries, 159 

improve the ratio of the internal structure of primary, secondary, and tertiary sectors, enhance the 160 

quality of inter-industry aggregation, and contribute to the optimization of the industrial structure 161 

(Ren et al., 2023). This will improve the production efficiency of the whole society and lower the 162 

pollution control cost per unit of output. Meanwhile, DF can leverage big data and intelligent 163 

algorithms to allocate resources optimally (Zhao et al., 2023) and precisely match the financing needs 164 

of green projects. Thus, limited financial resources can be invested more in industries with high output 165 

benefits through tools such as data-based risk assessment models, intelligent matching platforms for 166 

climate investment and financing, and full carbon emission traceability systems. This can bring 167 

advantages such as lowering the transaction costs of information matching (Wang and Ma, 2024), 168 

reducing the proportion of high energy-consuming industries, and improving energy utilization (Li et 169 

al., 2023), thus making carbon reduction less difficult. Furthermore, DF can scientifically assess 170 

industries' risks (Zeng et al., 2025), innovate risk management tools, and enable environmental 171 

constraints to be imposed on upstream and downstream corporates through supply chain finance, 172 

thereby promoting the high-end, intelligent, and greening of industries. This can promote the dynamic 173 

adjustment of industrial structure (Zhang et al., 2025), enhance the resilience of the industrial chain, 174 

and help form the synergistic effect of emission reduction of the whole industrial chain, etc., which 175 

can help reduce the pollution emission per unit of output and decrease CMAC. 176 

Secondly, based on endogenous growth theory, technological progress can drive economic 177 

growth. Regarding technological progress, DF can effectively lower the financing threshold of the 178 

urban research and development (R&D) sector, which can help it overcome the financing difficulties 179 

previously constrained by the long R&D cycle and high investment risks (Cao et al., 2021). It will 180 

support the continuous R&D of technologies and promote the large-scale application of photovoltaic 181 

and energy storage technologies, thereby reducing the cost of technological innovation and enhancing 182 

urban innovation capacity. This will lower the difficulty of mitigating carbon emissions (Zou et al., 183 

2024) and help to create diminishing marginal cost effects. Meanwhile, DF can increase the active 184 

degree of the carbon trading market, expand the financing channels of corporates, reduce the 185 

distortion of capital allocation (Wang and Guo, 2022), and help guide the flow of capital to low-186 

carbon and environment-friendly corporates. Thus, it provides sustainable emission reduction power 187 

for corporates. This will stimulate the willingness of corporates to innovate and promote various types 188 

of corporates to increase capital investment in green technological innovation activities (Wen et al., 189 

2025), which will improve environmental performance, increase the efficiency of emission reduction 190 

investment, and promote the urban energy and low-carbon transition (Li et al., 2023). Moreover, DF 191 

can assist carbon accounting through digital payments, smart contracts, AI algorithms, etc., thereby 192 
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improving the financial position of urban corporates by reducing labor inputs, lowering overheads, 193 

and increasing sales revenues. This can support corporates in adopting low-carbon technologies to 194 

increase green innovation outputs and encourage them to invest in energy-saving equipment, thereby 195 

spreading business risks and compressing intermediate costs, generating long-term cost savings (Lu 196 

et al., 2023). 197 

Thirdly, based on the long-tail theory, the long-tail group is featured as small, numerous, and 198 

dispersed, with unique and more challenging needs to satisfy. DF can use digital platforms to expand 199 

the scope of its customer base, transform the original long-tail group into potential subjects, and 200 

absorb small amounts of funds from long-tail investors. Then, these funds are aggregated into a vast 201 

capital flow and applied to corporate development (Wang and Guo, 2022). This will generate more 202 

economic benefits while driving the expansion of the corporate production scale, thus making more 203 

funds available for investment in green production. Ultimately, this can help reduce the scale of 204 

resource consumption, balance the relationship between ecological environment and economic 205 

development (Wang et al., 2025), etc., which in turn reduces the CMAC. Meanwhile, DF can reduce 206 

consumers' purchasing costs and payment difficulties, which contributes to improving the experience 207 

of consumer services. This can accelerate residents' consumption decisions and tap their consumption 208 

potential, thus triggering an increase in the scale of consumption (Cheng et al., 2024). In recent years, 209 

increased consumer awareness of environmental protection has increased demand for green and low-210 

carbon products, increasing green production scale. This can trigger urban corporates' green and low-211 

carbon initiatives, further reducing CMAC. Besides, based on the optimal allocation of resources 212 

theory, DF can use digital technologies to accurately identify green and low-carbon projects and play 213 

the guiding, incentive, and supervisory roles of green credits to invest financial resources in green 214 

projects with potential. This can expand the scope of economic activities, reduce the waste of 215 

resources, and improve the efficiency of resource utilization, thus contributing to the expansion of 216 

the economic scale (Guo and Tu, 2023) and the improvement of high-quality economic development 217 

(Wu et al., 2024). It then benefits to reduce CMAC. 218 

Accordingly, the following hypotheses are formulated in the paper. 219 

H1: DF can reduce CMAC in Chinese cities. 220 

H2: DF can reduce CMAC in Chinese cities by exerting a structural effect. 221 

H3: DF can reduce CMAC in Chinese cities by exerting a technological effect. 222 

H4: DF can reduce CMAC in Chinese cities by exerting a green productivity improvement effect. 223 

3. Research design 224 

3.1 Measurement of CMAC 225 

The paper estimates the CMAC using the non-radial and non-oriented SBM model. There are 226 

three main steps. 227 

Firstly, let 𝑥 , 𝑦 , and 𝑏  respectively denote factor inputs, expected outputs, and unexpected 228 

outputs. Nonparametric linear programming for the sample containing K decision-making units 229 

(𝐷𝑀𝑈𝑜) is designed in equation (1). 230 

(𝜃∗) = 𝑚𝑖𝑛
1−

1

𝑀
∑

𝑠𝑚𝑜
𝑥

𝑥𝑚𝑜

𝑀
𝑚=1

1+
1

𝑍+𝐽
(∑

𝑠𝑧𝑜
𝑦

𝑦𝑧𝑜

𝑍
𝑧=1 +∑

𝑠𝑗𝑜
𝑏

𝑏𝑗𝑜

𝐽
𝑗=1 )

                                                 (1) 231 
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𝑠. 𝑡.

{
 
 

 
 

𝑥𝑚𝑜 ≥ ∑ 𝜆𝑘
𝐾
𝑘=1 𝑥𝑚𝑘 + 𝑠𝑚𝑜

𝑥

𝑦𝑧𝑜 ≤ ∑ 𝜆𝑘
𝐾
𝑘=1 𝑦𝑧𝑘 − 𝑠𝑧𝑜

𝑦

𝑏𝑗𝑜 = ∑ 𝜆𝑘
𝐾
𝑘=1 𝑦𝑗𝑘 + 𝑠𝑗𝑜

𝑏

𝑠𝑚𝑜
𝑥 ≥ 0, 𝑠𝑧𝑜

𝑥 ≥ 0, 𝑠𝑗𝑜
𝑥 ≥ 0, 𝜆𝑘 ≥ 0

                                          232 

𝑀, 𝑍, and 𝐽 respectively denote the numbers of 𝑥, 𝑦, and 𝑏. 𝜃∗ (0 < 𝜃∗≤ 1) represents the 233 

efficiency value of 𝐷𝑀𝑈𝑜 . 𝑠𝑚𝑜
𝑥   , 𝑠𝑗𝑜

𝑏   respectively represent potential reductions in input and 234 

unexpected output. 𝑠𝑧𝑜
𝑦

 means potential increase in expected output. 𝜆𝑘 denotes intensity variable, 235 

𝜆𝑘 ≥ 0 represents a constant return to scale production technologies.  236 

Secondly, the paper applies the Charnes-Cooper transformation (Wang and Feng, 2015; Wei et 237 

al., 2012) on equation (1) to obtain equation (2).  238 

max𝑢𝑦 𝑦𝑜 − 𝑢
𝑥𝑥𝑜 − 𝑢

𝑏𝑏0                                                       (2) 239 

𝑠. 𝑡.

{
 
 
 
 

 
 
 
 ∑ 𝑢𝑧

𝑦
𝑍

𝑧=1
𝑦𝑧𝑜 −∑ 𝑢𝑚

𝑥
𝑀

𝑚=1
𝑥𝑚𝑜 −∑ 𝑢𝑗

𝑏𝑏𝑗𝑜 ≤ 0
𝐽

𝑗=1

𝑢𝑥 ≥
1

𝑀
(1/𝑥𝑜)

𝑢𝑦 ≥
1 − 𝑢𝑥𝑥𝑜 − 𝑢

𝑏𝑏𝑜 + 𝑢
𝑦𝑦𝑜

𝑍 + 𝐽
(1/𝑦𝑜)

𝑢𝑏 ≥
1 − 𝑢𝑥𝑥𝑜 − 𝑢

𝑏𝑏𝑜 + 𝑢
𝑦𝑦𝑜

𝑍 + 𝐽
(1/𝑏𝑜)

 240 

Where 𝑢𝑚
𝑥  , 𝑢𝑧

𝑦
 and 𝑢𝑗

𝑏 respectively denote virtual prices of 𝑥, 𝑦, and 𝑏.  241 

Finally, the paper assumes that the shadow price of expected output is equal to its market price 242 

(Cheng et al., 2022). Letting 𝑝𝑦, 𝑝𝑏 respectively be the shadow prices of Gross Domestic Product 243 

(GDP) and CO2. 𝑝𝑏 is shown in equation (3). 244 

𝑝𝑏 = 𝑝𝑦 ×
𝑢𝑏

𝑢𝑦
                                                             (3)                                                              245 

3.2 Model construction 246 

The paper constructs equation (4) using a two-way fixed effects model to investigate the nexus 247 

between DF and CMAC. 248 

𝐿𝐶𝑀𝐴𝐶𝑖𝑡 = 𝜇1 + 𝛼1𝐿. 𝐿𝐷𝐹𝑖𝑡 + 𝜑1𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑖𝑡 + 𝜎𝑖+𝜎𝑡 + 𝜀𝑖𝑡                         (4)                            249 

Where  𝐿𝐶𝑀𝐴𝐶𝑖𝑡  denotes CMAC. 𝐿. 𝐿𝐷𝐹𝑖𝑡  indicates DF. 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑖𝑡  represents control 250 

variables. 𝜇1  denotes the constant term, 𝜎𝑖  indicates city fixed effect, 𝜎𝑡  represents year fixed 251 

effect, and 𝜀𝑖𝑡 is the random error term. Besides, 𝑖 and 𝑡 respectively stand for city and year. 252 

To explore the transmission mechanism of DF affecting CMAC. The paper combines the 253 

previous analyses, focuses on the mechanism test that DF can exert structural, technological, and 254 

green productivity improvement effects, and constructs equations (5)-(6). 255 

𝐿𝑆𝑇𝑅𝑈𝑖𝑡(𝐿𝑇𝐸𝐶𝐻𝑖𝑡 , 𝐿𝐺𝑃𝐸𝑖𝑡) = 𝜇2 + 𝛼2𝐿. 𝐿𝐷𝐹𝑖𝑡 + 𝜑2𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑖𝑡 + 𝜎𝑖+𝜎𝑡 + 𝜀𝑖𝑡          (5)  256 

𝐿𝐶𝑀𝐴𝐶𝑖𝑡 = 𝜇3 + 𝛼3𝐿𝑆𝑇𝑅𝑈𝑖𝑡(𝐿𝑇𝐸𝐶𝐻𝑖𝑡 , 𝐿𝐺𝑃𝐸𝑖𝑡) + 𝜑3𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑓𝑖𝑡 + 𝛿𝑖 + 𝛿𝑡 + 𝜀𝑖𝑡        (6)                                                                            257 

Among them, 𝐿𝑆𝑇𝑅𝑈𝑖𝑡  represents industrial structure upgrading. 𝐿𝑇𝐸𝐶𝐻𝑖𝑡  indicates green 258 

technology innovation. 𝐿𝐺𝑃𝐸𝑖𝑡 means green production efficiency. 259 

3.3 Variables selection 260 

(1) Explained variable. LCMAC: the paper first selects input and output indicators (see Table 1 261 



 

8 

 

for specific measurements), then estimates CMAC using the SBM model, and finally takes the 262 

logarithm of the estimated value to obtain LCMAC. 263 

(2) Explanatory variable. LDF: the paper refers to the practice of most studies and selects the 264 

“Peking University Digital Finance Index” compiled by Guo et al. (2020) as the value of DF, then 265 

takes the logarithm of it to get the LDF. Considering that the impact of DF on CMAC is usually 266 

lagged, the paper uses one-period-lagged LDF (L.LDF) to represent the explanatory variable in the 267 

following regression analyses. 268 

(3) Mechanism variables. Industrial structure upgrading (LSTRU): the paper adopts the entropy 269 

method to process the indicator data containing industrial structure rationalization (INDR) and 270 

industrial structure heightening (INDH) and then takes the logarithm to get LSTRU. Green 271 

technological innovation (LTECH): the paper selects the number of green patent applications 272 

(LTECH1) and the number of green patent authorizations (LTECH2) to represent it. Green production 273 

efficiency (LGPE): the paper uses the logarithm of green total factor productivity (GTFP) to measure 274 

it. 275 

(4) Control variables. Setting control variables is also essential to more thoroughly analyze the 276 

nexus between DF and CMAC. They specifically include fiscal decentralization (FI), foreign 277 

investment (FDI), urbanization (UR), trade openness (TR), human capital (HR), and financial 278 

development (FD). 279 

Table 1 280 

Variable definitions 281 

Variables Name Description 

Explained 

variable 
LCMAC 

Labor x: Annual total number of employees (unit: 10000 people) 

Energy x: Annual electricity consumption (unit: 10000 kWh) 

Capital x: Fixed asset capital stock (unit: 10000 yuan), it is 

calculated by perpetual inventory method 

y: Regional GDP (unit: 10000 yuan). 

b: Carbon emissions (unit: 10000 tons) are calculated based on the 

consumption of electricity, natural gas, liquefied petroleum gas, and 

thermal energy 

Explanatory 

variable 
LDF The logarithm of the Peking University Digital Finance Index 

Mechanism 

variables 

LSTRU 

After processing the index data of INDR and INDH using the entropy 

method, the logarithm is taken to obtain LSTRU. Among them, 

𝐼𝑁𝐷𝑅 = 1 −
1

3
∑ |𝑆𝑛

𝑦
− 𝑆𝑛

𝑙 |3
𝑛=1 . 𝐼𝑁𝐷𝐻 = ∑ 𝑆𝑛

𝑦
× 𝑛3

𝑛=1 . 𝑆𝑛
𝑦

=𝑌𝑛/Y, 

denoting the share of value added of the nth industry in GDP. 

𝑆𝑛
𝑙 =𝑆𝑛/S, indicating the share of actual employment in the nth 

industry to total employment. 

LTECH1 The logarithm of the total number of green patent applications 

LTECH2 The logarithm of the total number of green patent authorizations 

LGPE 

The logarithm of GTFP (the Super-SBM model is used to measure 

GTFP. Notably, the input and output variables are measured using 

the same indicators as those used to calculate CMAC, except for 

non-expected outputs, which are measured using industrial sulfur 

dioxide, wastewater, and soot emissions) 
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Control 

variables 

FI Fiscal budget revenues/fiscal budget expenditures 

FDI Amount of foreign capital used/regional GDP 

UR The logarithm of population density 

TR Total trade exports and imports/regional GDP 

HR Number of employees/total population 

FD Balance of deposits and loans of financial institutions/regional GDP 

3.4 Data sources 282 

The paper selects Chinese cities as the sample. The research period is 2011-2021. The data on 283 

carbon emission and control variables are mainly from the EPS database and the National Bureau of 284 

Statistics. The data of mechanism variables are mainly from the EPS database and the State 285 

Intellectual Property Office of China. For severely missing data, the paper deletes them. For the small 286 

part of missing data, the paper applies the interpolation method to supplement them. For all 287 

continuous variables, the paper takes the logarithm of them. Finally, the relevant data for 264 cities 288 

in China are obtained, totaling 2,904 observations. Moreover, the paper winsorizes all continuous 289 

variables at the 1% and 99% quantiles to prevent outliers from interfering with the empirical results. 290 

Table 2 291 

Descriptive statistics 292 

Variable N mean sd max min 

LCMAC 2,904 9.257 0.805 13.790 5.431 

LDF 2,904 5.109 0.507 5.728 3.567 

LSTRU 2,904 -0.732 0.447 0 -9.210 

LTECH1 2,904 5.069 1.618 9.289 1.609 

LTECH2 2,904 4.590 1.612 8.654 1.099 

LGPE 2,904 -1.448 0.552 0.041 -2.551 

FI 2,904 0.556 0.230 1.218 0.114 

FDI 2,904 0.006 0.007 0.038 0.000 

UR 2,904 6.336 1.117 8.242 2.573 

TR 2,904 0.378 0.572 3.469 0.000 

HR 2,904 0.199 0.108 0.611 0.041 

FD 2,904 1.418 0.711 3.768 0.356 

4. Empirical results and analysis 293 

4.1 Measurement results of CMAC 294 

Fig.1 shows the measurement results of the average annual CMAC of Chinese cities. It is shown 295 

that the average yearly CMAC increases from 12838.95 in 2011 to 15057.92 in 2021, with a minimum 296 

value of 12838.95 and a maximum value of 18677.57. Previously, many studies estimated China's 297 

CMAC, but the values varied due to the measurement methodology, study level selection, and study 298 

year interval. For instance, Wang et al. (2020) measured the CMAC for 30 provinces in China from 299 

2011 to 2020 and found that the CMAC ranged within the interval [15, 20274]. Ji and Zhou (2020) 300 

evaluated the CMAC for 105 cities in China during 2006-2014. They found the CMAC ranged within 301 

the interval [1.2, 70359.46]. Wang et al. (2022b) calculated the CMAC for industries in China from 302 

2005 to 2016 and discovered that CMAC ranged within the interval of [6300, 54040]. Xu et al. (2022) 303 

estimated the CMAC of 282 cities in China from 2003 to 2018 and revealed that the CMAC ranged 304 

within the interval of [6860, 7790]. Overall, the CMAC calculated in the paper is within the range of 305 
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existing studies. It indicates that the CMAC computed in the paper is reasonable.  306 

Additionally, as for the magnitude of change in CMAC, CMAC generally shows an upward 307 

trend, explicitly showing an N-shaped trend of first increasing, then decreasing, and finally increasing. 308 

At the beginning stage of carbon reduction, the resource input of carbon reduction tends to be larger 309 

than its green output benefits. Thus, CMAC is increasing. As green and low-carbon technologies 310 

mature, the resulting green innovation spillover effect is noticeable, and the carbon production 311 

efficiency is high, so the CMAC is getting smaller. Notably, CMAC is the lowest and declines the 312 

fastest in 2017, which corresponds with the research of Wang et al. (2022a). The reason is that in 313 

2017, the Chinese government released policies such as the Strategy for Energy Production and 314 

Consumption Revolution (2016-2030) and the National Carbon Emission Trading Market 315 

Construction Scheme (Power Generation Sector). These policies can stimulate economic activities to 316 

be more inclined to low-carbon emission reduction by price signaling, which contributes to reducing 317 

energy use and pollutant output. It leads to the substitution costs of low-carbon technologies for high-318 

carbon technologies being lower than the emissions costs, effectively decreasing the CMAC. 319 

Nevertheless, as the work on carbon reduction progresses, it gets harder to mitigate carbon, and the 320 

costs of inputs are higher, so CMAC is increasing again. 321 

 322 
Fig. 1. Average annual CMAC measurement results for Chinese cities from 2011 to 2021 (unit:  323 

yuan/ton) 324 

4.2 Benchmark model results 325 

Table 3 shows the benchmark regression results. In column (1), only city-fixed and year-fixed 326 

effects are controlled. It is found that DF significantly reduces CMAC. In column (2), the above 327 

finding remains the same after including the relevant control variables. This may be because DF can 328 

reduce the difficulty of carbon reduction in many ways. For instance, promoting the optimization of 329 

economic structure, improving the efficiency of financial services, promoting technological 330 

innovation, inducing the rationalization of market competition, and supporting the implementation of 331 

green policies. Thus, it is favorable to reduce CMAC in Chinese cities. 332 

Next, the paper analyzes the influence of control variables on CMAC. FI and FDI significantly 333 

increase the CMAC. UR, TR, HR, and FD significantly decrease the CMAC. The reasons for the 334 

results are as follows. For one thing, fiscal decentralization and foreign investment are both oriented 335 

to economic growth and tend to improve economic efficiency by sacrificing the environment, which 336 

is unfavorable for improving carbon emission efficiency. Thus, CMAC will increase. For another, 337 

12838.95

13995.27
15008.25

16175.93

17751.37
18677.57

10431.06
10894.56

12142.5
13139.11

15057.92

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

CMAC



 

11 

 

increased levels of urbanization, trade openness, human capital, and financial development are 338 

beneficial for optimizing production methods, resource allocation efficiency, and industrial structure. 339 

They can hasten the development of low-carbon technologies. Their contributing rate to urban 340 

economic growth is larger than the increased rate in energy consumption, which can improve the 341 

efficiency of carbon emissions so that CMAC will decrease. 342 

Table 3 343 

Benchmark regression results 344 

Variables (1) (2) 

 LCMAC LCMAC 

L.LDF -0.8432*** -0.7421*** 

 (0.1462) (0.1399) 

FI  0.1868* 

  (0.0968) 

FDI  8.8603*** 

  (3.1806) 

UR  -0.0687*** 

  (0.0112) 

TR  -0.1347*** 

  (0.0362) 

HR  -0.5466*** 

  (0.1862) 

FD  -0.3029*** 

  (0.0457) 

_cons 13.5234*** 13.8847*** 

 (0.7404) (0.7111) 

City Yes Yes 

Year Yes Yes 

N 2640 2640 

R2 0.7723 0.7891 

Note: *, **, *** mean significant at 10%, 5%, and 1%, respectively. Values in parentheses are 345 

heteroskedasticity-robust standard errors. The same as below. 346 

4.3 Robustness test 347 

Firstly, the time width test. The sample time factor may affect the accuracy of the benchmark 348 

regression results. Therefore, the first and last year's sample data are excluded from the paper. 349 

Secondly, replacing the explanatory variable. The measures to reduce carbon emissions (e.g., 350 

technological inputs, policy implementation, etc.) usually take time to show their effects. As a result, 351 

the paper adopts the one-period-lagged LCMAC (L.LCMAC) to replace the explanatory variables that 352 

can be more consistent with the dynamic adjustment process of the actual economic activities. Thirdly, 353 

adding control variables. Omitted variables can cause large errors in the statistical results. Given that 354 

carbon intensity (CI), consumption scale (CS), and economic scale (ES) may affect the difficulty of 355 

carbon emission abatement by changing the demand side (consumption pattern) and the supply side 356 

(economic aggregate). Consequently, the paper adds three more control variables (CI, CS, and ES) to 357 

the existing control variables and then re-runs the regression. The three variables are measured as 358 

follows. CI: the logarithm of the ratio of carbon emissions to GDP. CS: the logarithm of total social 359 

retail consumption per capita. ES: the logarithm of per capita regional GDP. Fourthly, the endogeneity 360 
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test. When using a two-way fixed effects model for benchmark regression, problems such as omitted 361 

variable bias and bi-directional causality of variables may result in falsely significant empirical results. 362 

Accordingly, to verify the sensitivity of the empirical results to the methodological assumptions, the 363 

paper uses the instrumental variable method to test the possible endogeneity problem with the help 364 

of two-stage least squares (2SLS). Based on the two principles of relevance and exclusivity that need 365 

to be satisfied in the selection of instrumental variables, the paper uses the interaction term between 366 

the spherical distance of prefecture-level cities to Hangzhou and the mean L.LDF of other Chinese 367 

cities as an instrumental variable for L.LDF. Since there is multicollinearity between the spherical 368 

distance from prefecture-level cities to Hangzhou and the regional dummy variable, the paper does 369 

not control for the city-fixed effect here. Unidentifiable tests and weak instrumental variable tests are 370 

also conducted. In Table 4, the coefficients of L.LDF are significantly negative. It suggests that DF 371 

indeed reduces CMAC in Chinese cities. 372 

Table 4  373 

Various robustness tests 374 

Variables (1) (2) (3) (4) 

 LCMAC L.LCMAC LCMAC LCMAC 

L.LDF -1.4081*** -0.4093*** -0.8267*** -0.4868*** 

 (0.2153) (0.1446) (0.1287) (0.0500) 

CI   -0.5656***  

   (0.0450)  

CS   0.0205  

   (0.0553)  

ES   0.1973***  

   (0.0493)  

Control Yes Yes Yes Yes 

City Yes Yes Yes No 

Year Yes Yes Yes Yes 

Kleibergen-Paap rk LM statistic    459.547*** 

Cragg-Donald Wald F statistic    1506.195 

Kleibergen-Paap rk Wald F 

statistic 
   970.334 

N 2112 2640 2640 2640 

R2 0.8153 0.7620 0.8207 0.1129 

4.4 Mechanism test 375 

(1) Structural effect 376 

From Table 5, the coefficients of L.LDF and LSTRU are significantly positive, suggesting that 377 

the promotion of upgrading industrial structure is a channel through which DF reduces CMAC. It is 378 

because, firstly, DF helps raise financial resource allocation efficiency, effectively reduces 379 

information asymmetry (Hao et al., 2023), and guides capital flow to high-tech and green industries. 380 

This will accelerate the industrial restructuring of cities and prompt corporates to increase the green 381 

energy usage ratio and decrease carbon emissions, thus reducing the difficulties and costs of carbon 382 

emission reduction. Secondly, DF lowers financial service thresholds, expands financing channels for 383 

corporates, meets the diversified financing needs of corporates, and contributes to easing the 384 

difficulties in financing faced by corporates (Wang and Guo, 2022). This will provide powerful 385 

guarantees for optimizing industrial structure, effectively reducing the waste of resources and energy, 386 
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and help corporates decrease their operating costs and environmental governance costs, thus lowering 387 

the CMAC of cities. Thirdly, DF improves the financial structure and provides better financial support 388 

for the innovation activities of urban corporates, therefore enhancing the allocation of production 389 

factors and driving the low-carbon development of corporates (Wu et al., 2023). This will facilitate 390 

the development of the industrial structure of cities towards advanced and rationalized orientation 391 

and encourage corporates to enhance their innovation abilities. This will make the positive effects of 392 

increasing carbon productivity greater than the negative effects of carbon emissions, ultimately 393 

reducing the CMAC. Accordingly, hypothesis H2 is proved. 394 

Table 5 395 

Mechanism test: structural effect 396 

Variables (1) (2) 

 LSTRU LCMAC 

L.LDF 0.7540***  

 (0.0957)  

LSTRU  -0.0564** 

  (0.0259) 

Control Yes Yes 

City Yes Yes 

Year Yes Yes 

N 2640 2904 

R2 0.6839 0.7676 

(2) Technological effect 397 

From Table 6, the regression coefficients of L.LDF, LTECH1, and LTECH2 are significantly 398 

positive, suggesting that DF's green technology innovation effect is a channel to lower CMAC. This 399 

is because, firstly, DF has the attributes of digital technologies, innovation, and greenness, which can 400 

provide R&D financial support for the innovation system of cities. It benefits urban innovators' green 401 

technological innovation activities (Wu et al., 2023), thereby facilitating the advancement of green 402 

technologies and decreasing carbon emissions. Secondly, DF can increase the penetration of digital 403 

technologies, which can help expand the supply of green financial products and reduce the affordable 404 

innovation costs for urban corporates. It can facilitate the development of carbon trading markets and 405 

improve the efficiency of carbon trading, thereby reducing CMAC. Thirdly, DF can improve the 406 

efficiency of green finance services. It will have a squeezing effect on industries with high pollution 407 

emissions. This will force highly polluting corporates of cities to carry out green reforms, thus 408 

prompting corporates to be more concerned about green technological innovations and saving energy 409 

consumption. Ultimately, it can help improve the green economic efficiency of cities and reduce 410 

CMAC. Accordingly, hypothesis H3 is demonstrated. 411 

Table 6 412 

Mechanism test: technological effect 413 

Variables (1) (2) (3) (4) 

 LTECH1 LCMAC LTECH2 LCMAC 

L.LDF 0.4049***  0.6176***  

 (0.1176)  (0.1179)  

LTECH1  -0.0921***   

  (0.0260)   

LTECH2    -0.1268*** 
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    (0.0252) 

Control Yes Yes Yes Yes 

City Yes Yes Yes Yes 

Year Yes Yes Yes Yes 

N 2640 2904 2640 2904 

R2 0.9611 0.7686 0.9622 0.7699 

(3) Green productivity improvement effect 414 

From Table 7, the coefficient of L.LDF is significantly positive, implying that DF can improve 415 

green productivity. The coefficient of LGPE is significantly negative, meaning that enhancing green 416 

production efficiency facilitates the reduction of CMAC. This is because, firstly, DF can integrate 417 

digital technologies into the financial services system, improving the coverage and efficiency of 418 

financial services and promoting an increase in consumption scale (Cheng et al., 2024). It will 419 

facilitate the efficient flow of capital and the rational allocation of factors. Consequently, it will break 420 

down industrial development boundaries and shift the focus of economic development to technology-421 

intensive industries to improve the efficiency of green development (Liu et al., 2023) and thus reduce 422 

CMAC. Secondly, DF can satisfy the consumption needs of long-tail groups, such as low-income 423 

groups and rural residents, increasing consumer spending and triggering economic expansion (Guo 424 

and Tu, 2023). It will push the production sectors in cities to improve productivity through digital 425 

mindset shifts, digital ecology optimization, and enhanced digital facilities. As a result, cities can 426 

invest in carbon reduction more efficiently and sustainably, resulting in lowering CMAC. Thirdly, 427 

DF can improve environmental performance by supporting greener consumption patterns. As a result, 428 

the carbon reduction effect caused by the scale expansion triggered by DF is greater than the carbon 429 

increase effect, ultimately leading to a decrease in CMAC. Accordingly, hypothesis H4 is confirmed. 430 

Table 7 431 

Mechanism test: green productivity improvement effect 432 

Variables (1) (2) 

 LPEG LCMAC 

L.LDF 0.1526***  

 (0.0180)  

LGPE  -0.2851*** 

  (0.0390) 

Control Yes Yes 

City Yes Yes 

Year Yes Yes 

N 2640 2904 

R2 0.8116 0.7331 

4.5 Heterogeneity test 433 

(1) Geographic location differences 434 

Different regions of China have considerable distinctions in energy structure, industrial layout, 435 

trade development, and pollution emissions. It may cause the development environment, corporate 436 

entrepreneurship and innovation atmosphere, and ecological environment protection atmosphere in 437 

DF to differ (Cai et al., 2025; Cao et al., 2021; Guo et al., 2023). Consequently, the carbon emission 438 

reduction potentials of different regions may be heterogeneous (Wang et al., 2017). Accordingly, to 439 

examine whether the influence of DF on CMAC differs according to geographic location, the paper 440 

divides the regions into eastern, central, northeastern, and western cities. 441 
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In Table 8, DF has the most excellent inhibiting effect on CMAC in cities in central China, 442 

followed by the northeast, the east is the smallest, and the west is not significantly affected. It may 443 

be attributed to cities in the central and northeastern regions having factor cost advantages and a 444 

strong demand for financial services. They can fully utilize the characteristics and benefits of DF to 445 

empower innovative R&D and resource allocation and have great green development space, which 446 

can assist in effectively reducing CMAC. Secondly, eastern cities have the advantages of mature 447 

digital technologies, numerous financial institutions, well-developed financial services, and 448 

substantial economic vitality (Guo and Tu, 2023). Their industrial structure is superior, the 449 

atmosphere of innovation and entrepreneurship is intense, and energy production efficiency is high. 450 

In this case, the financial services provided by DF are more of a supplement to the original financial 451 

mode. Although it is also helpful for lowering CMAC, the effect is relatively weak. Thirdly, western 452 

cities have low levels of digital technologies and financial development (Zhao et al., 2023), and the 453 

construction of new infrastructures is in its infancy. Coupled with their disadvantages in human 454 

capital, R&D strength, market demand, trade openness, and so on, it is hard to exert DF's energy-455 

saving and emission-reduction efficacy (Hao et al., 2023). Ultimately, it causes the influence of DF 456 

to decrease CMAC, which is not apparent. 457 

Table 8 458 

Regional heterogeneity test 459 

Variables (1) (2) (3) (4) 

 East Northeast  Centre West 

 LCMAC LCMAC LCMAC LCMAC 

L.LDF -0.6596*** -1.0449** -1.1581*** -0.4623 

 (0.2243) (0.5058) (0.2422) (0.3555) 

Control Yes Yes Yes Yes 

City Yes Yes Yes Yes 

Year Yes Yes Yes Yes 

N 990 270 760 620 

R2 0.7381 0.8304 0.8228 0.7674 

(2) Resource endowment differences 460 

Natural resources are the vital material basis of economic development. As an advanced form of 461 

finance that overlaps and integrates financial and technological innovations, DF will inevitably affect 462 

natural resource use. Notably, resource endowment affects resource consumption during changes in 463 

production, consumption, employment (Cai et al., 2024b), and industries, which can exacerbate 464 

carbon emissions. The heterogeneity of natural resource endowment and distinctions in carbon 465 

productivity across Chinese cities can affect the nexus between DF and CMAC. Thus, the paper tests 466 

whether the impact of DF on CMAC varies due to differences in urban resource endowment. 467 

According to the “National Sustainable Development Plan for Resource-Based Cities (2013-2020)”1, 468 

the sample cities in the paper are categorized into resource-based cities and non-resource-based cities. 469 

In Table 9, DF has a greater impact on CMAC in non-resource-based cities and no impact on 470 

CMAC in resource-based cities. It might be because, for one thing, resource-based cities usually rely 471 

on natural-resource-driven industries highly for their development, with lower levels of science and 472 

technology innovation development and higher carbon emission intensities (Xu et al., 2022). When 473 

this type of cities tries to utilize DF to realize low-carbon development, they can hardly take 474 

 
1 https://www.gov.cn/zhengce/content/2013-12/02/content_4549.htm 
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advantage of DF owing to its low level of technology, and they will continue to choose to sacrifice 475 

resources and the environment to promote economic development. Hence, DF has no apparent 476 

influence on the CMAC of this type of cities. For another, non-resource-based cities usually rely on 477 

facilitating technological progress, improving industrial structure, and enhancing energy use 478 

efficiency to foster economic growth. This type of cities can fully utilize DF's power to save energy 479 

and reduce emissions at lower costs and more efficiently. Accordingly, DF is good for lowering the 480 

CMAC of this type of cities. 481 

Table 9 482 

Resource endowment heterogeneity test 483 

Variables (1) (2) 

 Resource-based Non- Resource-based 

 LCMAC LCMAC 

L.LDF -0.0438 -1.0251*** 

 (0.2511) (0.1738) 

Control Yes Yes 

City Yes Yes 

Year Yes Yes 

N 1070 1570 

R2 0.7794 0.7713 

(3) Urban scale differences 484 

DF is closely related to the scale of the population using IT and can adjust the economic scale 485 

by affecting the stability of financial markets, the consumer behaviors of the population, and so on. 486 

It thus influences carbon emission intensity (Cheng et al., 2024) and subsequently affects the CMAC. 487 

Notably, China has so many cities that different scales of cities will vary in policies, scale of financial 488 

services, resource allocation, level of innovation, and infrastructure development, which will affect 489 

the nexus between DF and CMAC. Therefore, the paper explores whether the nexus between DF and 490 

CMAC varies because of the different urban scales. The paper classifies the sample cities into large 491 

cities and small-medium cities. Among them, cities with populations over 1 million are classified as 492 

large cities and conversely as small-medium cities. 493 

In Table 10, compared to small-medium cities, DF has a greater impact on CMAC in large cities. 494 

It might be because, for one thing, the higher quality of economic development in large cities helps 495 

DF play active functions in expanding the scope of financial services, accurately controlling financial 496 

risks, enhancing the innovation output, and assisting the green transformation of industries. This can 497 

effectively reduce carbon emissions in large cities (Guo and Tu, 2023), and this can also help to 498 

reduce CMAC by further improving carbon productivity and reducing marginal energy consumption. 499 

For another, small-medium cities have a poor economic base, a singular industrial structure (Xu et 500 

al., 2022), and relatively backward IT infrastructure, and the extension of DF services is more difficult 501 

(Guo and Tu, 2023). This lowers the impact of DF on carbon reduction in small-medium cities, 502 

leading to its relatively weak effect on lowering CMAC. 503 

Table 10 504 

Urban scale heterogeneity test 505 

Variables (1) (2) 

 Big Small-medium 

 LCMAC LCMAC 

L.LDF -0.5515** -0.5405*** 
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 (0.2264) (0.1760) 

Control Yes Yes 

City Yes Yes 

Year Yes Yes 

N 1160 1480 

R2 0.7821 0.7476 

4.6 Further analysis 506 

According to the theory of cities' spatial structure, there is the risk of carbon emissions spreading 507 

to neighboring areas, which may affect the effectiveness of environmental governance in neighboring 508 

areas (Wang and Guo, 2022). DF can weaken the limitation of geographical location and strengthen 509 

the spatial linkage between the regional economy and environmental pollution. It will enable resource 510 

factors to achieve better cross-regional flows and cause the externalities of economic activities to 511 

affect the carbon reduction behaviors of local and neighboring cities. This can result in spatial 512 

spillovers from DF on economic development quality and energy use efficiency in cities (Zhao et al., 513 

2023). Ultimately, the opportunity costs of carbon reduction in the local and neighboring cities are 514 

affected. Additionally, relevant studies have found that digital technologies have remarkable spatial 515 

spillover impacts on abating carbon emissions (Liu et al., 2022; Yang et al., 2024). It will also make 516 

the influence of DF on CMAC may have spatial spillover effects. Based on this, further systematic 517 

exploration of the impact of DF on CMAC from a spatial perspective is necessary. The paper develops 518 

a Spatial Durbin Model (SDM) to achieve this. 519 

𝐿𝐶𝑀𝐴𝐶𝑖𝑡 = 𝜇4 + 𝛽∑ 𝑊𝑖𝑗
264
𝑗=1 𝐿𝐶𝑀𝐴𝐶𝑗𝑡 + 𝛼4𝐿. 𝐿𝐷𝐹𝑖𝑡 + 𝜑4𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑖𝑡 +520 

𝜃1∑ 𝑊𝑖𝑗
264
𝑗=1 𝐿𝐷𝐹𝑗𝑡+𝜃2 ∑ 𝑊𝑖𝑗

264
𝑗=1 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑗𝑡 + 𝜎𝑖+𝜎𝑡 + 𝜀𝑖𝑡                               (7) 521 

Where 𝑊𝑖𝑗 is the spatial weight matrix. 𝛼4 denotes the degree of direct influence of DF on 522 

CMAC. 𝜃1  represents the intensity of spatial spillover influence of DF on CMAC. The other 523 

variables have been described in the aforementioned content, so they are not repeated here. 524 

(1) Spatial correlation test 525 

Before performing spatial regression, it is essential to test whether spatial autocorrelation exists 526 

in CMAC. The paper uses the geographic distance matrix to calculate the Moran's index for CMAC. 527 

From Table 11, Moran's index of CMAC from 2011 to 2020 is all significantly negative, proving the 528 

existence of spatial correlation. 529 

Table 11 530 

Spatial autocorrelation test 531 

Year Moran's I E(I) Sd(I) Z P 

2011 -0.0322 -0.0038 0.0021 -13.5299 0.0000*** 

2012 -0.0390 -0.0038 0.0021 -16.7441 0.0000*** 

2013 -0.0398 -0.0038 0.0021 -17.1794 0.0000*** 

2014 -0.0563 -0.0038 0.0021 -25.0288 0.0000*** 

2015 -0.0811 -0.0038 0.0021 -36.9038 0.0000*** 

2016 -0.0897 -0.0038 0.0021 -41.0239 0.0000*** 

2017 -0.0559 -0.0038 0.0021 -24.8028 0.0000*** 

2018 -0.0606 -0.0038 0.0021 -27.0755 0.0000*** 

2019 -0.0681 -0.0038 0.0021 -30.6399 0.0000*** 

2020 -0.0625 -0.0038 0.0021 -28.0211 0.0000*** 
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2021 -0.0596 -0.0038 0.0021 -26.6291 0.0000*** 

(2) SDM regression 532 

In Table 12, the coefficients of L.LDF and W*L.LDF are significantly negative, which suggests 533 

that DF has negative spatial spillover effects on CMAC. This is because, for one thing, DF can break 534 

through spatial and temporal constraints, shorten the distance of financial services, and reduce 535 

information costs. It enhances the correlation and exchange of economic activities between cities and 536 

helps to push the cross-regional optimal allocation of production factors and the cross-regional flow 537 

of technological innovations, thus producing a negative spatial spillover influence on CMAC. For 538 

another, due to the external characteristics of carbon emissions and the existence of competition, 539 

demonstration, and economic linkage effects among cities, carbon emission performance shows an 540 

obvious spatial spillover function. This causes DF to have spatial spillover effects when lowering 541 

CMAC. 542 

Table 12 543 

SDM regression results 544 

Variables (1) 

 LCMAC 

L.LDF -0.9920*** 

 (0.1345) 

W*L.LDF -19.1760*** 

 (3.7087) 

Control Yes 

W* Control Yes 

rho -1.7157*** 

 (0.3086) 

sigma2_e 0.1333*** 

 (0.0037) 

City Yes 

Year Yes 

N 2640 

R2 0.0361 

(3) Spatial spillover decomposition 545 

Table 13 reports the spatial spillover decomposition results. The results reveal that while DF 546 

suppresses local CMAC, it also reduces CMAC in neighboring cities. This is because, for one thing, 547 

DF can help inhibit CMAC by improving the coverage breadth, using depth, digitizing financial 548 

services, and promoting the development of the local economy in the trend of greening and 549 

decarbonization. For another, with the development of DF, corporates, governments, and other actors 550 

between neighboring cities can fully utilize digital technologies for cooperation and communication. 551 

This can enhance the positive effects of marketization, green technology innovation, industrial 552 

structure optimization, consumption upgrading, and other effects on carbon reduction, thus reducing 553 

CMAC. 554 

Table 13 555 

Decomposition results for spatial spillover effect 556 

Variables (1) (2) (3) 

 Total Direct Indirect 

 LCMAC LCMAC LCMAC 
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L.LDF -7.5871*** -0.9133*** -6.6737*** 

 (1.7779) (0.1354) (1.7503) 

Control Yes Yes Yes 

5. Research conclusions and policy implications 557 

5.1 Conclusions 558 

Firstly, from 2011 to 2021, the CMAC of Chinese cities generally shows an upward trend, 559 

specifically reflecting an N-shaped trend of rising, then falling, and finally rising. Secondly, DF can 560 

help reduce CMAC through three paths: promoting the rationalization and advancement of industrial 561 

structure, improving green technological innovation capacity, and enhancing green production 562 

efficiency. This means that relevant departments should make a more detailed layout when building 563 

the DF system to support the optimization of industrial structure, strengthen the green technology 564 

innovation platform for digitalization, and promote the digital transformation of the production 565 

system. Thirdly, the inhibitory role of DF on CMAC can be heterogeneous by geographical location, 566 

resource endowment, and urban scale. Particularly, compared to western, resource-based, and small-567 

medium cities, DF has a stronger inhibitory role on CMAC in eastern, northeastern, central cities, 568 

non-resource-based cities, and large cities. This means that relevant departments should strengthen 569 

cooperation and exchange between different types of cities in resource allocation, energy use, 570 

technological reforms, human capital, etc., so as to reduce the differences in CMAC between different 571 

types of cities. Fourthly, DF has negative spatial spillover effects on CMAC and can suppress CMAC 572 

in both local and neighboring cities. This means relevant departments should establish more cross-573 

regional DF cooperation platforms to promote low-carbon technology sharing and financial flows 574 

and amplify the spatial spillover effect. 575 

5.2 Policy implications 576 

Firstly, relevant departments should use policy tools or financial instruments to strengthen the 577 

awareness of carbon reduction in cities in all aspects. Specifically, they should improve cities' carbon 578 

emission statistics and accounting system, enhance carbon emission data quality, and increase carbon 579 

quotas paid allocation in due course to help decrease CMAC. Moreover, they should optimize cities' 580 

energy conservation and emission reduction work plans, improve carbon pricing, carbon market, and 581 

financial mechanism, scientifically regulate energy consumption's total amount and intensity, and 582 

effectively lower CMAC. 583 

Secondly, relevant departments should promote the whole industry chain to optimize and 584 

upgrade various industries in cities. Specifically, they should guide social capital to invest in cities' 585 

low-carbon or zero-carbon industries, encourage corporates to actively reform and innovate low-586 

carbon technologies, and urge them to improve energy use efficiency. Furthermore, they should 587 

continue to expand the depth and breadth of DF services, further advance the digitization process of 588 

urban green financial institutions, and scientifically adjust the optimization efforts of green credit 589 

resource allocation. Specifically, they should increase financial support for clean and environment-590 

friendly corporates, guide highly polluting corporates to improve their environmental awareness, and 591 

encourage them to take the benign development path of innovation-driven, intelligent, green, and 592 

low-carbon. 593 

Thirdly, relevant departments should implement dynamic, differentiated, and precise DF 594 

development strategies. Specifically, they should formulate targeted and operable low-carbon 595 

measures based on the actual development of different cities and fully tap the DF development 596 
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potential and carbon reduction potential of different cities to narrow the differences in the CMAC of 597 

different cities. For example, central and northeastern cities should increase support for DF 598 

development, promote green technology R&D, optimize factor resource allocation, and magnify cost 599 

advantages. Eastern cities should further synergize DF and traditional finance, focus on green industry 600 

upgrading and energy efficiency improvement, and strengthen the effectiveness of emission reduction. 601 

Western cities should prioritize the improvement of digital infrastructure and financial infrastructure, 602 

strengthen the cultivation of human capital and the introduction of technology, and enhance the 603 

resilience of DF infrastructure. Resource-based cities should prioritize promoting the technological 604 

upgrading of traditional industries and strengthening DF infrastructure support. Non-resource-based 605 

cities should further promote the in-depth integration of DF and green technologies, and improve the 606 

green credit incentive mechanism and carbon emission trading mechanism to make CMAC lower. 607 

Large cities should establish cross-urban technology collaboration platforms to facilitate the diffusion 608 

of DF's experience in emission mitigation. Small-medium cities should increase investment in digital 609 

infrastructure, raise the coverage of inclusive financial services, and guide DF to target support for 610 

clean energy and circular economy projects. 611 

Fourthly, relevant departments should deepen the exchanges between financial institutions and 612 

cities and encourage cooperation in carbon reduction. Specifically, they should further break down 613 

the spatial barriers to factor flows, reinforce the cross-city flows of DF innovations, and prompt the 614 

precise allocation of financial resources to key areas and weak links in the low-carbon transition. 615 

Besides, they should conduct multiple collaborative activities for urban carbon reduction, 616 

dynamically adjust the green financial risk prevention mechanism, stimulate the innovation and 617 

development of digital and high-carbon industries, and decrease the costs of resource depletion and 618 

reduction. 619 

5.3 Limitations and future prospects 620 

Although the paper has revealed the influence pattern of DF on CMAC from the multi-621 

dimensional perspective, it still has a few limitations that require further breakthroughs in future 622 

studies. Firstly, the indicators for measuring DF should be improved. The methodology used in the 623 

paper to assess the level of DF development focuses mainly on the inclusiveness of DF, but it is 624 

inadequate in portraying the characteristics of DF, such as technological nature, security, and high 625 

efficiency. Future studies should adopt more comprehensive indicators to reflect these characteristics 626 

of DF. Secondly, the research perspective should be expanded. The paper examines the mechanism 627 

of the impact of DF on CMAC based on the perspective of Chinese cities. Future studies can explore 628 

the relationship between DF and CMAC globally. Thirdly, the time span of the research sample should 629 

be lengthened. The paper is limited by the availability of data and only uses data for the period 2011-630 

2021 to test the impact of DF on CMAC. Future studies can use the latest available data. 631 
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