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Abstract 

This article evaluates the performance of 20 models from 
the Coupled Model Intercomparison Project phase 6 
(CMIP6) in simulating precipitation over China from 1981 
to 2014, with a focus on interannual and seasonal 
variations. The evaluations results varying levels of 
performance among the models, with CNRM-CM6-1 
identified as the best model for simulating summer 
extreme precipitation. Based on CNRM-CM6-1, future 
projections of extreme precipitation in China have been 
conducted. The results indicate that under the SSP245 
scenario, maximum rainfall is projected to increase 
primarily in southern China and southeastern Tibet. 
Across all extreme indices, a distinct spatial pattern 

emerges, characterized by a "Southeastern High –

Northwestern Low" distribution throughout the study 
period. Under the SSP585 scenario, the spatial distribution 
of extreme indices mirrors that of the SSP245 scenario. 
However, in the late 21st century, peak values of extreme 
rainfall indices under the SSP585 scenario are significantly 
higher than those observed under the SSP245 scenario. 
For total precipitation, the differences between the 
SSP585 and SSP245 scenarios are not significant prior to 
2070. However, for other indices (SDII, RX1day, R95p), the 
differences between the two scenarios remain minimal 
before 2050. After 2050, extreme precipitation indices 
under the SSP585 scenario become significantly higher 
than those under the SSP245 scenario. 

Keywords: Extreme precipitation; future projections; the 
coupling model intercomparison program in phase 6 
(CMIP6); simulation performance 

1. Introduction 

Studies have unequivocally demonstrated the profound 
negative impact of extreme climate events on both the 
economy and people's livelihoods. With the continued 
progression of global warming, extreme precipitation 
events are increasingly intensifying. This escalation 
manifests in a range of catastrophic consequences, 
including floods, landslides, and soil erosion, which 
impose a significant burden on society, the environment, 
and ultimately, human life safety (Wang et al., 2020; 
Nicholson et al., 2017; Croitoru et al., 2016; Brown and 
Funk, 2008; You et al., 2013; Arun Mozhi et al., 2024; 
Jasmine et al., 2025; Nirmal et al., 2025). The intensity 
shift of regional extreme precipitation shows an almost 
linear correlation with the scale of global warming. In 
essence, the projected magnitude of future global 
warming correlates with a more pronounced increase in 
precipitation intensity (Qiu et al., 2022). 

The intensification of extreme rainfall stands as one of the 
anticipated impacts of a warming climate (Douville et al., 
2021; AghaKouchak et al., 2020) for the increase in global 
extreme precipitation events, there is approximately a 7% 
increase for every 1 Kelvin rise (IPCC, 2021; Li et al., 2021; 
Wehner, 2020; Wang et al., 2022; Babu et al., 2025; 
Suresh et al., 2025). The majority of variations show 
increasing trends, accompanied by marked regional 
heterogeneity (Yuan et al., 2017). Xiang et al. (2021) 
estimated extreme precipitation in China based on CMIP6 
data and projected a significant increase in regional 
extremes from 2021 to 2100. However, their analysis was 
based on only 14 models, with projections derived from a 
single selected model. Therefore, further comprehensive 
and robust investigations are warranted to refine and 
expand upon these findings. 

Global Climate Models (GCMs), as crucial tools for 
predicting extreme climate events, have garnered 
increasing attention from researchers in recent years (Zhu 
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et al., 2020; Akinsanola et al., 2021). Although extreme 
precipitation events are projected to intensify under 
global warming, substantial uncertainties remain in GCM-
based projections, particularly regarding simulation of 
regional and extreme precipitation (Eyring et al., 2016). 

In China, CMIP5 models have been shown to reasonably 
capture the climatological mean state and trends of 
extreme precipitation to some extent (Chen and Sun, 
2015). Furthermore, projections suggest that the rate of 
increase in extreme precipitation may surpass the global 
average (Sillmann et al., 2013). Across Asia, extreme 
heavy precipitation is projected to increase by at least 

100% under 1.5C and 2C global warming scenarios (Xu 
et al., 2017). However, CMIP5 models exhibit notable 
limitations in simulating extreme precipitation. For 
example, while most models can capture the temporal 
trends of extreme precipitation events (Ou et al., 2013), 
significant biases are evident in their simulations of total 
and extreme precipitation over western China (Jiang et al., 
2015), particularly in regions with relatively low 
precipitation levels. Moreover, existing studies have 
indicated that while the CMIP5 models provide valuable 
reference for predicting the frequency and intensity of 
future extreme precipitation events, their regional details 
and simulation accuracy remain limited (Zhou et al., 2014, 
2019; Li et al., 2016; Wang et al., 2017, 2019; Peng et al., 
2018; Xu et al., 2018; Karthik et al.,2025). These 
limitations underscore the need for continued 
advancements in climate model development. 

In response to these challenges, CMIP6, as the latest 
update from the CMIP organization, represents a 
significant step forward by offering new opportunities for 
estimating climate variables. CMIP6 features enhanced 
spatial resolution and a more refined parameterization of 
key physical processes, addressing some of the 
deficiencies observed in CMIP5 (Eyring et al., 2016). A key 
improvement in CMIP6 is the incorporation of the Shared 
Socioeconomic Pathways (SSPs), which provide a more 
comprehensive framework for exploring future climate 
scenarios. Among these, SSP585 represents a high 
greenhouse gas emission scenario, characterized by rapid 
economic growth and limited climate change mitigation 
efforts, while SSP245 reflects an intermediate emission 
scenario with moderate mitigation actions and a focus on 
sustainability. These scenarios allow for a more detailed 
and systematic examination of future climate conditions 
and their potential impacts. Evaluating the ability of GCMs 
under CMIP6 to replicate historical precipitation events 
can provide valuable insights into improving future 
climate forecasts (Prein et al., 2017; Bai et al., 2007; Chen 
et al., 2012). 

CMIP6 models have shown significant improvements in 
spatial resolution and physics, including a refined 
parametrization of aerosol effects (Eyring et al., 2016; 
Gusain et al., 2020). The results from CMIP6 models 
incorporate more complex and revised parametric 
approaches for dynamical processes, and introduce a new 
emission scenario for projections (O'Neill et al., 2014; 
Gusain et al., 2020). Hence, enhancing the capability of 

CMIP6 models to simulate extreme rainfall remains 
critical, as this represents a major source of uncertainty in 
climate change projections (Kawai et al., 2019; Park et al., 
2019). Recent efforts to evaluate and predict climatic 
extremes have been conducted using CMIP6 models (Jiang 
et al., 2020; Chen et al., 2020b). Chen et al. (2020b) 
reported that the CMIP6 multi-model median ensemble 
(MME) demonstrated overall improvements in simulating 
global climatic means and extremes compared to CMIP5, 
with reduced model uncertainties. In China, it is 
anticipated that both temperature and rainfall will 
increase by the end of the twenty-first century, with the 
most significant increases in annual precipitation expected 
in northern and western regions (Yang et al., 2021). 
Numerous global studies have shown an overall 
improvement in the ability of climate models to simulate 
extreme rainfall. However, in regions with complex 
topography such as the Qinghai-Tibet Plateau, the 
improvement over CMIP5 models remains limited (Lun et 
al., 2021). However, these studies have mainly focused on 
the performance of annual average precipitation or a 
single extreme precipitation index of the CMIP6 model, 
with few systematic studies conducted on their overall 
performance. 

This study evaluates the performance of 20 GCMs models 
from CMIP6 in simulating regional precipitation across 
China and investigates the spatiotemporal variations of 
extreme precipitation indices under SSP245 and SSP585 
scenarios. The main objectives are to identify the most 
suitable model for simulating summer precipitation and to 
characterize future changes in extreme precipitation 
across different periods. By systematically assessing 
model performance, the study offers critical insights into 
model selection for future climate applications. The 
results have important implications for the sustainable 
management and planning of water resources in China 
under changing climate conditions.  

2. Data and methods 

2.1. Data 

This study used the CN05.1 grid dataset, which is 
interpolated from observational data recorded at over 
2400 ground-based meteorological stations in China. The 
dataset used in this study was provided by the Climate 
Change Research Center, Chinese Academy of Sciences 
(https://ccrc.iap.ac.cn/resource/detail?id=228). It was 
subjected to strict quality control and homogenization 
checks before release. This dataset, which is used widely 
in precipitation research in China, has spatial resolution of 

0.25 (approximately 25 km  25 km). The historical data 

for the years 1981–2014 were used in this study. 

The first version of the NASA Earth Exchange Global Daily 
Downscaled Projections (NEX-GDDP) dataset, NEX-GDDP-
CMIP5, was released in 2015 and has been widely applied 
in studies of climate change impacts at both global and 
local scales (Kumar et al. 2020; Zhang et al., 2019; Zeng et 
al., 2019). The latest version, NEX-GDDP-CMIP6, includes 
downscaled data from 35 models spanning 1950 to 2100 
(covering both historical and future periods) based on 



 

 

CMIP6 model outputs (Thrasher et al., 2022; Zhang et al., 
2024). The bias correction and spatial disaggregation 
(BCSD) method was applied to the NEX-GDDP-CMIP6 
dataset to uniformly downscale the original CMIP6 output 

to daily data with a spatial resolution of 0.25. The NEX-
GDDP-CMIP6 dataset was calibrated using a global 
meteorological forcing dataset, which incorporated both 
reanalysis data and observations (Sheffield et al., 2006; 
Thrasher et al., 2022). 

Considering the consistency of scenarios and time periods, 
we selected 20 downscaled model simulations (Table 1) 

with daily precipitation data spanning 2025–2100 under 

two SSP-RCP scenarios (SSP245 and SSP585) across China 
to predict future extreme precipitation indices. Detailed 
information and documentation on the NEX-GDDP-CMIP6 
dataset are available online at 
https://www.nccs.nasa.gov/services/data-
collections/land-based-products/nex-gddp-cmip6. 

 

Table 1 Basic Information on 20 CMIP6 Global Climate Models 

 

This high-quality downscaled dataset is well-suited for 
evaluating the impacts of climate change on processes 
sensitive to small-scale climate gradients and topographic 
influences. It enables detailed analyses of climate 
characteristics at the watershed scale.  

2.2. Methods 

Accurate observational precipitation data are crucial for 
evaluating the precipitation simulation capabilities of 
selected models. This study used daily precipitation data 
from the CN05.1 dataset as reference to evaluate the 
ability of 20 models to simulate the NEX-GDDP 
precipitation patterns from 1981 to 2014. All calculations 
were performed using MATLAB R2023a and ArcGIS 10.8. 

2.2.1. Evaluation and analysis methods 

The calculation formula for the correlation coefficient (CC) 
is given by Equation 1 (Dong et al., 2015):  
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The standard deviation (SD) calculation formula is given by 
Equation 2: 
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The formula for calculating the root mean square error 
(RMSE) is given by Equation 3: 
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In Equations (1)–(3), Yi, obs represents the observed rainfall 
data of the i-th station; Yi, sat represents the pattern 

rainfall data of the i-th station, obsY represents the average 

observed rainfall at the station; satY represents the 

average models rainfall of the station; Xi represents the 
statistical values of each station; X̄ is the average value of 
indices for each station; N is the number of stations.  

2.2.2. Extreme precipitation indices (EPIs) 

The Expert Group on Climate Change Monitoring and 
Extreme Climate Event Indicators (ETCCDI) of the World 
Meteorological Organization proposed a set of extreme 
climate event indices at the Climate Change Monitoring 
Conference from 1998 to 2001, which subsequently 
formed unified guidelines in the field of climate change 

No. Names Country (region) 
CMIP6 mode original resolution 

(Longitude × Latitude) 
NEX-GDDP resolution 
(Longitude × Latitude) 

1 ACCESS-CM2 Australia 1.9 × 1.3 0.25× 0.25 

2 ACCESS-ESM1-5 Australia 1.9 × 1.2 0.25 × 0.25 

3 CanESM5 Canada 2.8 × 2.8 0.25 × 0.25 

4 CMCC-CM2-SR5 Italy 1.3 × 0.9 0.25 × 0.25 

5 CMCC-ESM2 Italy 1.3 × 0.9 0.25 × 0.25 

6 CNRM-CM6-1 France 1.4 × 1.4 0.25 × 0.25 

7 CNRM-ESM2-1 France 1.4 × 1.4 0.25 × 0.25 

8 EC-Earth3 European Union 0.7 × 0.7 0.25 × 0.25 

9 EC-Earth3-Veg-LR European Union 1.1× 1.1 0.25 × 0.25 

10 FGOALS-g3 China 2.0 × 2.3 0.25 × 0.25 

11 GFDL-CM4(gr1) America 1.0 × 1.0 0.25 × 0.25 

12 GFDL-CM4(gr2) America 1.0 × 1.0 0.25 × 0.25 

13 GFDL-ESM4 America 1.0 × 1.0 0.25 × 0.25 

14 GISS-E2-1-G America 2.5 × 2.0 0.25 × 0.25 

15 INM-CM4-8 Russia 2.0 × 1.5 0.25 × 0.25 

16 INM-CM5-0 Russia 2.0 × 1.5 0.25 × 0.25 

17 IPSL-CM6A-LR France 2.5 × 1.3 0.25 × 0.25 

18 MIROC6 Japan 1.4 × 1.4 0.25 × 0.25 

19 MIROC-ES2L Japan 2.8 × 2.8 0.25 × 0.25 

20 MPI-ESM1-2-HR Germany 0.9 × 0.9 0.25 × 0.25 



 

 

research. The fourth report of the IPCC redefined extreme 
climate, with 27 indices identified as core indices (Croitoru 
et al., 2016). However, there is a strong correlation 
between different indices. This article selects four indices, 
which represent total rainfall (annual average rainfall), 
rainfall intensity (total rainfall/rainfall days), maximum 
daily rainfall (maximum daily rainfall per year), extreme 

rainfall (total rainfall with daily rainfall exceeding 95% 
threshold per year) are shown in Table 2. 

Based on the selected extreme indices, we analyzed the 
changes in extreme indices from 2025 to 2100 under 
different scenarios. 

 

Table 2 Extreme Precipitation Index (Wet days are defined as days with precipitation>1 mm) 

Index Definition Unit 

AMP annual average rainfall mm 

SDII total rainfall/rainfall days mm/day 

Rx1day maximum daily rainfall per year mm 

R95p total daily rainfall exceeding 95% threshold per year mm 

 

3. Results and discussions 

3.1. Evaluation of simulation ability of models 

3.1.1. Evaluation of simulation capability for spatial 
climate state characteristics 

To assess the capability of simulating average annual 
precipitation in China using downscaled data from NEX-
GDDP-CMIP6, this study calculated the averages of 
observed data, model outputs, and their differences 
(Figure 1). Based on the observations and multi-model 
ensemble (MME) mean, the results reveal significant 
spatial heterogeneity in multi-year average precipitation 
across China, decreasing from over 1600 mm in the 
southeast to less than 200 mm in the northwest (Figure 
1a, b). The MME mean more effectively reproduces the 
spatial distribution characteristics of observed annual 
mean precipitation. As shown by the difference between 
observations and the MME mean (Figure 1c), the MME 
tends to underestimate the average annual precipitation 
by more than 150 mm in most parts of China, especially in 
the south and northwest. Notably, in Tibet, the MME 
mean significantly overestimates the precipitation, with 
differences exceeding 150 mm.  

 

Figure 1. The CMIP6 model downscale data simulates the spatial 

characteristics of the annual average precipitation from 1981 to 

2014. (a) is the observed value, (b) is the MME mean, and (c) is 

the difference field between the MME mean and the observed 

values. There is no observed data in Taiwan, China, which is not 

included in the statistics 

3.1.2. Evaluation of simulation capability for spatial 
climate state characteristics of seasonal 
precipitation 

This study further assessed the ability of CMIP6 model 
downscaled data to reproduce the spatial patterns of 
seasonal precipitation in China (Figure 2). Based on 
observations, the spatial distribution of average spring 

precipitation in China exhibits a gradient, with higher 
values in the southeast and lower values in the northwest 
(Figure 2a). In the southeast, average spring precipitation 
exceed 500 mm, while in the northwest it is less than 20 
mm. The MME mean for spring generally captures this 
distribution, though the region with very low precipitation 
(<10 mm) in the northwest is larger than observed (Figure 
2b). The difference between the MME mean and 
observations indicates relatively small discrepancies in the 
northern China, with an error range of approximately ±25 
mm. Most areas in the south show moderate differences 
(around 50 mm), while anomalies of around 50 mm are 
more prevalent in the hinterland and southern parts of 
the Qinghai-Tibet Plateau. In summer, observed national 
average precipitation is higher than in other seasons, with 
maximum values exceeding 500 mm in southern and 
southeastern China, and minimum values below 50 mm in 
the northwest (Figure 2d). The MME mean replicates the 
overall spatial pattern, but underestimation in the 
northwest is more pronounced, particularly in south 
western Xinjiang, where the average annual precipitation 
is below 10 mm. (Figure 2e). The difference between the 
MME mean and the observation (Figure 2f) indicates that 
the MME mean is underestimated in most regions of the 
country, but clearly overestimated in the Qinghai-Tibet 
Plateau. 

In autumn, both the observational data and MME mean 
depict a spatial distribution pattern with high precipitation 
levels in the southeast and low levels in the northwest. 
The high values are concentrated in the southeast, 
exceeding 200 mm, while the low values are 
predominantly found in the northwest, with less than 20 
mm of precipitation (Figure 2g, h). The variation in 
average precipitation during autumn suggests that the 
error in the MME mean for this season is relatively low. 
Specifically, there is a relatively minor deviation observed 
in central China, eastern China, and northern Xinjiang. 
However, there is a slight overestimation, exceeding 25 
mm, in the southern part of the Qinghai-Tibet Plateau. 
Notably, the overestimation in Sichuan province is less 
pronounced compared to that in spring and summer 
(Figure 2i). 

In winter, the results show that except for the 
southeastern region where precipitation averages higher 
(100-500 mm), most regions across the country 



 

 

experience lower precipitation levels (<50 mm). The MME 
mean reflects a similar spatial distribution as observed. 
However, the phenomenon of reduced precipitation in 
the northern areas is more extensive, with levels dropping 
below 10 mm (Figure 2j, k). The discrepancy in average 
winter precipitation suggests that the MME mean slightly 
underestimates precipitation in the southeastern part of 
China, while it slightly overestimates (with an 
approximate 25-50 mm underestimation) precipitation 
along the western edge of China (Figure 2l).  

Overall, MME mean effectively captures the spatial 
variability of seasonal annual precipitation across China. 
However, it tends to overestimate precipitation in the 
Qinghai-Tibet Plateau, while underestimating it in most 
other regions. 

 

Figure 2. The CMIP6 model downscale data simulates the spatial 

characteristics of precipitation in different seasons from 1981 to 

2014. The first to fourth rows represent spring, summer, 

autumn, and winter, with the leftmost column representing the 

observed values, the middle column representing MME mean, 

and the rightmost column representing the difference between 

the MME mean and the observed values 

 

Figure 3. Ratio of standard deviation of downscale annual 

precipitation to standard deviation of observed values for each 

CMIP6 model from 1981 to 2014 

3.1.3. Spatial evaluation indices for precipitation 

This study further investigated the SD ratio, and RMSE at 
each model grid point compared to observations (Figure 3 
and Figure 4).  

The standard deviation ratio is notably higher in the 
southwest (>2), indicating relatively larger amplitude in 
this region. Although the simulated amplitudes in most 
regions are close to the observed values, they are 
generally lower, likely due to smoothing of the model 
values (Figure 3). Figure 4 illustrates that each model 
demonstrates lower root mean square error in northern 
China but higher error in the southern region, suggesting a 
higher error in the south compared to the north. 

 

Figure 4. RMSE between the SD of downscale annual 

precipitation and observed values for each CMIP6 model from 

1981 to 2014 (unit: mm) 

In order to further evaluate the spatial characteristics of 
the average annual precipitation of various models in 
China, this study used Taylor plots to evaluate the spatial 
characteristics of the total annual precipitation. 

 

Figure 5. Taylor plot of the average annual precipitation 

simulated by the downscaling models of the CMIP6 model. The 

radian scale is CC, y-axis is the ratio of the standard deviation 

(STD) between the simulated and observed values, the green 

semicircle represents RMSE, (a) year, (b) spring precipitation, (c) 

summer precipitation, (d) autumn precipitation, and (e) winter 

precipitation 



 

 

According to Figure 5a, at the annual scale, the spatial 
correlation coefficient (R) between all model grid points 
and observation grid points in the 20 models ranges 
between 0.9 and 0.95. This suggests that the simulated 
annual precipitation from each model exhibits a high 
correlation coefficient with observed values regarding 
spatial climate patterns. The standardized standard 
deviation of the total annual precipitation simulated by all 
models is approximately 0.9, indicating that the spatial 
distribution differences of the model simulation values are 

slightly smaller than the observed values, implying slightly 
smaller spatial fluctuation amplitudes. The central root 
mean square error of the simulated annual average 
precipitation for each model is around 0.4, indicating a 
small error. The differences in the three indicators among 
each model in the Taylor plot are relatively small, 
suggesting that the MME mean yields a better simulation 
effect on the climate state of the annual average 
precipitation in China. 

 

 

Figure 6. The spatial performance of different seasonal patterns was sorted (a) Spring Precipitation, (b) Summer Precipitation, (c) 

Autumn Precipitation, (d) Winter Precipitation 

 

Figure 7. Annual mean change trend of extreme indices under two scenarios 

 



 

 

According to Figures 5b-e, across seasons, the spatial CC 
between all model grid points and observation grid points 
in the 20 models exceeds 0.9, except for summer where it 
falls slightly below 0.9. This suggests a high correlation 
between the total simulated seasonal precipitation in 
each model and observed values in terms of spatial 
climate patterns. The STD of total seasonal precipitation 
simulated by all models is slightly below 1, indicating that 
spatial distribution differences in model simulation values 
are slightly smaller than observed values, implying a 
slightly reduced spatial fluctuation amplitude. The RMSE 
of each model in simulating seasonal precipitation is 
approximately 0.4, indicating minimal error. Variations in 
these indicators among models in the Taylor plot are 
relatively small, indicating a favorable average simulation 
effect of each model and model set on the seasonal total 
precipitation climate state in China. Based on the CC, STD, 
and RMSE values in the Taylor plot, and employing the CRI 
ranking method, this study ranked the spatial 

performance of different seasonal patterns, as depicted in 
Figure 6. The top five patterns in spring spatial 
performance rankings are MIROC-ES2L, INM-CM5-0, 
CMCC-ESM2, EC-Earth3-Veg-LR, and GFDL-CM4 (gr1). The 
top five modes in summer rankings are CNRM-CM6-1, 
ACCESS-ESM1-5, IPSL-CM6A-LR, CanESM5, and EC-
Earth3.The top five modes in autumn rankings are CNRM-
ESM2-1, CNRM-CM6-1, ACCESS-CM2, ACCESS-ESM1-5, 
and INM-CM4-8.The top five modes in winter rankings are 
MIROC, ACCESS-CM2, ACCESS-ESM1-5, GFDL-ESM4, and 
CMCC-ESM2.Overall, for different seasons, even for the 
same precipitation indicator (total precipitation), the 
ranking of the patterns varies. Since extreme precipitation 
in China primarily occurs during summer, the analysis of 
future extreme precipitation is based on the highest-
ranked model for the summer season, CNRM-CM6-1. 
Projections were conducted under two scenarios. 

 

 

Figure 8. Spatial changes of extreme precipitation indices under SSP585 

 

Figure 9. Spatial changes of extreme precipitation indices under SSP245 

 



 

 

3.2. Analysis of EPIs in future 

3.2.1. Changes in extreme precipitation indices under two 
scenarios 

Figure 7 presents the annual average values of each 
extreme indicator over time under the SSP245 and SSP585 
scenarios. It's worth noting that, in the early 21st century, 
there was negligible disparity in SDII between the two 
scenarios. However, as time progressed, although both 
scenarios exhibited an increasing trend, the SDII value 
under the SSP585 scenario surpassed that under the 
SSP245 scenario, reaching a maximum annual average of 
4.39 mm/day. The Rx1day trend closely mirrors that of 
SDII, with its peak value reaching 33.75 mm in the late 
21st century. R95pTOP demonstrates similar changing 
characteristics, and by the late 21st century, there was a 
notable disparity in the annual mean of R95pTOP between 
the two scenarios. Under the SSP585 scenario, the highest 
value reached 314.77 mm, approximately 40 mm higher 
than under the SSP245 scenario. 

In the near and mid-21st century, there was no discernible 
difference in AMP between the two scenarios. However, 
by the end of the century, the AMP value under the 
SSP585 scenario gradually exceeded that under the 
SSP245 scenario. The highest AMP value under the SSP585 
scenario reached 791 mm, about 82 mm higher than that 
under the SSP245 scenario. 

Based on the temporal variation patterns of various 
extreme indicators, it becomes apparent that in the 
future, extreme precipitation will exhibit a more 
pronounced upward trend in response to scenario 
changes, indicating an overall increase in extreme 
precipitation. The recent increase in the 21st century has 
been relatively gradual, with minimal discrepancies 
between scenarios. However, the rate of increase from 
the mid to late 21st century has progressively accelerated, 
leading to more noticeable differences between 
scenarios.  

3.2.2. Spatial changes in extreme precipitation indices 
under two scenarios 

Emission scenarios have a significant impact on both the 
magnitude and spatial distribution of extreme 
precipitation. Figure 8 shows the spatial distribution of 
extreme precipitation indices under the SSP585 scenario. 
Under this scenario, the spatial distribution of extreme 
precipitation indices exhibits a gradual increase, 
increasing from northwest to southeast.  

The SDII is higher in southeastern Tibet, as well as in 
Hainan, Guangdong, and Jiangxi provinces, indicating that 
under high-emission scenarios, these regions are expected 
to experience higher rainfall intensities, with a maximum 
value of up to 12.8 mm/day. The spatial distribution trend 
of the maximum one-day precipitation (R1xday) is similar 
to that of SDII. Regions with values between 15 mm and 
45 mm cover a broader area compared to other 
precipitation intensity ranges, with the highest values 
primarily located in Hainan and coastal Guangdong.  

The AMP (annual maximum precipitation) also reaches its 
highest values in the southeastern coastal regions of 

China, peaking at 2254 mm. The distribution of R95p 
(precipitation on very wet days) closely resembles that of 
R1xday, with areas exceeding 300 mm accounting for 
nearly half of the total area. 

Figure 9 shows the spatial distribution of extreme 
precipitation indices under the SSP245 scenario. The 
spatial distribution is similar to that under the SSP585 
scenario, both exhibiting a stepped pattern with an 
increasing trend from northwest to southeast. The highest 
SDII value is slightly lower than that under the SSP585 
scenario, at 11.65 mm/day. The distribution trend of the 

Rx1day is similar to that of SDII, with the 15–45 mm range 

covering a broader area compared to other precipitation 
values, and the highest value is also lower than that under 
the SSP585 scenario. The distribution area of AMP is 
almost identical to that under the SSP585 scenario, but 
the highest value is slightly higher. The distribution area of 
R95p is nearly the same as under the SSP585 scenario, but 
its highest value is slightly lower. 

Based on the above analysis, R95p and SDII have shown 
significant increases in East and South China, indicating a 
trend toward more concentrated precipitation in these 
regions. Notably, Southwest and Central China have also 
experienced substantial rises in extreme precipitation 
indices, suggesting an elevated risk of heavy rainfall 
events in the future. Although increase in extreme 
precipitation intensity are also observed in Northwest, 
Northeast, and North China, the magnitude of change in 
these areas is comparatively lower. These findings are 
consistent with previous studies (Zhu et al., 2021; Xu et 
al., 2022), further underscoring the regional variations in 
precipitation trends and their potential implications for 
future climate scenarios. 

Compared with previous research, this provides a more 
comprehensive assessment of projected shifts in extreme 
precipitation across different regions of China. It considers 
the distinct response patterns of extreme precipitation to 
climate warming under two socio-economic scenarios. 
Our analysis highlights the similar trends in extreme 
precipitation changes across Central and Southwest China. 
Furthermore, we observe a discernible escalation in the 
rate of extreme precipitation intensity across Northwest, 
North, and Northeast China, accompanied by a significant 
elevation in R50. Importantly, the precipitation dynamics 
observed in East and South China depict a more focused 
trend, characterized by a substantial surge in R50 and 
similar change rates. 

Improving pattern performance involves more than 
enhancing model resolution. When resolution upgrades 
do not significantly improve overall model performance, 
pattern performance remains unchanged (Wang et al., 
2014). This observation helps elucidate why CMIP6's 
capacity to simulate average extreme precipitation 
significantly improves in arid and semi-arid regions 
following resolution enhancements, whereas the 
improvements are less pronounced in humid regions. 
Additionally, addressing the reduction of uncertainty 
between models stands as a pivotal focus for refining the 
accuracy of long-term precipitation climate predictions, 



 

 

necessitating further in-depth investigation (Zhou et al., 
2020).  

4. Conclusions 

The primary objective of this study was to evaluate the 
performance of CMIP6 models in simulating precipitation 
patterns across China. The analysis results indicate a clear 
trend of increasing extreme precipitation events 
throughout the country, consistent with findings from 
Seneviratne et al. (2012), who projected that climate 
change would lead to an increase in the frequency and 
intensity of extreme weather events on a global scale. For 
this assessment, data from 20 models were selected and 
analyzed based on availability, ensuring a comprehensive 
evaluation of precipitation trends. The results show that 
several models exhibit satisfactory performance, with 
future projections of extreme precipitation indices 
revealing varying trends. The key findings of this study can 
be summarized as follows: 

(1) The study projects a clear upward trend in extreme 
precipitation events under both future climate scenarios, 
with significant regional variations. The spatial distribution 
of inter-annual precipitation deviations across China, as 
simulated by various models, reveals a consistent 
underestimation in the central and southeastern regions 
(approximately 150 mm lower), while the hinterland and 
southern regions of the Qinghai-Tibet Plateau show a 
significant overestimation (approximately 150 mm 
higher). These discrepancies are likely influenced by the 
high altitudes and complex terrain of the plateau, which 
may limit the model's ability to accurately simulate 
precipitation in these regions. 

(2) The models generally perform well in simulating the 
spatial distribution of average annual precipitation across 
China, with errors generally within 10%. Among the 
various models, CNRM-CM6-1 demonstrated the best 
performance in simulating summer precipitation, 
according to seasonal evaluation results. 

(3) Under the SSP245 scenario, extreme precipitation is 
projected to increase significantly, particularly in 
southeastern China and southeastern Tibet. The spatial 
pattern follows a southeast-to-northwest gradient, with 
the highest CWD reaching 53.5 days in the southwest by 
the late 21st century, while remaining below one day in 
the northwest. Under SSP585, these trends are further 
intensified, indicating a more severe future hydrological 
regime. These findings underscore the importance of 
implementing region-specific climate adaptation 
strategies. 

This study provides valuable insights into future extreme 
precipitation patterns across China but is limited by 
challenges in accurately simulating regions with complex 

topography, such as the Qinghai–Tibet Plateau. Model 

biases in high-altitude areas underscore the need for 
higher spatial resolution and improved representation of 
orographic effects. While consistent with previous 
projections (Xu et al., 2017; Jiang et al., 2021), our findings 
offer enhanced regional granularity and reveal marked 
spatial heterogeneity, particularly in southeastern and 
plateau regions. Future efforts should focus on refining 

model performance in complex terrains and employing 
high-resolution downscaling to support localized climate 
risk assessments.  
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