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Abstract 

The carbon abatement effects of digital finance (DF) have 
been widely studied, but existing studies have neglected 
its impact on the marginal carbon abatement cost 
(CMAC). The paper uses the SBM model to measure the 
CMAC of 264 cities in China for 2011-2021 and then 
constructs a two-way fixed effects model and a panel 
spatial model to explore the nexus between DF and 
CMAC. The findings are as follows. Firstly, the magnitude 
of change in CMAC shows an N-shaped trend of 
increasing, decreasing, and rising over the sample period. 
Secondly, DF can decrease CMAC, which is mainly 
achieved through three paths: optimizing industrial 
structure, promoting green technological innovation, and 
improving green production efficiency. Thirdly, the 
suppression of CMAC by DF is better when the cities 
belong to eastern, northeastern, central, non-resource-
based, and large cities. Fourthly, DF has negative spatial 
spillover effects on CMAC, which helps decrease CMAC in 
local and neighboring cities. These findings can help tap 

the green value of DF and formulate targeted regional 
carbon emission reduction policies. 

Keywords: digital finance; marginal carbon abatement 
cost; shadow price; spatial Durbin model 

1. Introduction 

Realizing carbon emission reduction at minimal economic 
costs is a key concern of national governments. To 
shoulder its responsibility as a major country, the Chinese 
government attaches great importance to carbon 
emission reduction. It has taken achieving carbon peaking 
and carbon neutrality as its national strategic goals (“dual 
carbon goals”) and has undertaken many measures to 
push for greenhouse gas emissions reduction. For 
instance, it has established carbon emissions trading 
markets, increased the proportion of renewable energy 
use, vigorously developed carbon capture and storage 
technologies, and implemented green financial and 
carbon tax policies. However, for developing countries, 
large-scale carbon reduction must inevitably come at the 
expense of a certain level of economic output, the so-
called marginal carbon abatement cost (CMAC). Based on 
data from the National Bureau of Statistics, China emitted 
approximately 11.477 billion tons of carbon dioxide (CO2) 
in 2022, accounting for approximately 28.87% of the total 
global CO2, and it is the world's largest carbon emitter. 
Carbon emission reduction efforts are under enormous 
pressure in China. Consequently, how to reduce CMAC 
and balance between energy-saving, emission reduction, 
and economic growth has been an urgent proposition for 
Chinese economic development. 

Finance plays a vital role in pushing the process of 
economic greening and decarbonization (Razzaq and 
Yang, 2023). With the booming development of 
information technologies (IT), traditional finance and IT 
continue to converge, enabling digital finance (DF) to be 
the key driver for enhancing the quality of economic 
development. DF is a new financial form that applies 
digital technologies to provide financial services. 
Compared with traditional finance, DF can overcome time 
and space restrictions and benefit green economic 
development with its advantages of low-threshold 

https://doi.org/10.30955/gnj.07407


2  LIU and HU 

financing, financial service inclusiveness, service scope 
accessibility, and mobile payment convenience (Guo et al., 
2023; Liu et al., 2023). From the perspective of 
inclusiveness and technicality, DF can reduce production, 
transaction, and operational costs involved in economic 
activities (Sun et al., 2023) by reducing information 
asymmetry in financial markets and mismatches in capital 
factor allocation processes (Razzaq and Yang, 2023). From 
the perspective of green attributes, DF can help mobilize 
the whole society to engage in energy-saving and carbon 
reduction, such as advocating green production by 
corporates and assisting consumers to form green 
consumption concepts. Then, it will help improve green 
economic benefits (Li et al., 2023; Zhao et al., 2023). 
However, while DF brings many favorable effects, it also 
expands the corporate scale and consumption scale, 
which may have adverse effects on carbon reduction, 
energy-saving, and environmental governance (Cheng et 
al., 2024). This makes the relationship between DF and 
low-carbon development effectiveness unclear. The 
question of how DF affects CMAC remains unanswered in 
academic studies. Especially in the constraint of the “dual 
carbon goals”, CMAC is a critical factor in determining the 
sustainability of large-scale carbon reductions. Exploring 
the impact of DF on CMAC is highly significant in 
determining whether China can achieve carbon peaking 
and neutrality at lower economic costs.  

Existing studies related to GF and CMAC are mainly based 
on the following three points. Firstly, the measurement of 
CMAC. CMAC is the economic cost of reducing 1 unit of 
CO2 (Cui et al., 2022; Wang et al., 2022a). It is difficult to 
obtain directly in actual production. Shadow price 
measures the expected output sacrificed or inputs added 
by decreasing 1 unit of pollutant (Lee, 2005), it can reflect 
trade-offs between expected and unexpected outputs 
(Färe et al., 1993). Hence, shadow price is commonly used 
to measure CMAC. Specifically, CMAC is obtained by 
constructing the distance function and applying dyadic 
theory, and its estimation is mainly by parametric and 
non-parametric methods. The parametric method 
describes the distance function by presetting specified 
functional forms, then uses parametric linear 
programming or stochastic frontier model estimation to 
obtain the CMAC. The non-parametric method applies the 
Data Envelopment Analysis (DEA) method for constructing 
the production frontier on the output distance function. 
Then, it estimates the CMAC according to the duality 
theory. DEA was first raised by Charnes et al. (1978), but it 
failed to consider non-zero slack of inputs or outputs. 
Tone (2001) introduced the Slack Based Measure (SBM) 
method to fill this gap. Subsequently, Färe and Grosskopf 
(2010) further proposed a more universal non-radial and 
non-oriented directional distance function for measuring 
efficiency. Notably, the parametric method may not be 
compatible with the actual situation because it needs to 
preset the functional form. Thus, the paper will use the 
non-parametric method to measure CMAC.  

Secondly, the impact of DF on carbon emissions. From the 
aspect of promoting carbon emission reduction, DF can 

trace the carbon footprint with the help of intelligent 
optimization systems, green financial tools, etc., thus 
accelerating the commercialization of low-carbon 
technologies and promoting consumption changes (Li et 
al., 2023; Razzaq and Yang, 2023). This helps to optimize 
supply chain management, improve transport and logistics 
routes, reduce high-carbon activities, enhance 
environmental governance capacity (Guo et al., 2023), 
promote industrial structure upgrading (Zhong et al., 
2023), etc., and ultimately help to reduce carbon 
emissions (Cai et al., 2024a; Zhao et al., 2023). From the 
aspect of increasing the potential risk of carbon emissions, 
DF can increase the energy consumption of digital 
infrastructure, stimulate high carbon demand, and expand 
the scale of production expansion (Guo and Tu, 2023), 
thus pushing the overconsumption of high-energy-
consuming products (Cheng et al., 2024). Ultimately, this 
leads to an increase in pollution emissions. In summary, 
the impact of DF on carbon emissions is characterized by 
an obvious two-way dynamic game, and its net effect 
depends on the trade-offs among the choice of 
technological routes, the design of policy frameworks, the 
speed of industrial structural transformation, the scale 
effect, and so on. Therefore, the paper focuses on the 
impact of DF on CMAC. 

Thirdly, the methodology was used to explore the nexus 
between DF and low-carbon development. Existing 
literature mainly tested the correlation between DE and 
carbon emission reduction using econometric methods 
such as two-way fixed effects model (Li et al., 2023; Wu et 
al., 2023), difference-in-difference model (Cao et al., 
2021; Zhong et al., 2023), quantile regression model (Xu et 
al., 2023), non-linear threshold model (Bai et al., 2023), 
and spatial econometric model (Wang and Guo, 2022; 
Zhao et al., 2023). Considering that the two-way fixed 
effects model can control for unobservable individual 
differences and time trends, reduce omitted variable bias, 
and facilitate accurately identifying the causal relationship 
between DF and CMAC, this method is used in the paper 
for the benchmark regression analysis. Based on the 
advantages that the spatial econometric model can 
capture interregional spatial spillover effects (e.g. 
technology diffusion, pollution transfer, etc.), make up for 
the inadequacy of the traditional model in ignoring 
geographic correlation, and facilitate revealing the 
indirect impact of DF on CMAC in neighboring regions, so 
the paper adopts this method to further analyze the 
spatial impact of DF on CMAC. 

The contributions are summarized as follows. Firstly, 
existing studies have mainly concerned the influence of DF 
on environmental performance (Cao et al., 2021), green 
economic growth (Razzaq and Yang, 2023), carbon 
emissions (Zhao et al., 2023), energy transition (Li et al., 
2023), industrial green transition (Zhong et al., 2023), 
green technological innovation (Hao et al., 2023), and 
other related green development impacts. However, 
these studies have not yet established a framework for 
linking DF with green development costs. Therefore, the 
paper incorporates DF and carbon reduction costs into the 
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same analytical framework for the first time and 
innovatively examines the relationship between DF and 
urban CMAC, which can fill the gaps in the existing 
studies. Secondly, existing studies have mainly discussed 
the role of policy preferences (Cui et al., 2022), 
environmental regulation (Xu et al., 2022), regional 
integration (He et al., 2018), energy efficiency (Wang et 
al., 2017), energy consumption (Wang et al., 2024), 
carbon productivity (Wang et al., 2020), and differences in 
geographic location (He, 2015) on CMAC. However, these 
studies ignored the impact of financial development on 
CMAC. Consequently, the paper systematically reveals the 
mechanism of the role of DF on urban CMAC to improve 
the theoretical system of the influencing factors of CMAC, 
which can provide path references for the effective 
reduction of CMAC. Thirdly, the paper extends the 
heterogeneity analysis of the impact of DF on CMAC and 
captures the spatial spillover effects of DF on CMAC, thus 
providing differentiated guidance for lowering CMAC in 
cities with different characteristics. Given these, the paper 
takes 264 Chinese cities as samples from 2011 to 2021. It 
adopts two-way fixed effects and spatial econometric 
models for studying the nexus between DF and CMAC, 
exploring the mechanism through which DF can act on 
CMAC. Then, the paper examines whether there exists a 
remarkable asymmetry in the influence of DF on CMAC 
from three major dimensions: geographic location, 
resource endowment, and scale of cities. 

The remaining sections are arranged as follows. Section 2 
introduces the theoretical analysis and research 
hypotheses. Section 3 shows the research design. Section 
4 reports the empirical results and analyses. Section 5 
presents the research conclusions and policy implications.  

2. Theoretical analysis and research hypothesis 

In the digital era, DF has gradually become the core of 
financial development, which is the major form of 
providing financial services. It can contribute to 
overcoming the severe challenges of economic low-
carbon transformation, thus providing opportunities for 
the faster realization of the “dual carbon goals”. On the 
one hand, DF can optimize all aspects of production, 
distribution, living, consumption, and investment, which is 
beneficial for increasing the matching degree of demand 
and supply for financial services and reducing resource 
mismatch problems. This can create good conditions for 
enhancing the quality of urban innovation, help optimize 
resource allocation and use efficiency, and thus improve 
environmental performance (Cao et al., 2021), which in 
turn helps reduce CMAC. On the other hand, DF supports 
the digital reform of corporates (Razzaq and Yang, 2023), 
which facilitates the smashing of boundaries between 
industries and sectors and promotes the achievement of 
integrated and coordinated development between 
industries. This can encourage corporates in cities to 
disclose environmental information and technological 
progress actively (Liu et al., 2024), thus promoting the 
transformation of urban industries into knowledge-
intensive and technology-intensive types, which 
consequently help to reduce CMAC. In summary, DF can 

create a favorable financial environment and promote 
economic growth. Specifically, DF can affect CMAC 
through the following three channels. 

Firstly, based on the circular economy theory, resources 
can be recycled, which helps to reduce pollution emissions 
(Huang et al., 2018). DF can promote industrial upgrading 
on the supply side and cultivate a low-carbon market on 
the demand side by reorganizing the direction of 
economic factor flows, thus forming a systematic carbon 
reduction pathway. Specifically, DF can use digital 
technologies to alleviate the problem of information 
asymmetry within and between industries, improve the 
ratio of the internal structure of primary, secondary, and 
tertiary sectors, enhance the quality of inter-industry 
aggregation, and contribute to the optimization of the 
industrial structure (Ren et al., 2023). This will improve 
the production efficiency of the whole society and lower 
the pollution control cost per unit of output. Meanwhile, 
DF can leverage big data and intelligent algorithms to 
allocate resources optimally (Zhao et al., 2023) and 
precisely match the financing needs of green projects. 
Thus, limited financial resources can be invested more in 
industries with high output benefits through tools such as 
data-based risk assessment models, intelligent matching 
platforms for climate investment and financing, and full 
carbon emission traceability systems. This can bring 
advantages such as lowering the transaction costs of 
information matching (Wang and Ma, 2024), reducing the 
proportion of high energy-consuming industries, and 
improving energy utilization (Li et al., 2023), thus making 
carbon reduction less difficult. Furthermore, DF can 
scientifically assess industries' risks (Zeng et al., 2025), 
innovate risk management tools, and enable 
environmental constraints to be imposed on upstream 
and downstream corporates through supply chain finance, 
thereby promoting the high-end, intelligent, and greening 
of industries. This can promote the dynamic adjustment of 
industrial structure (Zhang et al., 2025), enhance the 
resilience of the industrial chain, and help form the 
synergistic effect of emission reduction of the whole 
industrial chain, etc., which can help reduce the pollution 
emission per unit of output and decrease CMAC. 

Secondly, based on endogenous growth theory, 
technological progress can drive economic growth. 
Regarding technological progress, DF can effectively lower 
the financing threshold of the urban research and 
development (R&D) sector, which can help it overcome 
the financing difficulties previously constrained by the 
long R&D cycle and high investment risks (Cao et al., 
2021). It will support the continuous R&D of technologies 
and promote the large-scale application of photovoltaic 
and energy storage technologies, thereby reducing the 
cost of technological innovation and enhancing urban 
innovation capacity. This will lower the difficulty of 
mitigating carbon emissions (Zou et al., 2024) and help to 
create diminishing marginal cost effects. Meanwhile, DF 
can increase the active degree of the carbon trading 
market, expand the financing channels of corporates, 
reduce the distortion of capital allocation (Wang and Guo, 
2022), and help guide the flow of capital to low-carbon 
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and environment-friendly corporates. Thus, it provides 
sustainable emission reduction power for corporates. This 
will stimulate the willingness of corporates to innovate 
and promote various types of corporates to increase 
capital investment in green technological innovation 
activities (Wen et al., 2025), which will improve 
environmental performance, increase the efficiency of 
emission reduction investment, and promote the urban 
energy and low-carbon transition (Li et al., 2023). 
Moreover, DF can assist carbon accounting through digital 
payments, smart contracts, AI algorithms, etc., thereby 
improving the financial position of urban corporates by 
reducing labor inputs, lowering overheads, and increasing 
sales revenues. This can support corporates in adopting 
low-carbon technologies to increase green innovation 
outputs and encourage them to invest in energy-saving 
equipment, thereby spreading business risks and 
compressing intermediate costs, generating long-term 
cost savings (Lu et al., 2023). 

Thirdly, based on the long-tail theory, the long-tail group 
is featured as small, numerous, and dispersed, with 
unique and more challenging needs to satisfy. DF can use 
digital platforms to expand the scope of its customer 
base, transform the original long-tail group into potential 
subjects, and absorb small amounts of funds from long-
tail investors. Then, these funds are aggregated into a vast 
capital flow and applied to corporate development (Wang 
and Guo, 2022). This will generate more economic 
benefits while driving the expansion of the corporate 
production scale, thus making more funds available for 
investment in green production. Ultimately, this can help 
reduce the scale of resource consumption, balance the 
relationship between ecological environment and 
economic development (Wang et al., 2025), etc., which in 
turn reduces the CMAC. Meanwhile, DF can reduce 
consumers' purchasing costs and payment difficulties, 
which contributes to improving the experience of 
consumer services. This can accelerate residents' 
consumption decisions and tap their consumption 
potential, thus triggering an increase in the scale of 
consumption (Cheng et al., 2024). In recent years, 
increased consumer awareness of environmental 
protection has increased demand for green and low-
carbon products, increasing green production scale. This 
can trigger urban corporates' green and low-carbon 
initiatives, further reducing CMAC. Besides, based on the 
optimal allocation of resources theory, DF can use digital 
technologies to accurately identify green and low-carbon 
projects and play the guiding, incentive, and supervisory 
roles of green credits to invest financial resources in green 
projects with potential. This can expand the scope of 
economic activities, reduce the waste of resources, and 
improve the efficiency of resource utilization, thus 
contributing to the expansion of the economic scale (Guo 
and Tu, 2023) and the improvement of high-quality 
economic development (Wu et al., 2024). It then benefits 
to reduce CMAC. 

Accordingly, the following hypotheses are formulated in 
the paper. 

H1: DF can reduce CMAC in Chinese cities. 

H2: DF can reduce CMAC in Chinese cities by exerting a 
structural effect. 

H3: DF can reduce CMAC in Chinese cities by exerting a 
technological effect. 

H4: DF can reduce CMAC in Chinese cities by exerting a 
green productivity improvement effect. 

3. Research design 

3.1. Measurement of CMAC 

The paper estimates the CMAC using the non-radial and 
non-oriented SBM model. There are three main steps. 

Firstly, let x, y, and b respectively denote factor inputs, 
expected outputs, and unexpected outputs. Non-
parametric linear programming for the sample containing 
K decision-making units (DMUo) is designed in equation 
(1). 
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M, Z, and J respectively denote the numbers of x, y, and b. 

* (0 < *≤ 1) represents the efficiency value of DMUo. 
Smo

x, Sjo
b respectively represent potential reductions in 

input and unexpected output. Szo
y means potential 

increase in expected output. λk denotes intensity variable, 
λk ≥ 0 represents a constant return to scale production 
technologies.  

Secondly, the paper applies the Charnes-Cooper 
transformation (Wang and Feng, 2015; Wei et al., 2012) 
on equation (1) to obtain equation (2).  
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Where um
x, uz

y and uj
b respectively denote virtual prices of 

x, y, and b.  

Finally, the paper assumes that the shadow price of 
expected output is equal to its market price (Cheng et al., 
2022). Letting py, pb respectively be the shadow prices of 
Gross Domestic Product (GDP) and CO2. pb is shown in 
equation (3). 
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3.2. Model construction 

The paper constructs equation (4) using a two-way fixed 
effects model to investigate the nexus between DF and 
CMAC. 

1 1 1.it it it i t itLCMAC L LDF Control     = + + + + +  (4) 

Where LCMACit denotes CMAC. L.LDFit indicates DF. 
Controlit represents control variables. µ1 denotes the 

constant term, i indicates city fixed effect, t represents 
year fixed effect, and εit is the random error term. Besides, 
i and t respectively stand for city and year. 

To explore the transmission mechanism of DF affecting 
CMAC. The paper combines the previous analyses, focuses 
on the mechanism test that DF can exert structural, 
technological, and green productivity improvement 
effects, and constructs equations (5)-(6). 

( ) 2 2 2 , .it it it it it i t itLSTRU LTECH LGPE L LDF Control     = + + + + +  (5) 

( )3 3 3 ,it it it it fit i t itLCMAC LSTRU LTECH LGPE Control     = + + + + +  (6) 

Among them, LSTRUit represents industrial structure 
upgrading. LTECHit indicates green technology innovation. 
LGPEit means green production efficiency. 

3.3. Variables selection 

(1). Explained variable. LCMAC: the paper first selects 
input and output indicators (see Table 1 for specific 

measurements), then estimates CMAC using the SBM 
model, and finally takes the logarithm of the estimated 
value to obtain LCMAC. 

(2). Explanatory variable. LDF: the paper refers to the 
practice of most studies and selects the “Peking University 
Digital Finance Index” compiled by Guo et al. (2020) as the 
value of DF, then takes the logarithm of it to get the LDF. 
Considering that the impact of DF on CMAC is usually 
lagged, the paper uses one-period-lagged LDF (L.LDF) to 
represent the explanatory variable in the following 
regression analyses. 

(3). Mechanism variables. Industrial structure 
upgrading (LSTRU): the paper adopts the entropy method 
to process the indicator data containing industrial 
structure rationalization (INDR) and industrial structure 
heightening (INDH) and then takes the logarithm to get 
LSTRU. Green technological innovation (LTECH): the paper 
selects the number of green patent applications (LTECH1) 
and the number of green patent authorizations (LTECH2) 
to represent it. Green production efficiency (LGPE): the 
paper uses the logarithm of green total factor productivity 
(GTFP) to measure it. 

(4). Control variables. Setting control variables is also 
essential to more thoroughly analyze the nexus between 
DF and CMAC. They specifically include fiscal 
decentralization (FI), foreign investment (FDI), 
urbanization (UR), trade openness (TR), human capital 
(HR), and financial development (FD). 

 

Table 1. Variable definitions 

Variables Name Description 

Explained variable LCMAC 

Labor x: Annual total number of employees (unit: 10,000 people) Energy x: Annual electricity 

consumption (unit: 10,000 kWh) Capital x: Fixed asset capital stock (unit: 10,000 yuan), it is 

calculated by perpetual inventory method y: Regional GDP (unit: 10,000 yuan). b: Carbon 

emissions (unit: 10,000 tons) are calculated based on the consumption of electricity, natural 

gas, liquefied petroleum gas, and thermal energy 

Explanatory variable LDF The logarithm of the Peking University Digital Finance Index 

Mechanism variables LSTRU 

After processing the index data of INDR and INDH using the entropy method, the logarithm 

is taken to obtain LSTRU. Among them, 
3 3

1 1

1
1

3
.y l y

n n n

n n

INDR S S INDH S n

= =

= − − =   . Sn
y = Yn/Y, 

denoting the share of value added of the nth industry in GDP. Sn
l = Sn/S, indicating the share 

of actual employment in the nth industry to total employment. 

 LTECH1 The logarithm of the total number of green patent applications 

 LTECH2 The logarithm of the total number of green patent authorizations 

 LGPE 

The logarithm of GTFP (the Super-SBM model is used to measure GTFP. Notably, the input 

and output variables are measured using the same indicators as those used to calculate 

CMAC, except for unexpected outputs, which are measured using industrial sulfur dioxide, 

wastewater, and soot emissions) 

Control variables FI Fiscal budget revenues/fiscal budget expenditures 

 FDI Amount of foreign capital used/regional GDP 

 UR The logarithm of population density 

 TR Total trade exports and imports/regional GDP 

 HR Number of employees/total population 

 FD Balance of deposits and loans of financial institutions/regional GDP 

 

3.4. Data sources 

The paper selects Chinese cities as the sample. The 
research period is 2011-2021. The data on carbon 

emission and control variables are mainly from the EPS 
database and the National Bureau of Statistics. The data 
of mechanism variables are mainly from the EPS database 
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and the State Intellectual Property Office of China. For 
severely missing data, the paper deletes them. For the 
small part of missing data, the paper applies the 
interpolation method to supplement them. For all 
continuous variables, the paper takes the logarithm of 
them. Finally, the relevant data for 264 cities in China are 

obtained, totaling 2,904 observations. Moreover, the 
paper winsorizes all continuous variables at the 1% and 
99% quantiles to prevent outliers from interfering with 
the empirical results. 

 

Table 2. Descriptive statistics 

Variable N mean sd max min 

LCMAC 2,904 9.257 0.805 13.790 5.431 

LDF 2,904 5.109 0.507 5.728 3.567 

LSTRU 2,904 -0.732 0.447 0 -9.210 

LTECH1 2,904 5.069 1.618 9.289 1.609 

LTECH2 2,904 4.590 1.612 8.654 1.099 

LGPE 2,904 -1.448 0.552 0.041 -2.551 

FI 2,904 0.556 0.230 1.218 0.114 

FDI 2,904 0.006 0.007 0.038 0.000 

UR 2,904 6.336 1.117 8.242 2.573 

TR 2,904 0.378 0.572 3.469 0.000 

HR 2,904 0.199 0.108 0.611 0.041 

FD 2,904 1.418 0.711 3.768 0.356 

 

4. Empirical results and analysis 

4.1. Measurement results of CMAC 

Figure 1 shows the measurement results of the average 
annual CMAC of Chinese cities. It is shown that the 
average yearly CMAC increases from 12838.95 in 2011 to 
15057.92 in 2021, with a minimum value of 12838.95 and 
a maximum value of 18677.57. Previously, many studies 
estimated China's CMAC, but the values varied due to the 
measurement methodology, study level selection, and 
study year interval. For instance, Wang et al. (2020) 
measured the CMAC for 30 provinces in China from 2011 
to 2020 and found that the CMAC ranged within the 
interval [15, 20274]. Ji and Zhou (2020) evaluated the 
CMAC for 105 cities in China during 2006-2014. They 
found the CMAC ranged within the interval [1.2, 
70359.46]. Wang et al. (2022b) calculated the CMAC for 
industries in China from 2005 to 2016 and discovered that 
CMAC ranged within the interval of [6300, 54040]. Xu et 
al. (2022) estimated the CMAC of 282 cities in China from 
2003 to 2018 and revealed that the CMAC ranged within 
the interval of [6860, 7790]. Overall, the CMAC calculated 
in the paper is within the range of existing studies. It 
indicates that the CMAC computed in the paper is 
reasonable.  

Additionally, as for the magnitude of change in CMAC, 
CMAC generally shows an upward trend, explicitly 
showing an N-shaped trend of first increasing, then 
decreasing, and finally increasing. At the beginning stage 
of carbon reduction, the resource input of carbon 
reduction tends to be larger than its green output 
benefits. Thus, CMAC is increasing. As green and low-
carbon technologies mature, the resulting green 
innovation spillover effect is noticeable, and the carbon 
production efficiency is high, so the CMAC is getting 
smaller. Notably, CMAC is the lowest and declines the 
fastest in 2017, which corresponds with the research of 

Wang et al. (2022a). The reason is that in 2017, the 
Chinese government released policies such as the Strategy 
for Energy Production and Consumption Revolution (2016-
2030) and the National Carbon Emission Trading Market 
Construction Scheme (Power Generation Sector). These 
policies can stimulate economic activities to be more 
inclined to low-carbon emission reduction by price 
signaling, which contributes to reducing energy use and 
pollutant output. It leads to the substitution costs of low-
carbon technologies for high-carbon technologies being 
lower than the emissions costs, effectively decreasing the 
CMAC. Nevertheless, as the work on carbon reduction 
progresses, it gets harder to mitigate carbon, and the 
costs of inputs are higher, so CMAC is increasing again. 

 

Figure 1. Average annual CMAC measurement results for 

Chinese cities from 2011 to 2021 (unit: yuan/ton) 

4.2. Benchmark model results 

Table 3 shows the benchmark regression results. In 
column (1), only city-fixed and year-fixed effects are 
controlled. It is found that DF significantly reduces CMAC. 
In column (2), the above finding remains the same after 
including the relevant control variables. This may be 
because DF can reduce the difficulty of carbon reduction 
in many ways. For instance, promoting the optimization of 
economic structure, improving the efficiency of financial 
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services, promoting technological innovation, inducing the 
rationalization of market competition, and supporting the 
implementation of green policies. Thus, it is favorable to 
reduce CMAC in Chinese cities. 

Next, the paper analyzes the influence of control variables 
on CMAC. FI and FDI significantly increase the CMAC. UR, 
TR, HR, and FD significantly decrease the CMAC. The 
reasons for the results are as follows. For one thing, fiscal 
decentralization and foreign investment are both oriented 
to economic growth and tend to improve economic 
efficiency by sacrificing the environment, which is 

unfavorable for improving carbon emission efficiency. 
Thus, CMAC will increase. For another, increased levels of 
urbanization, trade openness, human capital, and financial 
development are beneficial for optimizing production 
methods, resource allocation efficiency, and industrial 
structure. They can hasten the development of low-
carbon technologies. Their contributing rate to urban 
economic growth is larger than the increased rate in 
energy consumption, which can improve the efficiency of 
carbon emissions so that CMAC will decrease. 

 

Table 3. Benchmark regression results 

Variables (1) (2) 

 LCMAC LCMAC 

L.LDF -0.8432*** -0.7421*** 

 (0.1462) (0.1399) 

FI  0.1868* 

  (0.0968) 

FDI  8.8603*** 

  (3.1806) 

UR  -0.0687*** 

  (0.0112) 

TR  -0.1347*** 

  (0.0362) 

HR  -0.5466*** 

  (0.1862) 

FD  -0.3029*** 

  (0.0457) 

_cons 13.5234*** 13.8847*** 

 (0.7404) (0.7111) 

City Yes Yes 

Year Yes Yes 

N 2640 2640 

R2 0.7723 0.7891 

Note: *, **, *** mean significant at 10%, 5%, and 1%, respectively. Values in parentheses are heteroskedasticity-robust standard 

errors. The same as below. 

 

4.3. Robustness test 

Firstly, the time width test. The sample time factor may 
affect the accuracy of the benchmark regression results. 
Therefore, the first and last year's sample data are 
excluded from the paper. Secondly, replacing the 
explanatory variable. The measures to reduce carbon 
emissions (e.g., technological inputs, policy 
implementation, etc.) usually take time to show their 
effects. As a result, the paper adopts the one-period-
lagged LCMAC (L.LCMAC) to replace the explanatory 
variables that can be more consistent with the dynamic 
adjustment process of the actual economic activities. 
Thirdly, adding control variables. Omitted variables can 
cause large errors in the statistical results. Given that 
carbon intensity (CI), consumption scale (CS), and 
economic scale (ES) may affect the difficulty of carbon 
emission abatement by changing the demand side 
(consumption pattern) and the supply side (economic 
aggregate). Consequently, the paper adds three more 
control variables (CI, CS, and ES) to the existing control 
variables and then re-runs the regression. The three 

variables are measured as follows. CI: the logarithm of the 
ratio of carbon emissions to GDP. CS: the logarithm of 
total social retail consumption per capita. ES: the 
logarithm of per capita regional GDP. Fourthly, the 
endogeneity test. When using a two-way fixed effects 
model for benchmark regression, problems such as 
omitted variable bias and bi-directional causality of 
variables may result in falsely significant empirical results. 
Accordingly, to verify the sensitivity of the empirical 
results to the methodological assumptions, the paper uses 
the instrumental variable method to test the possible 
endogeneity problem with the help of two-stage least 
squares (2SLS). Based on the two principles of relevance 
and exclusivity that need to be satisfied in the selection of 
instrumental variables, the paper uses the interaction 
term between the spherical distance of prefecture-level 
cities to Hangzhou and the mean L.LDF of other Chinese 
cities as an instrumental variable for L.LDF. Since there is 
multicollinearity between the spherical distance from 
prefecture-level cities to Hangzhou and the regional 
dummy variable, the paper does not control for the city-
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fixed effect here. Unidentifiable tests and weak 
instrumental variable tests are also conducted. In Table 4, 

the coefficients of L.LDF are significantly negative. It 
suggests that DF indeed reduces CMAC in Chinese cities. 

 

Table 4. Various robustness tests 

Variables (1) (2) (3) (4) 

 LCMAC L.LCMAC LCMAC LCMAC 

L.LDF -1.4081*** -0.4093*** -0.8267*** -0.4868*** 

 (0.2153) (0.1446) (0.1287) (0.0500) 

CI   -0.5656***  

   (0.0450)  

CS   0.0205  

   (0.0553)  

ES   0.1973***  

   (0.0493)  

Control Yes Yes Yes Yes 

City Yes Yes Yes No 

Year Yes Yes Yes Yes 

Kleibergen-Paap rk LM statistic    459.547*** 

Cragg-Donald Wald F statistic    1506.195 

Kleibergen-Paap rk Wald F statistic    970.334 

N 2112 2640 2640 2640 

R2 0.8153 0.7620 0.8207 0.1129 

Table 5. Mechanism test: structural effect 

Variables (1) (2) 

 LSTRU LCMAC 

L.LDF 0.7540***  

 (0.0957)  

LSTRU  -0.0564** 

  (0.0259) 

Control Yes Yes 

City Yes Yes 

Year Yes Yes 

N 2640 2904 

R2 0.6839 0.7676 

 

4.4. Mechanism test 

(1) Structural effect 

From Table 5, the coefficients of L.LDF and LSTRU are 
significantly positive, suggesting that the promotion of 
upgrading industrial structure is a channel through which 
DF reduces CMAC. It is because, firstly, DF helps raise 
financial resource allocation efficiency, effectively reduces 
information asymmetry (Hao et al., 2023), and guides 
capital flow to high-tech and green industries. This will 
accelerate the industrial restructuring of cities and prompt 
corporates to increase the green energy usage ratio and 
decrease carbon emissions, thus reducing the difficulties 
and costs of carbon emission reduction. Secondly, DF 
lowers financial service thresholds, expands financing 
channels for corporates, meets the diversified financing 
needs of corporates, and contributes to easing the 
difficulties in financing faced by corporates (Wang and 
Guo, 2022). This will provide powerful guarantees for 
optimizing industrial structure, effectively reducing the 
waste of resources and energy, and help corporates 
decrease their operating costs and environmental 
governance costs, thus lowering the CMAC of cities. 
Thirdly, DF improves the financial structure and provides 

better financial support for the innovation activities of 
urban corporates, therefore enhancing the allocation of 
production factors and driving the low-carbon 
development of corporates (Wu et al., 2023). This will 
facilitate the development of the industrial structure of 
cities towards advanced and rationalized orientation and 
encourage corporates to enhance their innovation 
abilities. This will make the positive effects of increasing 
carbon productivity greater than the negative effects of 
carbon emissions, ultimately reducing the CMAC. 
Accordingly, hypothesis H2 is proved. 

(2) Technological effect 

From Table 6, the regression coefficients of L.LDF, LTECH1, 
and LTECH2 are significantly positive, suggesting that DF's 
green technology innovation effect is a channel to lower 
CMAC. This is because, firstly, DF has the attributes of 
digital technologies, innovation, and greenness, which can 
provide R&D financial support for the innovation system 
of cities. It benefits urban innovators' green technological 
innovation activities (Wu et al., 2023), thereby facilitating 
the advancement of green technologies and decreasing 
carbon emissions. Secondly, DF can increase the 
penetration of digital technologies, which can help expand 
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the supply of green financial products and reduce the 
affordable innovation costs for urban corporates. It can 
facilitate the development of carbon trading markets and 
improve the efficiency of carbon trading, thereby reducing 
CMAC. Thirdly, DF can improve the efficiency of green 
finance services. It will have a squeezing effect on 
industries with high pollution emissions. This will force 
highly polluting corporates of cities to carry out green 

reforms, thus prompting corporates to be more 
concerned about green technological innovations and 
saving energy consumption. Ultimately, it can help 
improve the green economic efficiency of cities and 
reduce CMAC. Accordingly, hypothesis H3 is 
demonstrated. 

 

Table 6. Mechanism test: technological effect 

Variables (1) (2) (3) (4) 

 LTECH1 LCMAC LTECH2 LCMAC 

L.LDF 0.4049***  0.6176***  

 (0.1176)  (0.1179)  

LTECH1  -0.0921***   

  (0.0260)   

LTECH2    -0.1268*** 

    (0.0252) 

Control Yes Yes Yes Yes 

City Yes Yes Yes Yes 

Year Yes Yes Yes Yes 

N 2640 2904 2640 2904 

R2 0.9611 0.7686 0.9622 0.7699 

Table 7. Mechanism test: green productivity improvement effect 

Variables (1) (2) 

 LPEG LCMAC 

L.LDF 0.1526***  

 (0.0180)  

LGPE  -0.2851*** 

  (0.0390) 

Control Yes Yes 

City Yes Yes 

Year Yes Yes 

N 2640 2904 

R2 0.8116 0.7331 

 

(3) Green productivity improvement effect 

From Table 7, the coefficient of L.LDF is significantly 
positive, implying that DF can improve green productivity. 
The coefficient of LGPE is significantly negative, meaning 
that enhancing green production efficiency facilitates the 
reduction of CMAC. This is because, firstly, DF can 
integrate digital technologies into the financial services 
system, improving the coverage and efficiency of financial 
services and promoting an increase in consumption scale 
(Cheng et al., 2024). It will facilitate the efficient flow of 
capital and the rational allocation of factors. 
Consequently, it will break down industrial development 
boundaries and shift the focus of economic development 
to technology-intensive industries to improve the 
efficiency of green development (Liu et al., 2023) and thus 
reduce CMAC. Secondly, DF can satisfy the consumption 
needs of long-tail groups, such as low-income groups and 
rural residents, increasing consumer spending and 
triggering economic expansion (Guo and Tu, 2023). It will 
push the production sectors in cities to improve 
productivity through digital mindset shifts, digital ecology 
optimization, and enhanced digital facilities. As a result, 
cities can invest in carbon reduction more efficiently and 

sustainably, resulting in lowering CMAC. Thirdly, DF can 
improve environmental performance by supporting 
greener consumption patterns. As a result, the carbon 
reduction effect caused by the scale expansion triggered 
by DF is greater than the carbon increase effect, 
ultimately leading to a decrease in CMAC. Accordingly, 
hypothesis H4 is confirmed. 

4.5. Heterogeneity test 

(1) Geographic location differences 

Different regions of China have considerable distinctions 
in energy structure, industrial layout, trade development, 
and pollution emissions. It may cause the development 
environment, corporate entrepreneurship and innovation 
atmosphere, and ecological environment protection 
atmosphere in DF to differ (Cai et al., 2025; Cao et al., 
2021; Guo et al., 2023). Consequently, the carbon 
emission reduction potentials of different regions may be 
heterogeneous (Wang et al., 2017). Accordingly, to 
examine whether the influence of DF on CMAC differs 
according to geographic location, the paper divides the 
regions into eastern, central, northeastern, and western 
cities. 
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In Table 8, DF has the most excellent inhibiting effect on 
CMAC in cities in central China, followed by the northeast, 
the east is the smallest, and the west is not significantly 
affected. It may be attributed to cities in the central and 
northeastern regions having factor cost advantages and a 
strong demand for financial services. They can fully utilize 
the characteristics and benefits of DF to empower 
innovative R&D and resource allocation and have great 
green development space, which can assist in effectively 
reducing CMAC. Secondly, eastern cities have the 
advantages of mature digital technologies, numerous 
financial institutions, well-developed financial services, 
and substantial economic vitality (Guo and Tu, 2023). 
Their industrial structure is superior, the atmosphere of 

innovation and entrepreneurship is intense, and energy 
production efficiency is high. In this case, the financial 
services provided by DF are more of a supplement to the 
original financial mode. Although it is also helpful for 
lowering CMAC, the effect is relatively weak. Thirdly, 
western cities have low levels of digital technologies and 
financial development (Zhao et al., 2023), and the 
construction of new infrastructures is in its infancy. 
Coupled with their disadvantages in human capital, R&D 
strength, market demand, trade openness, and so on, it is 
hard to exert DF's energy-saving and emission-reduction 
efficacy (Hao et al., 2023). Ultimately, it causes the 
influence of DF to decrease CMAC, which is not apparent. 

 

Table 8. Regional heterogeneity test 

Variables (1) (2) (3) (4) 

 East Northeast  Centre West 

 LCMAC LCMAC LCMAC LCMAC 

L.LDF -0.6596*** -1.0449** -1.1581*** -0.4623 

 (0.2243) (0.5058) (0.2422) (0.3555) 

Control Yes Yes Yes Yes 

City Yes Yes Yes Yes 

Year Yes Yes Yes Yes 

N 990 270 760 620 

R2 0.7381 0.8304 0.8228 0.7674 

Table 9. Resource endowment heterogeneity test 

Variables (1) (2) 

 Resource-based Non- Resource-based 

 LCMAC LCMAC 

L.LDF -0.0438 -1.0251*** 

 (0.2511) (0.1738) 

Control Yes Yes 

City Yes Yes 

Year Yes Yes 

N 1070 1570 

R2 0.7794 0.7713 

Table 10. Urban scale heterogeneity test 

Variables (1) (2) 

 Big Small-medium 

 LCMAC LCMAC 

L.LDF -0.5515** -0.5405*** 

 (0.2264) (0.1760) 

Control Yes Yes 

City Yes Yes 

Year Yes Yes 

N 1160 1480 

R2 0.7821 0.7476 

 

(2) Resource endowment differences 

Natural resources are the vital material basis of economic 
development. As an advanced form of finance that 
overlaps and integrates financial and technological 
innovations, DF will inevitably affect natural resource use. 
Notably, resource endowment affects resource 
consumption during changes in production, consumption, 
employment (Cai et al., 2024b), and industries, which can 
exacerbate carbon emissions. The heterogeneity of 
natural resource endowment and distinctions in carbon 
productivity across Chinese cities can affect the nexus 

between DF and CMAC. Thus, the paper tests whether the 
impact of DF on CMAC varies due to differences in urban 
resource endowment. According to the “National 
Sustainable Development Plan for Resource-Based Cities 

(2013-2020)” 1 , the sample cities in the paper are 
categorized into resource-based cities and non-resource-
based cities. 

 
1 https://www.gov.cn/zhengce/content/2013-
12/02/content_4549.htm 
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In Table 9, DF has a greater impact on CMAC in non-
resource-based cities and no impact on CMAC in resource-
based cities. It might be because, for one thing, resource-
based cities usually rely on natural-resource-driven 
industries highly for their development, with lower levels 
of science and technology innovation development and 
higher carbon emission intensities (Xu et al., 2022). When 
this type of cities tries to utilize DF to realize low-carbon 
development, they can hardly take advantage of DF owing 
to its low level of technology, and they will continue to 
choose to sacrifice resources and the environment to 
promote economic development. Hence, DF has no 
apparent influence on the CMAC of this type of cities. For 
another, non-resource-based cities usually rely on 
facilitating technological progress, improving industrial 
structure, and enhancing energy use efficiency to foster 
economic growth. This type of cities can fully utilize DF's 
power to save energy and reduce emissions at lower costs 
and more efficiently. Accordingly, DF is good for lowering 
the CMAC of this type of cities. 

(3) Urban scale differences 

DF is closely related to the scale of the population using IT 
and can adjust the economic scale by affecting the 
stability of financial markets, the consumer behaviors of 
the population, and so on. It thus influences carbon 
emission intensity (Cheng et al., 2024) and subsequently 
affects the CMAC. Notably, China has so many cities that 
different scales of cities will vary in policies, scale of 
financial services, resource allocation, level of innovation, 
and infrastructure development, which will affect the 
nexus between DF and CMAC. Therefore, the paper 
explores whether the nexus between DF and CMAC varies 
because of the different urban scales. The paper classifies 
the sample cities into large cities and small-medium cities. 
Among them, cities with populations over 1 million are 
classified as large cities and conversely as small-medium 
cities. 

In Table 10, compared to small-medium cities, DF has a 
greater impact on CMAC in large cities. It might be 
because, for one thing, the higher quality of economic 
development in large cities helps DF play active functions 
in expanding the scope of financial services, accurately 
controlling financial risks, enhancing the innovation 
output, and assisting the green transformation of 
industries. This can effectively reduce carbon emissions in 

large cities (Guo and Tu, 2023), and this can also help to 
reduce CMAC by further improving carbon productivity 
and reducing marginal energy consumption. For another, 
small-medium cities have a poor economic base, a 
singular industrial structure (Xu et al., 2022), and 
relatively backward IT infrastructure, and the extension of 
DF services is more difficult (Guo and Tu, 2023). This 
lowers the impact of DF on carbon reduction in small-
medium cities, leading to its relatively weak effect on 
lowering CMAC. 

4.6. Further analysis 

According to the theory of cities' spatial structure, there is 
the risk of carbon emissions spreading to neighboring 
areas, which may affect the effectiveness of 
environmental governance in neighboring areas (Wang 
and Guo, 2022). DF can weaken the limitation of 
geographical location and strengthen the spatial linkage 
between the regional economy and environmental 
pollution. It will enable resource factors to achieve better 
cross-regional flows and cause the externalities of 
economic activities to affect the carbon reduction 
behaviors of local and neighboring cities. This can result in 
spatial spillovers from DF on economic development 
quality and energy use efficiency in cities (Zhao et al., 
2023). Ultimately, the opportunity costs of carbon 
reduction in the local and neighboring cities are affected. 
Additionally, relevant studies have found that digital 
technologies have remarkable spatial spillover impacts on 
abating carbon emissions (Liu et al., 2022; Yang et al., 
2024). It will also make the influence of DF on CMAC may 
have spatial spillover effects. Based on this, further 
systematic exploration of the impact of DF on CMAC from 
a spatial perspective is necessary. The paper develops a 
Spatial Durbin Model (SDM) to achieve this. 
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(7) 

Where Wij is the spatial weight matrix. α4 denotes the 

degree of direct influence of DF on CMAC. 1 represents 
the intensity of spatial spillover influence of DF on CMAC. 
The other variables have been described in the 
aforementioned content, so they are not repeated here. 

 

Table 11. Spatial autocorrelation test 

Year Moran's I E(I) Sd(I) Z P 

2011 -0.0322 -0.0038 0.0021 -13.5299 0.0000*** 

2012 -0.0390 -0.0038 0.0021 -16.7441 0.0000*** 

2013 -0.0398 -0.0038 0.0021 -17.1794 0.0000*** 

2014 -0.0563 -0.0038 0.0021 -25.0288 0.0000*** 

2015 -0.0811 -0.0038 0.0021 -36.9038 0.0000*** 

2016 -0.0897 -0.0038 0.0021 -41.0239 0.0000*** 

2017 -0.0559 -0.0038 0.0021 -24.8028 0.0000*** 

2018 -0.0606 -0.0038 0.0021 -27.0755 0.0000*** 

2019 -0.0681 -0.0038 0.0021 -30.6399 0.0000*** 

2020 -0.0625 -0.0038 0.0021 -28.0211 0.0000*** 

2021 -0.0596 -0.0038 0.0021 -26.6291 0.0000*** 
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(1) Spatial correlation test 

Before performing spatial regression, it is essential to test 
whether spatial autocorrelation exists in CMAC. The paper 
uses the geographic distance matrix to calculate the 
Moran's index for CMAC. From Table 11, Moran's index of 
CMAC from 2011 to 2020 is all significantly negative, 
proving the existence of spatial correlation. 

Table 12. SDM regression results 

Variables (1) 

 LCMAC 

L.LDF -0.9920*** 

 (0.1345) 

W*L.LDF -19.1760*** 

 (3.7087) 

Control Yes 

W* Control Yes 

rho -1.7157*** 

 (0.3086) 

sigma2_e 0.1333*** 

 (0.0037) 

City Yes 

Year Yes 

N 2640 

R2 0.0361 

(2) SDM regression 

In Table 12, the coefficients of L.LDF and W*L.LDF are 
significantly negative, which suggests that DF has negative 
spatial spillover effects on CMAC. This is because, for one 
thing, DF can break through spatial and temporal 

constraints, shorten the distance of financial services, and 
reduce information costs. It enhances the correlation and 
exchange of economic activities between cities and helps 
to push the cross-regional optimal allocation of 
production factors and the cross-regional flow of 
technological innovations, thus producing a negative 
spatial spillover influence on CMAC. For another, due to 
the external characteristics of carbon emissions and the 
existence of competition, demonstration, and economic 
linkage effects among cities, carbon emission 
performance shows an obvious spatial spillover function. 
This causes DF to have spatial spillover effects when 
lowering CMAC. 

(3) Spatial spillover decomposition 

Table 13 reports the spatial spillover decomposition 
results. The results reveal that while DF suppresses local 
CMAC, it also reduces CMAC in neighboring cities. This is 
because, for one thing, DF can help inhibit CMAC by 
improving the coverage breadth, using depth, digitizing 
financial services, and promoting the development of the 
local economy in the trend of greening and 
decarbonization. For another, with the development of 
DF, corporates, governments, and other actors between 
neighboring cities can fully utilize digital technologies for 
cooperation and communication. This can enhance the 
positive effects of marketization, green technology 
innovation, industrial structure optimization, consumption 
upgrading, and other effects on carbon reduction, thus 
reducing CMAC. 

 

Table 13. Decomposition results for spatial spillover effect 

Variables (1) (2) (3) 

 Total Direct Indirect 

 LCMAC LCMAC LCMAC 

L.LDF -7.5871*** -0.9133*** -6.6737*** 

 (1.7779) (0.1354) (1.7503) 

Control Yes Yes Yes 

 

5. Research conclusions and policy implications 

5.1. Conclusions 

Firstly, from 2011 to 2021, the CMAC of Chinese cities 
generally shows an upward trend, specifically reflecting an 
N-shaped trend of rising, then falling, and finally rising. 
Secondly, DF can help reduce CMAC through three paths: 
promoting the rationalization and advancement of 
industrial structure, improving green technological 
innovation capacity, and enhancing green production 
efficiency. This means that relevant departments should 
make a more detailed layout when building the DF system 
to support the optimization of industrial structure, 
strengthen the green technology innovation platform for 
digitalization, and promote the digital transformation of 
the production system. Thirdly, the inhibitory role of DF 
on CMAC can be heterogeneous by geographical location, 
resource endowment, and urban scale. Particularly, 
compared to western, resource-based, and small-medium 
cities, DF has a stronger inhibitory role on CMAC in 
eastern, northeastern, central cities, non-resource-based 

cities, and large cities. This means that relevant 
departments should strengthen cooperation and 
exchange between different types of cities in resource 
allocation, energy use, technological reforms, human 
capital, etc., so as to reduce the differences in CMAC 
between different types of cities. Fourthly, DF has 
negative spatial spillover effects on CMAC and can 
suppress CMAC in both local and neighboring cities. This 
means relevant departments should establish more cross-
regional DF cooperation platforms to promote low-carbon 
technology sharing and financial flows and amplify the 
spatial spillover effects. 

5.2. Policy implications 

Firstly, relevant departments should use policy tools or 
financial instruments to strengthen the awareness of 
carbon reduction in cities in all aspects. Specifically, they 
should improve cities' carbon emission statistics and 
accounting system, enhance carbon emission data quality, 
and increase carbon quotas paid allocation in due course 
to help decrease CMAC. Moreover, they should optimize 
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cities' energy conservation and emission reduction work 
plans, improve carbon pricing, carbon market, and 
financial mechanism, scientifically regulate energy 
consumption's total amount and intensity, and effectively 
lower CMAC. 

Secondly, relevant departments should promote the 
whole industry chain to optimize and upgrade various 
industries in cities. Specifically, they should guide social 
capital to invest in cities' low-carbon or zero-carbon 
industries, encourage corporates to actively reform and 
innovate low-carbon technologies, and urge them to 
improve energy use efficiency. Furthermore, they should 
continue to expand the depth and breadth of DF services, 
further advance the digitization process of urban green 
financial institutions, and scientifically adjust the 
optimization efforts of green credit resource allocation. 
Specifically, they should increase financial support for 
clean and environment-friendly corporates, guide highly 
polluting corporates to improve their environmental 
awareness, and encourage them to take the benign 
development path of innovation-driven, intelligent, green, 
and low-carbon. 

Thirdly, relevant departments should implement dynamic, 
differentiated, and precise DF development strategies. 
Specifically, they should formulate targeted and operable 
low-carbon measures based on the actual development of 
different cities and fully tap the DF development potential 
and carbon reduction potential of different cities to 
narrow the differences in the CMAC of different cities. For 
example, central and northeastern cities should increase 
support for DF development, promote green technology 
R&D, optimize factor resource allocation, and magnify 
cost advantages. Eastern cities should further synergize DF 
and traditional finance, focus on green industry upgrading 
and energy efficiency improvement, and strengthen the 
effectiveness of emission reduction. Western cities should 
prioritize the improvement of digital infrastructure and 
financial infrastructure, strengthen the cultivation of 
human capital and the introduction of technology, and 
enhance the resilience of DF infrastructure. Resource-
based cities should prioritize promoting the technological 
upgrading of traditional industries and strengthening DF 
infrastructure support. Non-resource-based cities should 
further promote the in-depth integration of DF and green 
technologies, and improve the green credit incentive 
mechanism and carbon emission trading mechanism to 
make CMAC lower. Large cities should establish cross-
urban technology collaboration platforms to facilitate the 
diffusion of DF's experience in emission mitigation. Small-
medium cities should increase investment in digital 
infrastructure, raise the coverage of inclusive financial 
services, and guide DF to target support for clean energy 
and circular economy projects. 

Fourthly, relevant departments should deepen the 
exchanges between financial institutions and cities and 
encourage cooperation in carbon reduction. Specifically, 
they should further break down the spatial barriers to 
factor flows, reinforce the cross-city flows of DF 
innovations, and prompt the precise allocation of financial 

resources to key areas and weak links in the low-carbon 
transition. Besides, they should conduct multiple 
collaborative activities for urban carbon reduction, 
dynamically adjust the green financial risk prevention 
mechanism, stimulate the innovation and development of 
digital and high-carbon industries, and decrease the costs 
of resource depletion and reduction. 

5.3. Limitations and future prospects 

Although the paper has revealed the influence pattern of 
DF on CMAC from the multi-dimensional perspective, it 
still has a few limitations that require further 
breakthroughs in future studies. Firstly, the indicators for 
measuring DF should be improved. The methodology used 
in the paper to assess the level of DF development focuses 
mainly on the inclusiveness of DF, but it is inadequate in 
portraying the characteristics of DF, such as technological 
nature, security, and high efficiency. Future studies should 
adopt more comprehensive indicators to reflect these 
characteristics of DF. Secondly, the research perspective 
should be expanded. The paper examines the mechanism 
of the impact of DF on CMAC based on the perspective of 
Chinese cities. Future studies can explore the relationship 
between DF and CMAC globally. Thirdly, the time span of 
the research sample should be lengthened. The paper is 
limited by the availability of data and only uses data for 
the period 2011-2021 to test the impact of DF on CMAC. 
Future studies can use the latest available data. 
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