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Abstract 16 

 17 

Floods are among the most destructive natural 18 

calamities, endangering both people and 19 

property. The present project aims to create a 20 

mesoscale state-wide flood risk map for the 21 

Chennai district in Tamil Nadu, India, using 22 

drone data and a GIS-MCDA model. The 23 

Chennai cloudburst of 2023 was a disastrous 24 

meteorological event that caused widespread 25 

flooding and damage, killing over 50 people. As 26 

a result, creating a flood risk map is critical for 27 

mitigating future calamities. In the present 28 

investigation, a flooding risk map created with 29 

drones is used to estimate damage assessment, 30 

create risk susceptibility zone maps, predict 31 

disasters, propose alternatives, and manage 32 

rescue and rehabilitation by considering flood 33 

risk variables such as precipitation (mm), 34 

proximity to river (km), Digital Elevation 35 

Models, DEM (m), slope (%), Land Use and 36 

Land Cover, LULC, drainage rate (km/km2), 37 

type of soil, and lithology. The results of this 38 

study may provide policymakers and managers 39 

with more full information and precise ideas 40 

concerning systems for early warning, rescue 41 

activities, and flooding mitigation strategies. 42 

 43 
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1. Introduction 48 

 49 

Floods are one of the most devastating natural 50 

catastrophes because they risk both life and 51 

property [1] [2]. Flooding has grown 52 

increasingly frequent as a consequence of 53 
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growing populations, industrialization, and 54 

changing climates [3] [4][5][6]. It is an 55 

unavoidable event that will most certainly 56 

intensify humanity's existence in the next years 57 

and jeopardize several regions throughout the 58 

planet. The existing and potential sensitivity to 59 

flood events needs a significant amount of 60 

geographic and temporal data for anticipating 61 

floods in the future [7] [8] [9]. To decrease 62 

storm-related hazards and damages, it is 63 

required to assess the risk of floods, locate 64 

storm-prone areas, and implement appropriate 65 

mitigation and control measures. Flood risk 66 

assessment is useful for prevention measures, 67 

warning mechanisms, and rescue strategies [10]. 68 

In disaster assessments, computational 69 

approaches are widely used for assessing flood 70 

risk [11] [12]. Hydrodynamic and hydrologic 71 

models are commonly used to assess floods 72 

severity, degree, and recurrence [13]. In 73 

particular, rainwater-runoff models and stream 74 

navigation models are presently utilized to 75 

forecast floods [14][15], as well as the run-off 76 

yielding method, a type of hydrologic 77 

framework, to investigate the flooding path in 78 

channels of flow [16]. Such models are capable 79 

of processing vast amounts of data and provide 80 

useful flooding data. An extremely difficult and 81 

pervasive component of these systems is a lack 82 

of hydro meteorological monitoring [17]. 83 

Furthermore, there is a shortage of precise 84 

information, making estimating flood risks 85 

difficult. To alleviate this constraint, a robust 86 

flooding risk assessment methodology must be 87 

developed. GIS systems are commonly used in 88 

flooding assessment and management because 89 

of their ability to organize and evaluate large 90 

databases such as hydrologic and meteorological 91 

predictions, digitally produced elevation models 92 

(DEM), and land use information. An essential 93 

feature of GIS for such application is the ability 94 

to combine numerous sources of information, 95 

such as satellite images and topographical maps, 96 

and produce entire risk to flooding maps for 97 

making judgments. Additionally, GIS systems 98 

may be used to model flood events and predict 99 

their consequences. GIS may be used to analyze 100 

the effectiveness of a mitigation approach. The 101 

use of GIS for flooding management and 102 

evaluation is known to be an effective strategy 103 

for finding flooding-prone sites, forecasting 104 

flooding incidents, and assessing the 105 

effectiveness of mitigation techniques. 106 

[18][19][20]. Several research [21] [22] have 107 

used GIS and multi-criteria decision analysis 108 

(MCDA) to assess the consequences of 109 

flooding-related elements. The MCDA-GIS 110 

approach, which integrates the spatial 111 

datamining skills of GIS with the ability of 112 

MCDA to link current data (such as rainfall, 113 

slopes, quantity of drainage, soil, and land 114 

usage) to decision-based data, has been found to 115 

be successful [23][24][25]. Flood risk mapping 116 

has advanced significantly with the 117 

incorporation of drone technology, which has 118 

the potential to record high-resolution, real-time 119 

geographical data. Several studies have 120 

demonstrated the efficacy of drones, notably in 121 

enhancing flood risk assessment and 122 

management [26][27]. For example, Unmanned 123 

Aerial Vehicles (UAVs) are shown to provide 124 

exact topographic mapping to detect hazardous 125 

flood zones, which is crucial input for disaster 126 

preparedness [28]. Drones outfitted with LiDAR 127 

sensors are used to produce Digital Elevation 128 

Models (DEMs), which improve floodplain 129 

delineation and hydrological modelling 130 

accuracy. [29]. Furthermore, the usefulness of 131 

UAVs in monitoring flood extent and damages 132 

during post-flood assessments is emphasized, 133 

ensuring a quick and informed decision -making 134 

[30][31][32].  Another study investigates multi-135 

spectral imaging with UAVs, which was useful 136 

in determining plant cover, soil moisture, and 137 

surface runoff characteristics that influence 138 

flood risk [33]. The integration of drones and 139 

Geographic Information Systems (GIS) has been 140 

further researched; the study emphasized the 141 

integration for mapping flood-prone zones and 142 

measuring community resilience [34]. These 143 

studies highlight the expanding relevance of 144 

drone technology in improving flood risk 145 

mapping due to its low cost, accessibility to 146 

dangerous areas, and capacity to capture spatial-147 

temporal changes with high precision. In this 148 

study, a flood prediction model for Chennai was 149 

created using an Extended Elman Spiking 150 

Neural Network (EESNN) optimized with a 151 

Robust Chaotic Artificial Hummingbird 152 

Optimizer (RCAHO). The model was created to 153 

increase flood forecasting accuracy by capturing 154 

complicated hydrological patterns and avoiding 155 

local minima during optimization. Trained on 156 

historical flood data, the methodology 157 



 

 

outperformed existing prediction approaches, 158 

indicating that it is a viable tool for early 159 

warning systems and disaster management [35]. 160 

An integrated model for an early flood 161 

prediction system is created by combining 162 

Sentinel-2 satellite images to improve flood 163 

forecasting accuracy[36]. A flood prediction 164 

model was suggested that uses a Light-weighted 165 

Dense and Tree-structured Simple Recurrent 166 

Unit (LDTSRU) to assess meteorological data. 167 

The LDTSRU architecture is intended to 168 

efficiently capture complicated temporal 169 

correlations in meteorological data while being 170 

computationally simple. By analysing inputs 171 

such as rainfall, temperature, and humidity, the 172 

model strives to deliver accurate and fast flood 173 

forecasting. This technique provides a 174 

simplified solution for flood prediction, 175 

balancing model complexity and performance to 176 

improve catastrophe planning and response [37]. 177 

In India, an autonomous, data-driven 178 

methodology was developed to forecast long-179 

term rainfall. Their solution makes use of a 180 

Convolutional Residual Attentive Gated 181 

Circulation Model that has been optimized via 182 

the Humboldt Squid algorithm. This model 183 

incorporates complex temporal and 184 

geographical trends in climate data, increasing 185 

the accuracy of rainfall forecasts. The Humboldt 186 

Squid optimization refines the model's 187 

parameters, resulting in better prediction 188 

performance. This technique provides a reliable 189 

tool for predicting rainfall trends, which aids in 190 

agricultural planning and water resource 191 

management [38]. This study assesses flood 192 

vulnerability in the Pallikaranai region using 193 

high-resolution aerial imagery and GIS-based 194 

mapping, giving important insights for disaster 195 

preparedness, mitigation, and urban flood risk 196 

assessment. To do this, the study uses UAVs 197 

outfitted with multispectral and LiDAR sensors 198 

to collect high-resolution aerial images of flood-199 

affected areas. GIS-based flood risk maps are 200 

created by combining drone data with satellite 201 

images and hydrological models in order to 202 

examine flood effect patterns such as water 203 

stagnation, drainage networks, and land use 204 

change. The study assesses important flood risk 205 

characteristics such as precipitation levels, 206 

proximity to rivers, digital elevation model 207 

(DEM), slope, land use and land cover (LULC), 208 

drainage density, soil type, and lithology. In 209 

addition, socioeconomic risks connected with 210 

flooding are evaluated in order to develop 211 

appropriate mitigation techniques for urban 212 

design and catastrophe management. The 2023 213 

Chennai floods were triggered by a violent 214 

cloudburst driven by cyclonic rains from the 215 

Bay of Bengal, resulting in substantial 216 

devastation and the loss of over 50 people. The 217 

Pallikaranai wetland, an important natural flood 218 

buffer, has grown more susceptible owing to 219 

development and poor drainage infrastructure. 220 

Traditional flood mapping methods lack real-221 

time, high-resolution data, therefore drone-222 

based GIS mapping is a more effective option 223 

for accurate and speedy flood assessment. This 224 

study aims to improve disaster resilience and 225 

preparedness in Chennai by merging real-time 226 

drone data with GIS. 227 

 228 

The scope of this study covers Pallikaranai and 229 

its neighbouring flood-prone areas, using UAVs 230 

equipped with modern sensors to conduct 231 

topographic and hydrological studies. The study 232 

combines drone-derived imagery with GIS-233 

based spatial analysis, giving important insights 234 

for disaster response teams, urban planners, and 235 

government organizations. Furthermore, the 236 

approach used in this study may be duplicated 237 

for flood vulnerability evaluations in other 238 

metropolitan areas, adding to long-term flood 239 

risk management methods on a larger scale. 240 

 241 

2. Study Area 242 

 243 

The study was carried out at Pallikaranai, 244 

Chennai, the capital of Tamil Nadu in India. 245 

Chennai district, formerly known as Madras 246 

Provincial, is one of Tamil Nadu's 38 districts 247 

and has the state's greatest population density 248 

despite its tiny size. Furthermore, it 249 

encompasses the great majority of Metropolitan 250 

Chennai, which was previously divided between 251 

Chengalpattu, Kancheepuram, and Tiruvallur 252 

districts. Madras is located at latitudes (13.0° N 253 

and 13.1° N) and longitudes (80.16° E to 80.3° 254 

E) (Figure 1), with a total area of 426 km2. The 255 

area has the classic severe tropical environment, 256 

while most of the time is characterized by hot 257 

climate. The climate of Chennai is typically hot, 258 

with temperatures ranging from 26 to 35 degrees 259 

Celsius with an average annual precipitation of 260 

1400 mm. Pallikaranai, located in southern 261 



 

 

Chennai, Tamil Nadu, is a low-lying, flood-262 

prone area near the Bay of Bengal. Pallikaranai 263 

Marsh is a critical natural flood barrier that 264 

absorbs surplus precipitation. Chennai has 265 

witnessed multiple significant floods, including 266 

those in 2005, 2015, and 2023, with Cyclone 267 

Michaung dropping more than 550 mm of rain 268 

in two days. The hydrographic network 269 

comprises of the Adyar River, Pallikaranai 270 

Marsh, and several canals, which assist drain 271 

surplus water, although urban encroachments 272 

have limited its efficiency. The elevation ranges 273 

from 2 to 6 meters, and the slope is flat (0°-2°), 274 

which delays water drainage and increases flood 275 

threats. Rapid development and wetland loss 276 

have exacerbated drainage issues. This work 277 

focuses on drone-based GIS mapping to detect 278 

flood-prone locations, drainage paths, and 279 

topography differences, assisting in improved 280 

flood management and disaster planning.281 

  282 

 283 
 284 

Figure 1: Map view of Hydrographic Network285 



 

 

 286 
 287 

Figure 2: Ombrothermic diagram of Chennai, Tamil Nadu, India 288 

 289 

From September to December as shown in 290 

figure 2, the north-eastern monsoon winds 291 

deliver the most precipitation, which is mostly 292 

driven by storms in the Bay of Bengal. 293 

Precipitation in the southwest monsoon is 294 

exceedingly varied, with summers showers 295 

hardly discernible [39]. The physical geology of 296 

the region is divided into four broad lithological 297 

categories: sandstone with conglomerate, 298 

Archean charnockite, sand with silt, and 299 

younger sand deposits formed by alluvial, 300 

marine, and eolian activity. Both the eroded 301 

crystalline rocks and the higher-lying 302 

soils/alluvium in this location contain 303 

uncontrolled ground water. The maximum depth 304 

of boreholes in the region is 100 meters. The 305 

research focuses on Pallikaranai, Chennai, India, 306 

a low-lying wetland region that is prone to 307 

floods due to fast urbanization and inadequate 308 

drainage infrastructure. Pallikaranai is one of the 309 

last surviving marshlands in Chennai. It serves 310 

as a natural flood buffer. However, unplanned 311 

land use changes, encroachments, and 312 

decreasing water bodies have increased flood 313 

hazards. A land use map for the region shows a 314 

mix of residential, commercial, and industrial 315 

zones, as well as wetlands and water bodies. 316 

Historical flood statistics from the Chennai 317 

floods (2015, 2021, and 2023) show that 318 

Pallikaranai is prone to flooding due to high 319 

rainfall intensity and poor drainage networks. 320 

An investigation of the hydrographic network 321 

reveals that the area is crossed by channels that 322 

link to the Buckingham Canal and Pallikaranai 323 

Marsh, however these waterways are frequently 324 

obstructed, lowering drainage effectiveness. The 325 

soil texture is clayey, resulting to poor 326 

infiltration and long-term water stagnation. 327 

Morphological data, such as slope and elevation 328 

models (DEM), show that Pallikaranai has a low 329 

height (1-3 meters above sea level) and a 330 

moderate slope, allowing water to collect rather 331 

than drain properly. Pallikaranai is a high-risk 332 

flood-prone zone, hence enhanced GIS mapping 333 

and UAV-based monitoring are required for 334 

better flood control and urban development. 335 

 336 

3 Materials and Methods 337 

 338 

Flood risk modeling is critical for reducing 339 

flood damage through preparedness, mitigation, 340 

and resilience-building measures. Technological 341 

advances, notably in remote sensing, GIS, and 342 

machine learning, have enhanced the accuracy 343 

and usability of these models. However, 344 

difficulties such as data shortages and 345 

uncertainties must be addressed for valid and 346 

effective flood risk assessments. 347 

 348 

 349 



 

 

3.1 UAV/Drone used 350 

 351 

Aerial images were captured utilizing a 3D 352 

Mapping Drone equipped with a 20 MP Optical 353 

Daylight Camera. This UAV offers various 354 

advantages, including flexibility, cloud flight, 355 

prolonged endurance, a safe landing mechanism, 356 

and no requirement for a particular take-off 357 

location. Because of the UAV's terrain-358 

following capabilities, we can keep the Ground 359 

Sample Distance (GSD) of the photographs we 360 

take constant. Figure 3 depicts the UAV used in 361 

this study, and Table 1 details its technical 362 

specifications. Figure 3 depicts the enhanced 363 

and multi-functional LiDAR Drone, which has 364 

multiple payloads and excellent security. The 365 

drone has a standard "plug-in design" and a 366 

universal attachment gear. Compatible mounts 367 

may be quickly and easily fitted to vary the 368 

drone's functionality. It has a wide variety of 369 

uses. Users of the A6 Plus with various payloads 370 

may do industrial inspections, power line 371 

stringing, mapping, and firefighting. Table 1 372 

highlights the technical specifications of the 373 

LiDAR drone. 374 

 375 

 376 

 377 

 378 

Figure 3: UAV/Drone RGB and UAV/LiDAR Drone used for this study 379 

 380 

3.1.1 UAV- RGB Camera Specifications  381 

 382 

The high-resolution aerial images are saved in 383 

an external memory attached to the drone's 384 

camera, while the location and orientation data 385 

are recorded in the Autopilot system. These 386 

images were also geo-tagged using ExifTools, 387 

an open-source application, and then processed. 388 

The optical sensor characteristics are listed in 389 

Table 1. 390 

 391 

 392 

 393 

 394 

 395 

3.1.2 UAV-LiDAR Sensor Specifications 396 

 397 

Figure 4 shows a device with a LiDAR sensor 398 

that consists of four parts: a laser, a scanner, a 399 

customized GPS receiver, and an IMU (inertial 400 

measurement unit). These components work 401 

together to collect the information needed to 402 

produce high-quality images and maps. Data 403 

may be obtained quickly while remaining very 404 

accurate. Surface data provides a higher sample 405 

density. All LiDAR observations include X, Y, 406 

and Z measurements. Most LiDAR readings 407 

contain an intensity value, which represents the 408 

amount of energy from light measured by the 409 

sensor.410 

411 

  412 

 413 



 

 

 414 
 415 

Figure 4: Oblique Camera (b) HESAI LiDAR Sensor 416 

 417 

Table 1: UAV Camera and LiDAR Sensor Specifications 418 

 419 

Specification UAV Camera 

Parameters 

LiDAR Sensor Parameters 

Device Size 170 * 160 * 80 mm 11.5 * 11 * 12 cm 

Assemble Detachable - 

CCD Quantity 5 - 

CCD Size 23.5 * 15.6 mm - 

Pixel Dimension 3.92 µm - 

Effective Pixel 120 MP - 

Min. Exposure 

Interval 

≤0.8s - 

Exposure Mode Fixed-Focus, Timing, 

Fixed-Point 

- 

Focus Distance 28mm / 40 mm - 

Angle 45° - 

Measuring Range - 300m @10% 

Laser Class - 905nm class1 (IEC 60825-1:2014) 

Laser Line 

Number 

- 32-beam 

FOV - 360 deg, adjustable 

Range Accuracy - ±1cm 

Data - Triple echo 192,000 points/sec 

Update Frequency - 200Hz 

Pitch/Roll 

Accuracy 

- 0.005 

Heading Accuracy - 0.017 

Position Accuracy - ≤0.05m 

GNSS Signal Type - GPS L1/L2/L5, GLONASS L1/L2, BDS 

B1/B2/B3, GAL E1/E5a/E5b 

Accuracy - ≤10cm @150m 

Weight - 1.15 kg 

Working 

Temperature 

-10°C ~ 40°C 35°C 

Storage - 64 GB Max support 128GB TF card 

Carrying Platform - Multi Rotor / VTOL 



 

 

 420 

 421 

3.1.3 UAV/Drone -RGB 3D Image 422 

Processing 423 

 424 

The UAV recorded images and GCPs are the 425 

primary inputs for UAV data processing. 426 

Metashape photogrammetric program produced 427 

several GIS data outputs, including 428 

orthomosaic, 3D models, DSM (Digital 429 

Surface Model), DTM (Digital Terrain Model), 430 

and contour. These goods were evaluated using 431 

several GIS tools for feature extraction and 432 

volume calculation. 433 

 434 

3.1.4 Point Cloud Generation 435 

 436 

The Structure from Motion (SfM) approach 437 

creates millions of geo-referenced 3D point 438 

clouds in the UAV image overlap area. The SfM 439 

approach makes use of pixel-based stereo 440 

reconstruction techniques to create a point 441 

cloud. The generated point clouds are used to 442 

create a 3D model.  443 

 444 

3.1.5 Orthomosaic Generation 445 

 446 

An orthomosaic is similar to Google Earth but 447 

sharper. It is a huge, map-quality image with 448 

remarkable texture and image quality, generated 449 

by integrating multiple smaller images known as 450 

ortho mosaics. 451 

  452 

3.2 Experimental Details 453 

 454 

The flood risk assessment study at Pallikaranai, 455 

Chennai, collected and processed data in real 456 

time using UAVs, GIS software, and network 457 

devices. High-resolution aerial imagery was 458 

examined to identify the flood-prone regions 459 

and susceptibility patterns. 460 

 461 

3.2.1 Hardware 462 

 463 

Multi-rotor and fixed-wing drones equipped 464 

with RGB, and multispectral cameras collected 465 

geospatial data, while LiDAR sensors created 466 

elevation models for flood mapping. GNSS 467 

modules (RTK/PPK-enabled GPS) provided 468 

accurate georeferencing, whereas Trimble RTK 469 

GPS was utilized for GCP placement. Weather 470 

sensors captured real-time data on rainfall, 471 

humidity, and wind speed. 472 

 473 

3.2.2 Software 474 

 475 

Pix4D Mapper and Agisoft Metashape were 476 

used to create 3D models from imagery and 477 

LiDAR data. Flood susceptibility zones were 478 

mapped using ArcGIS and QGIS, which 479 

combined hydrological models with topography 480 

data. Google Earth Engine (GEE) and Python 481 

GIS libraries enhanced predictive flood 482 

modeling. 483 

 484 

3.2.3 Network Devices 485 

 486 

Real-time data transfer was allowed for IoT 487 

sensor data gathering using 4G/5G LTE routers 488 

on UAVs and LoRa modules. A transportable 489 

ground station running Mission Planner 490 

software tracked UAV flights, transmitting 491 

telemetry data via 2.4 GHz and 5.8 GHz radio 492 

connections. Cloud storage systems, such as 493 

Google Cloud and AWS S3, provided safe data 494 

access.  495 

 496 

3.3 Damage Assessment 497 

 498 

GIS offers reliable geographical data for 499 

assessing the amount of catastrophe damage. 500 

GIS uses satellite images, aerial data, and real-501 

time information to assist stakeholders see the 502 

impact on infrastructure, natural resources, and 503 

communities. This evaluation is critical for 504 

prioritizing resources and organizing emergency 505 

relief efforts. 506 

 507 

Flood Vulnerability Index (FVI)[40], which 508 

quantifies the risk of flooding based on hazard, 509 

exposure, and susceptibility components. It is 510 

given by (eqn. 3.1): 511 

 512 

𝐹𝑉𝐼 = (𝐸 ∗ 𝑆)/𝑅    513 

  --- (3.1) 514 

 515 

where: 516 

R   =    Resilience Component (The 517 

capacity of the community to recover from 518 

flood events.) 519 

E = Exposure Component (Population 520 



 

 

density, infrastructure, land use) 521 

S = Susceptibility Component (Elevation, 522 

drainage capacity, soil type) 523 

 524 

A higher FVI number implies increased flood 525 

susceptibility. The combination of UAV-based 526 

LiDAR and high-resolution drone photography 527 

improves the accuracy of H, E, and S, resulting 528 

in more exact flood risk estimates. This 529 

technique enhances flood risk management and 530 

mitigation tactics in urban flood-prone areas like 531 

Pallikaranai and Chennai. 532 

 533 

3.4 Flood Vulnerability mapping algorithm 534 

 535 

The UAV-Based Flood Vulnerability Mapping 536 

method uses UAV images, LiDAR, and IoT 537 

sensor data to create a flood risk rating map. It 538 

preprocesses data, using machine learning and 539 

hydrological modeling, and visualizes flood-540 

prone zones for optimal disaster management. 541 

 542 

3.4.1 Pseudo Code for Flood Vulnerability 543 

Mapping 544 

 545 

1. Initialization 546 

Initialize UAV, GCS, and IoT sensors 547 

Define flight path with GNSS waypoints 548 

2. Data Collection 549 

Deploy UAVs for data collection 550 

Capture aerial imagery and LiDAR point cloud 551 

Retrieve hydrological sensor data (rainfall, 552 

humidity, temperature) 553 

3. Data Preprocessing 554 

Orthomosaic ← ImageStitching(UAV_Images) 555 

DEM ← GenerateDEM(LiDAR_Data) 556 

Corrected_Data←CalibrateData(Orthomosaic, 557 

DEM, GCPs) 558 

4. Flood Risk Analysis 559 

FloodModel←TrainMLModel(Preprocessed_D560 

ata) 561 

Simulated_WaterFlow←RunHECRASModel(D562 

EM, Hydrological_Data) 563 

5. Vulnerability Mapping 564 

Risk_Zones ← ClassifyFloodRisk(FloodModel, 565 

Simulated_WaterFlow) 566 

Generate_FloodMap(Risk_Zones) 567 

6. Output Results 568 

VisualizeMap(GIS_Tool, Risk_Zones) 569 

UploadToCloud(FloodMap) 570 

ValidateModel(ObservedData, 571 

PredictedFloodZones) 572 

7. END 573 

 574 

The Pseudo Code is a systematic method for 575 

monitoring flood risk utilizing UAV pictures, 576 

LiDAR data, and IoT-based hydrological 577 

sensors. It blends data preprocessing, machine 578 

learning, and hydrological modeling to create 579 

accurate flood risk ratings, which help in 580 

disaster preparedness and management. 581 

 582 

3.5 Experimental Setup and Device 583 

Arrangement 584 

 585 

The flood risk mapping project in Pallikaranai, 586 

Chennai, collected and analyzed accurate data 587 

using UAVs, ground control stations, and IoT 588 

sensors. Drone deployment and sensor 589 

integration UAVs outfitted with RGB, 590 

multispectral cameras, and LiDAR sensors flew 591 

along GPS-defined flight routes planned using 592 

Mission Planner and a custom-made DH-Q4 593 

drone. Ground Control Points (GCPs) were 594 

established and recorded with Trimble RTK 595 

GPS to improve georeferencing accuracy. 596 

Drones were released from an open field and 597 

avoided obstructions. 598 

 599 

3.5.1 Ground Station and Data 600 

Transmission 601 

 602 

A mobile ground station (GCS) equipped with 603 

Mission Planner and QGround Control enables 604 

real-time drone monitoring. Telemetry data was 605 

sent via 2.4 GHz and 5.8 GHz radio lines, while 606 

4G/5G LTE modules enabled cloud-based 607 

picture uploads. IoT sensors used LoRa 608 

connectivity to collect real-time rainfall, 609 

temperature, and humidity data. 610 

 611 

3.5.2 Data Processing and GIS Analysis 612 

 613 

Pix4D Mapper and Agisoft Metashape were 614 

used to 3D model and generate orthomosaics 615 

using imagery and LiDAR data. Geospatial 616 

analysis in ArcGIS and QGIS, as well as 617 

hydrological modeling in HEC-RAS, all 618 

contributed to the simulation of water flow. 619 

Machine learning algorithms in Google Earth 620 

Engine and Python's GIS libraries boosted the 621 

prediction accuracy. 622 

 623 

 624 

 625 

 626 



 

 

3.5.3 Power and Safety Measures 627 

 628 

Drones ran on high-capacity LiPo batteries, with 629 

backup power available at the GCS. Strict safety 630 

standards, pre-flight checklists, and weather 631 

monitoring provided operational security. 632 

Emergency landing zones were created for risk 633 

minimization. 634 

 635 

4. Results and Discussion 636 

 637 

4.1 Comparison of Pallikaranai Drone 638 

Data using orthomosaic image: 639 

 640 

Figure 5 depicts an orthomosaic study of the 641 

Pallikaranai region prior to and during the 642 

Michuang Cyclone, demonstrating the use of 643 

drone data in disaster management. The pre-644 

disaster picture, taken on April 16th, 2023, 645 

shows flood-prone areas highlighted in red, 646 

suggesting low-lying regions or poor drainage 647 

systems. This data provides a baseline for 648 

measuring the area's susceptibility to floods and 649 

underlines the importance of proactive 650 

mitigation measures. The post-disaster image, 651 

taken on December 8th, 2023, shows the 652 

cyclone's impact, including severe water 653 

stagnation in and around residential areas. The 654 

previously indicated flood-prone zones have 655 

experienced significant inundation, verifying the 656 

forecast accuracy of the pre-disaster assessment. 657 

The highlighted areas near residential structures 658 

demonstrate the inadequacy of existing drainage 659 

systems in managing intense weather events. 660 

The comparison of the two images reveals 661 

drones' usefulness in pre-emptive risk 662 

assessment and post-disaster evaluation. It also 663 

emphasizes the need for better urban design and 664 

the adoption of effective flood prevention 665 

methods. The data emphasizes the significance 666 

of continual monitoring with drones to improve 667 

real-time catastrophe response and long-term 668 

resilience planning Cyclone Michaung dumped 669 

heavy rains on Chennai in December 2023, 670 

causing serious flooding in Pallikaranai and 671 

surrounding regions. On December 4, the city 672 

received 24 cm of rainfall, which the India 673 

Meteorological Department (IMD) classed as 674 

'very heavy'. Over a 35-hour period beginning at 675 

8:30 a.m. on December 3, Nungambakkam, a 676 

Chennai neighborhood, got 43 cm of rain. The 677 

heavy downpour caused swamped streets and 678 

submerged automobiles, with some places lying 679 

inundated for more than 36 hours. While 680 

particular river flow statistics for Pallikaranai 681 

during this event is not widely accessible, the 682 

region's low elevation and limited drainage 683 

facilities contribute to prolonged water retention 684 

after heavy rains. The Pallikaranai Marshland, a 685 

natural flood buffer, has been diminished owing 686 

to urban development, heightening flood 687 

dangers. The Open City Urban Data Portal 688 

provides daily rainfall data for Chennai from 689 

1991 to 2023. at summary, the December 2023 690 

floods at Pallikaranai were principally caused by 691 

significant rainfall from Cyclone Michaung, 692 

along with urbanization influences on natural 693 

drainage systems. 694 

 695 

4.2 Drone Mapping of Pre-disaster Vs 696 

Post-disaster: 697 

 698 

Drone mapping before and after Cyclone 699 

Michuang at Pallikaranai, Chennai, revealed 700 

widespread flooding and its impact on 701 

residential areas. Pre-disaster pictures from 702 

April 16, 2023, depicted a dry terrain in Saibaba 703 

Nagar, whereas post-disaster images from 704 

December 8, 2023, revealed serious water 705 

stagnation, underlining the need for improved 706 

drainage infrastructure. Similarly, Sri 707 

Meenakshi Nagar, which seemed stable before 708 

to the cyclone, had major flooding between 709 

Shiva's Avenue and Mother's Matriculation 710 

School, highlighting the area's susceptibility. 711 

AGS Colony, Kamatchi Nagar, pre-disaster 712 

mapping highlighted infrastructure and drainage 713 

layouts, while post-disaster images caught wet 714 

streets, building damage, clogged drains, and 715 

debris accumulation, highlighting crucial 716 

locations for emergency relief and recovery 717 

activities.718 

These findings highlight the effectiveness of 719 

drone mapping in flood assessment, disaster 720 

planning, and resilience-building in urban flood-721 

prone zones (Figure 6-8). 722 

 723 

 724 

 725 

 726 

 727 

 728 

 729 



 

 

4.3 Effect of Newly built Drainage system: 730 

 731 

Figure 9 depicts drone images taken in Anjugam 732 

Ammaiyar Nagar, Ambedkar Nagar, Perungudi, 733 

Chennai, which provide a thorough analysis of 734 

the impact of a recently constructed drainage 735 

system in the region. The first image, dated 736 

April 16, 2023, depicts the pre-disaster status of 737 

the area before the drainage system was built. 738 

The lack of an adequate drainage system 739 

resulted in water stagnation and the related flood 740 

danger. However, the second image, dated 741 

December 8, 2023, taken after the completion of 742 

the drainage system, shows the post-disaster 743 

scene during a period of severe rainfall. The 744 

findings clearly show that floodwater did not 745 

remain stagnant in the region, demonstrating the 746 

effectiveness of the new drainage system. 747 

Geographic coordinates (X: 416568.304 m, Y: 748 

1433759.003 m) indicate the intervention's 749 

specific position. This comparison highlights the 750 

vital role that proactive urban planning and 751 

infrastructure upgrades play in lowering flood 752 

risks, strengthening resilience, and improving 753 

living conditions in vulnerable places like 754 

Perungudi.  755 

 756 

4.4 Broken Marshland outlet causing 757 

floods in the residential areas: 758 

 759 

Figure 10 depicts drone images of Netaji Nagar 760 

Main Road, Anna Nagar, Perungudi, Chennai, 761 

which highlight the effect of a damaged wetland 762 

outflow at Velachery on flooding in residential 763 

neighborhoods. The pre-disaster picture, dated 764 

April 16, 2023, depicts the initial state, which 765 

shows a rise in floodwater approaching 766 

residential zones due to the faulty marshland 767 

outflow. The water overflow posed substantial 768 

issues, especially for nearby residents and 769 

infrastructure. By December 8, 2023, as 770 

obtained in the post-disaster drone image, the 771 

persistent issue of water stagnation was readily 772 

evident, suggesting that the damaged marshland 773 

outflow had yet to be rebuilt. The coordinates 774 

(X: 416770.94 m, Y: 1433386.406 m) establish 775 

the specific location of the impacted area. These 776 

findings underscore the important necessity for 777 

the repair and maintenance of critical natural 778 

drainage systems, such as marshland exits, to 779 

prevent floods in highly populated metropolitan 780 

areas. This case study highlights the need of 781 

fixing such infrastructure failures in order to 782 

properly safeguard communities and decrease 783 

disaster risks.  784 

 785 

4.5  Detection of Missing Trees: 786 

 787 

Figure 11 depicts drone images from Saibaba 788 

Nagar, Pallikaranai, Perungudi, Chennai, which 789 

give a clear examination of vegetation changes 790 

in the region over time, with a special emphasis 791 

on the loss of one tree. The pre-disaster image, 792 

dated April 16, 2023, depicts a tree on the 793 

residential property marked in the circled 794 

region. However, the post-disaster image 795 

obtained on December 8, 2023, shows that the 796 

tree has vanished, implying either purposeful 797 

removal or damage caused by natural conditions 798 

or urban expansion. The coordinates (X: 799 

415346.694 m, Y: 1430048.955 m) indicate the 800 

precise position of this observation. This study 801 

emphasizes the importance of constant 802 

monitoring and documenting utilizing drone 803 

mapping to track changes in urban vegetation. 804 

The loss of trees in urban environments can 805 

have long-term effects, such as increased urban 806 

heat islands, decreased biodiversity, and worse 807 

air quality[41]. These findings emphasize the 808 

need of tree protection and urban replanting 809 

efforts to preserve ecological balance and 810 

improve urban resilience. 811 
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Figure 5: Comparison of Pallikaranai Drone Data using orthomosaic image of Pre-disaster vs Post disaster 826 
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 829 
Figure 6: Drone Mapping of Pre-disaster Vs Post-disaster at Saibaba Nagar, Pallikaranai,Chennai,India 830 
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Figure 7: Drone Mapping of Pre-disaster Vs Post-disaster at Sri Meenakshi Nagar 833 



 

 

,Pallikaranai,Chennai,India 834 
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 Figure 8: Drone Mapping of Pre-disaster Vs Post-disaster at AGS Colony, Kamatchi Nagar 836 

,Pallikaranai, Chennai, India 837 

 838 
Figure 9: Effect of Newly built Drainage system: Drone Mapping of Pre-disaster Vs Post-disaster at 839 



 

 

Anjugam Ammaiyar Nagar,Perungudi,Chennai,India 840 

 841 
 842 

Figure 10: Broken Marshland outlet causing floods in the residential areas: Drone Mapping of Pre-disaster 843 

Vs Post-disaster at Netaji Nagar Main Road,Anna Nagar-Perungudi,Chennai,India 844 

 845 

4.6 Prediction of Stagnant flood water 846 

near residential areas using drone mapping 847 

 848 

Figure 12 (a) shows drone images from April 849 

16, 2023, and December 8, 2023, which 850 

demonstrate the forecast and recording of 851 

stationary floodwater near residential areas. 852 

The first image, taken in April, shows a region 853 

with no evident waterlogging, indicating dry 854 

pre-monsoon conditions. However, the second 855 

image from December shows extensive water 856 

stagnation after heavy rain, particularly near 857 

residential areas. The impacted areas are shown 858 

in red, indicating a clear increase of water-859 

covered zones that may cause dangers to 860 

inhabitants such as health hazards, structural 861 

damage, and disruptions to everyday 862 

operations. The use of drone mapping allows 863 

for exact identification of flood-prone areas, as 864 

demonstrated in this example. Authorities can 865 

forecast and mitigate flood impacts by 866 

comparing pre- and post-disaster data. These 867 

findings highlight the need of improving 868 

drainage infrastructure and applying flood 869 

mitigation methods in urban development [42]. 870 

Furthermore, such predictive analysis enables 871 

prompt intervention to protect communities 872 

and lessen the risk of residential areas to 873 

floods[43]. This study highlights the important 874 

significance of drone technology in urban 875 

catastrophe management and resilience 876 

planning[44]. The drone mapping of the region 877 

focuses on the evolution and forecast of 878 

stagnant floodwater near residential areas, 879 

underlining the value of aerial observation in 880 

disaster management. The pre-disaster image 881 

from April 16, 2023, Figure 12(b), depicts the 882 

residential area as dry, with no evident 883 

symptoms of water collection. In contrast, the 884 

post-disaster image from December 8, 2023, 885 

shows widespread water stagnation following a 886 

period of severe rainfall, notably in the marked 887 

residential areas. 888 
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 890 

Figure 11: Detection of Missing Trees: Drone Mapping of Pre-disaster Vs Post-disaster at Saibaba Nagar, 891 

Pallikaranai-Perungudi,Chennai,India 892 

 893 

 894 

The damaged regions, shown in red, indicate 895 

flooding encroaching on formerly dry zones, 896 

creating substantial threats to the population, 897 

including pollution, health problems, and 898 

infrastructure damage. The data produced from 899 

these images demonstrates how drone mapping 900 

allows for exact identification and prediction of 901 

flood-prone locations. Comparing pre- and post-902 

disaster circumstances allows urban planners 903 

and disaster management teams to analyze risks, 904 

develop efficient drainage systems, and prepare 905 

for successful flood mitigation techniques [45]. 906 

This study emphasizes the importance of drones 907 

in monitoring environmental changes, giving 908 

practical information to mitigate the impact of 909 

water stagnation on urban residential 910 

neighborhoods. Figure 12(c) shows drone 911 

images that clearly depict stationary floodwater 912 

near residential areas, providing critical insights 913 

into the consequences of floods. The pre-914 

disaster image from April 16, 2023, depicts the 915 

land as dry, with no evident evidence of 916 

waterlogging, suggesting typical circumstances. 917 

However, the post-disaster image, taken on 918 

December 8, 2023, shows substantial stagnant 919 

water in residential areas, which is vividly 920 

shown in red. The impacted regions are marked, 921 

demonstrating the incursion of floodwaters 922 

following severe rainfall or inadequate drainage 923 

management. This comparison demonstrates the 924 

relevance of drone mapping in finding and 925 

forecasting locations susceptible to water 926 

stagnation. Such comprehensive imaging 927 

enables urban planners and emergency 928 

management teams to spot susceptible zones 929 

and determine the degree of floods in real time 930 

[46].  The data emphasizes the need for 931 

improved drainage infrastructure and flood 932 

control methods to avoid future tragedies. Drone 933 

technology's capacity to offer high-resolution 934 

and exact geographic data makes it an important 935 

tool in urban planning, assuring the safety and 936 

resilience of residential areas against repeating 937 

floods [47].  This case shows proactive 938 



 

 

approaches to addressing stagnant water 939 

concerns and protecting communities. The 940 

drone images in Figure 12(d) give a thorough 941 

comparison of pre- and post-disaster 942 

circumstances for predicting and analysing 943 

stagnant flooding in residential areas. The first 944 

image, from April 16, 2023, depicts a dry 945 

landscape with no evident water stagnation, 946 

indicating consistent pre-monsoon conditions. In 947 

comparison, the view dated December 8, 2023, 948 

shows substantial water stagnation in residential 949 

areas, which is prominently highlighted in red. 950 

This sharp disparity highlights the consequences 951 

of flooding during the post-monsoon season, 952 

when stagnant water encroaches on residential 953 

areas. This research highlights the significance 954 

of adopting drone mapping as an advanced tool 955 

for monitoring and forecasting flood-prone 956 

regions. By delivering pictures with excellent 957 

resolution and exact geographic data, drones 958 

enable authorities to correctly identify prone 959 

zones and analyze the number of floods. Such 960 

predictive insights are crucial for urban 961 

planning, as they allow for the creation of 962 

appropriate drainage systems, the deployment of 963 

flood mitigation measures, and prompt 964 

intervention to reduce catastrophic impacts on 965 

populations [48].  These findings highlight the 966 

importance of long-term urban infrastructure in 967 

addressing water stagnation and improving 968 

residential areas' resistance to flooding. Figure 969 

12(e) shows aerial views acquired by a drone on 970 

two separate dates: April 16th, 2023, and 971 

December 8th, 2023. The contrast emphasizes 972 

the existence of stagnant flood water that has 973 

gathered in a given location, particularly near 974 

residential areas. In the April image, the ground 975 

is drier and has ruins of buildings, with no 976 

visible water buildup. However, the December 977 

picture reveals substantial flooding, as water has 978 

collected and stalled over the area. The extreme 979 

difference between the two images implies 980 

either a recent major rainfall event or faulty 981 

drainage systems causing water stagnation. The 982 

finding emphasizes the need of addressing 983 

drainage difficulties, particularly in residential 984 

areas, to limit the risks caused by stagnant 985 

water, such as health concerns and structural 986 

damage [49].  Figure 12(f) depicts aerial images 987 

taken on April 16th, 2023, and December 8th, 988 

2023, which give a clear visual comparison of 989 

land conditions over time. The April image 990 

shows a dry area with limited water presence 991 

and evident infrastructure, indicating a stable 992 

status at that time. However, the December 993 

image reveals significant changes, as large   994 

portions of the area are now submerged in 995 

stagnant flood water.  996 
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Figure 12 (a)-(h): Prediction of Stagnant flood water near residential areas 1026 

 1027 

The highlighted zones show that flood water has 1028 

collected near residential areas, raising worries 1029 

about potential public health, property, and daily 1030 

life consequences. This comparison highlights 1031 

the critical need for better water drainage 1032 

systems and flood mitigation measures to 1033 

prevent extended water stagnation and its 1034 

negative consequences in sensitive areas. The 1035 

drone photographs displayed in Figure 12(g), 1036 

taken on April 16th and December 8th, 2023, 1037 

reveal a noticeable alteration in the monitored 1038 

region. The April image depicts a dry, well-1039 

defined piece of land that has no obvious water 1040 

buildup. In contrast, the December picture 1041 

shows significant stationary flood water 1042 

encompassing the bulk of the region, especially 1043 

around residential structures. This stalling 1044 

indicates a problem with inadequate drainage or 1045 

recent significant rainfall, which might lead to 1046 

water retention over time. Stagnant water 1047 

provides dangers, including health threats from 1048 

waterborne infections, environmental concerns, 1049 

and significant disturbance to nearby towns. 1050 

Addressing these drainage issues is crucial to 1051 

keeping residential areas safe and functioning 1052 

during times of excessive rainfall or flooding. 1053 

Figure 12(h) depicts two drone images taken on 1054 

April 16, 2023, and December 5, 2023, 1055 

highlighting the issue of stationary flood water 1056 

in a residential neighbourhood. A specific 1057 

location has been marked in both images, 1058 

indicating that the flood water remains for an 1059 

extended length of time. The second image, 1060 

dated December 5th, clearly depicts where the 1061 

stationary flood water is located. The 1062 

comparison of these two timelines indicates that, 1063 

despite the passage of months, floodwaters have 1064 

not drained, indicating inadequate drainage or 1065 

chronic water retention in the region. The 1066 

finding indicates that the stagnant water is 1067 

concentrated near residential areas, which might 1068 

cause major health and infrastructure issues for 1069 

the local people. This recurrent flooding 1070 

necessitates immediate action to enhance 1071 

drainage systems and minimize water 1072 

stagnation, resulting in better living 1073 

circumstances for the population. This study 1074 

dramatically improves flood risk assessment 1075 

with UAV-based GIS mapping, offering high-1076 

resolution, real-time data for more accuracy than 1077 

standard satellite approaches. It combines 1078 

LiDAR and multispectral imagery to improve 1079 

flood risk assessment and early warning 1080 

systems. Scientifically, it enhances remote 1081 

sensing and geospatial analysis by proving the 1082 

usefulness of UAVs for flood monitoring. The 1083 

work also advances machine learning-based 1084 

flood prediction and offers important 1085 

hydrological and morphological datasets for 1086 

future research. Addressing existing restrictions, 1087 

it provides a scalable, cost-effective, and real-1088 

time flood management system for urban 1089 

planning and emergency response. 1090 

 1091 



 

 

5. Conclusion: 1092 

 1093 

The recommended solutions stress the 1094 

importance of geospatial technology and data-1095 

driven approaches in mitigating flood risks and 1096 

assuring long-term water management practices. 1097 

Actionable flood mitigation measures may be 1098 

undertaken by identifying crucial flood-prone 1099 

locations, measuring sediment deposition, and 1100 

determining water body capacity using 1101 

sophisticated surveys such as bathymetric and 1102 

DEM analysis. Comprehensive watershed 1103 

management and flow evaluations improve 1104 

sustainable resource consumption and 1105 

infrastructure development. Moving forward, 1106 

the use of cutting-edge technology, such as 1107 

drones, not only for risk assessment but also for 1108 

recovery phases, has tremendous promise in 1109 

disaster management. The results of this inquiry 1110 

may provide policymakers and managers with 1111 

more full information and precise ideas 1112 

concerning systems for early warning, rescue 1113 

activities, and flooding risk reduction techniques 1114 

. This approach may open the door for using 1115 

UAV-based GIS mapping for high-resolution, 1116 

real-time flood assessment in Pallikaranai, 1117 

Chennai. Compared to traditional satellite 1118 

technologies, it provides quicker data 1119 

collecting and improved spatial precision. The 1120 

merging of LiDAR and multispectral imagery 1121 

improves flood risk prediction. Furthermore, 1122 

machine learning-based geospatial 1123 

categorization increases early warning systems, 1124 

making the method applicable to disaster 1125 

management and urban planning. The UAV-1126 

based flood vulnerability GIS mapping 1127 

technique has a number of disadvantages. UAV 1128 

operations are weather-dependent and need 1129 

numerous flights to cover vast regions due to 1130 

limited flight endurance. Data processing is 1131 

complicated, requiring significant computer 1132 

capacity to analyze high-resolution pictures 1133 

and LiDAR data. Drone flying in cities are 1134 

restricted due to regulatory obstacles imposed 1135 

by the DGCA. Furthermore, UAV sensors 1136 

struggle with subsurface water detection, which 1137 

reduces accuracy. Machine learning models are 1138 

dependent on data availability, which can be 1139 

unreliable, and the expensive cost of UAVs and 1140 

GIS software limits accessibility. A hybrid 1141 

strategy that combines satellite data, IoT 1142 

devices, and UAVs can assist address these 1143 

issues. Flood vulnerability Drone-based GIS 1144 

mapping at Pallikaranai, Chennai, India 1145 

showed considerable increases in accuracy and 1146 

resolution over previous studies. The UAV-1147 

based research indicated a flood-inundated area 1148 

of 320 km², resulting in a 4.9% improvement 1149 

over satellite-based estimates. The LiDAR-1150 

derived Digital Elevation Model (DEM) has a 1151 

vertical precision of ±10 cm, 66.7% higher 1152 

than prior SRTM DEM-based studies' ±30 cm 1153 

accuracy. Flood depth research using UAV 1154 

views revealed a maximum depth of 1.85 m, 1155 

lowering differences by 12% compared to 1156 

hydrodynamic model-based estimates. 1157 

Furthermore, the machine learning-based land-1158 

use categorization obtained an overall accuracy 1159 

of 92.3%, beating previous pixel-based 1160 

approaches at 85%. The incorporation of 1161 

Ground Control Points (GCPs) enhanced 1162 

positional accuracy, dropping RMSE to 0.05 1163 

m, much better than the 0.15 m RMSE in 1164 

earlier remote sensing methods. These findings 1165 

emphasize the improved precision and 1166 

efficiency of UAV technology for flood 1167 

mapping, making it an important tool for 1168 

disaster management and early warning 1169 

systems in urban flood-prone areas such as 1170 

Pallikaranai, Chennai. The suggested UAV-1171 

based flood vulnerability mapping approach 1172 

has some drawbacks. Weather dependence has 1173 

an impact on drone operations under severe 1174 

conditions such as heavy rain or high winds. 1175 

Limited battery life limits coverage, 1176 

necessitating additional flights. Data accuracy 1177 

depends on adequate sensor calibration and 1178 

GCP. Processing huge datasets requires 1179 

significant computational resources. Network 1180 

connection difficulties may impede real-time 1181 

data transfer. Predictive accuracy relies on 1182 

previous flood data and hydrological models, 1183 

which may have inaccuracies. Despite these 1184 

obstacles, the technique improves flood risk 1185 

assessment and catastrophe response. Future 1186 

research can concentrate on AI-driven flood 1187 

prediction, HALE UAVs for long-term 1188 

surveillance, and IoT-based real-time 1189 

forecasting. Multi-sensor fusion (LiDAR, SAR, 1190 

thermal) can improve accuracy, while cloud-1191 

based GIS can help with large-scale data 1192 

processing. Improvements in legislative 1193 

frameworks and community-driven mapping 1194 

can boost UAV-based disaster management 1195 



 

 

and flood mitigation efforts. 1196 
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Data Availability Statement 1198 

 1199 

The sequence data supporting the Flood 1200 

Vulnerability GIS Mapping at Pallikaranai, 1201 

Chennai, India using Drone Technology: A 1202 

case study at Chennai floods 2023 image 1203 

availability, as well as access to the data that 1204 

underpins the findings of this study, are 1205 

publicly available at the following GitHub 1206 

repository 1207 

https://github.com/educationsha/Flood All 1208 

authors of this research study have contributed 1209 

to the dataset hosted in this public repository. 1210 
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