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Abstract 

In the context of the current technological revolution and 
industrial transformation, the digital economy has 
emerged as a strategic imperative. It is essential to 
investigate the influence of digital policies on urban carbon 
emission efficiency and to elucidate the underlying 
mechanisms. Such research can provide both theoretical 
underpinnings and empirical evidence for the evaluation 
and refinement of digital policy frameworks. This paper 
utilizes panel data at the city level within China, employing 
the National Big Data Comprehensive Pilot Zone (NBDZ) as 
a proxy for digital policy. The study employs the Meta-
frontier Non-radial Directional Distance Function 
(MFNDDF) method to quantify carbon emission efficiency. 
Furthermore, it leverages the Difference-in-Differences 
(DID) model to assess the impact and mechanisms of digital 
policy on enhancing urban carbon emission efficiency. The 
study finds: (1) NBDZ significantly promote urban carbon 
emission efficiency, a conclusion that remains valid after 
undergoing placebo tests and controlling for interference 
from other policies. (2) Non-linear regression results 
indicate that the marginal effects of the NBDZ are 
dynamically changing and exhibit a decreasing trend at 
different levels of urban carbon emission efficiency. (3) 

Heterogeneity tests reveal that NBDZ significantly foster 
the energy transition development in the eastern region, 
non-resource-dependent cities, and large cities, but their 
impact is not pronounced in the central and western 
regions and resource-dependent cities. (4) Spatial effect 
tests indicate that the implementation of the NBDZ has not 
led to predatory behaviors towards neighboring cities. On 
the contrary, this pilot policy has, to some extent, 
promoted the spatial diffusion of technological innovation 
in pilot cities, playing a positive role in "demonstrating and 
facilitating coordinated development." (5) The mechanism 
of action suggests that NBDZ can influence the 
development of energy transition by enhancing the level of 
human capital and technological innovation. This research 
contributes nuanced insights that inform policymakers, 
practitioners, and scholars about the strategic design and 
scaling of digital policy in diverse urban contexts. 

Keywords: digital economy; carbon emission efficiency; 
difference-in-difference; national big data comprehensive 
pilot zone 

1. Introduction 

Within the broader context of a global shift towards green 
and low-carbon development, nations are proactively 
adopting "carbon neutrality" strategies to mitigate their 
environmental impact (Lu et al. 2025). China, as one of the 
world's leading energy consumers, confronts substantial 
challenges in reducing its carbon emissions (Cheng et al. 
2020). According to data from the National Bureau of 
Statistics, there has been a marked escalation in China's 
total energy consumption, rising from 1.47 billion tonnes of 
standard coal in 2000 to 5.41 billion tonnes of standard coal 
in 2022 (refer to Figure 1 for a detailed illustration). 
Furthermore, data from the International Energy Agency 
(IEA) indicate that China's carbon dioxide emissions 
constitute approximately 33% of the global total. Carbon 
emission efficiency is a critical indicator of the economic 
implications of decoupling CO2 emissions from economic 
growth, and the inefficiency of carbon emissions poses a 
threat to the sustainability of economic development 
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(Baiardi and Morana 2021). Consequently, the Chinese 
government is vigorously pursuing a development model 
that balances economic growth with the reduction of 
carbon emissions. For instance, the government has 
articulated its goal to peak carbon dioxide emissions by 
2030 and to achieve "carbon neutrality" by 2060 (Gao et al. 
2024a; Wang and Shao 2025). 

 

Figure 1. Energy consumption and CO2 emission 

In recent years, Information and Communication 
Technologies (ICT), including the Internet, big data, cloud 
computing, and artificial intelligence, have experienced 
global proliferation. These emerging technologies have 
been integrated into various economic activities as pivotal 
factors of production, thereby giving rise to a novel 
economic paradigm: the digital economy (Zhu et al. 2022). 
The advent of the digital economy has increasingly 
positioned it as a critical catalyst for both economic growth 
and energy conservation (Arvin et al. 2021; Kim et al. 2021). 
As a novel economic and social structure, China's digital 
economy has been progressing steadily. Estimates suggest 
that the scale of China's digital economy has been 
expanding, increasing from 2.7 trillion yuan in 2005 to 50.2 
trillion yuan in 2022. Concurrently, the digital economy's 
share of GDP has been on the rise, reaching 41.5% in 2022 
(as depicted in Figure 2). With the robust growth of the 
digital economy, data has emerged as a new factor of 
production, serving not only as a foundational and strategic 
resource but also as a novel impetus for modern economic 
development. In light of this, major industrialized nations 
have been launching big data development strategies in 
succession. 

 

Figure 2. Scale and proportion of digital economy 

The Chinese government has accorded substantial 
importance to the advancement of the big data industry. In 

2014, the concept of big data was introduced in the 
government work report for the first time, marking a 
significant policy milestone. Subsequently, in 2015, the 
State Council promulgated the "Action Outline for 
Promoting the Development of Big Data," which 
designated big data as a strategic national priority. This 
outline proposed a comprehensive strategy that included 
the establishment of national big data pilot zones to foster 
innovation and development in this sector. Building on this 
foundation, in 2020, the State Council's "Opinions on 
Building a More Perfect Market-oriented Allocation System 
for Factors of Production" formally acknowledged data as 
a factor of production, underscoring its role in the modern 
economic framework. The establishment of big data pilot 
zones has facilitated extensive exploration in critical areas 
such as data resource management, sharing, integration of 
data centers, and the application of data resources. The 
implementation of these pilot zones serves a dual purpose: 
it not only propels the development of the big data industry 
but also seeks to deepen the exploration and utilization of 
data as a strategic element. This initiative is aimed at 
enhancing the synergy between the digital economy and 
the real economy, thereby driving overall economic 
transformation and growth. 

While scholars generally concur that digital technology 
possesses substantial potential for enhancing energy 
efficiency (Haldar and Sethi 2022), the extant literature on 
the nexus between digital technology and carbon 
emissions is characterized by a divergence of opinions. This 
divergence primarily stems from the competing 
substitution and cost effects associated with digital 
technologies. The academic discourse can be broadly 
categorized into three prevailing perspectives: "positive," 
"negative," and "non-linear" (Xu et al. 2022). Moreover, 
the absence of a standardized methodology for quantifying 
the digital economy's scale has resulted in significant 
variation in estimates across different scholars, introducing 
potential biases into research findings. Consequently, the 
question arises: As a quintessential digital policy, does the 
NBDZ exert a significant influence on urban carbon 
emission efficiency? If affirmative, what are the 
mechanisms underlying this impact?  

Addressing the aforementioned inquiries is pivotal for 
enhancing our comprehension of the energy-saving and 
emission-reduction effects associated with the 
development of the digital economy. Such an exploration 
is not merely advantageous for more effectively catalyzing 
the growth of the digital economy; it also carries 
substantial practical significance. This significance is 
evident in the thorough investigation of governance 
methods for emission reduction and the formulation of 
pertinent policies aimed at mitigating emissions. By 
elucidating these aspects, we can contribute to a more 
informed and strategic approach to environmental 
sustainability within the context of digital economic 
advancement. 

Compared to existing studies, this paper's marginal 
contributions are primarily reflected in three areas: First, 
using urban-level sample data, it systematically examines 
for the first time the policy effects of the NBDZ on urban 
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carbon emission efficiency, providing new evidence and a 
useful supplement to related studies on digital policies. 
Second, it cleverly uses the formal implementation of the 
NBDZ by the Chinese government in 2016 as an exogenous 
shock to serve as a quasi-natural experiment. Based on 
urban panel data, a DID model is constructed, addressing 
issues of variable endogeneity and data measurement, 
thus offering a new empirical approach for related 
research. Third, this paper further applies the Spatial 
Durbin Model with DID (SDM-DID) and quantile model to 
analyze the spatial spillover and nonlinear effects of the 
NBDZ on urban carbon emission efficiency, thus providing 
a more comprehensive analysis of the policy effects of this 
pilot policy. Finally, based on empirical results, it offers 
valuable policy recommendations for decision-making 
bodies aiming to achieve energy transition targets. 

The subsequent sections of this study are systematically 
organized as follows: The second section offers an 
exhaustive review of pertinent literature and the 
formulation of hypotheses. The third section elucidates the 
research design employed in this paper. The fourth section 
details the empirical findings. Finally, the concluding 
section synthesizes the study's findings and discusses their 
implications for policy-making. 

2. Literature review and hypotheses development 

2.1. Literature review 

The extant literature on carbon emission efficiency 
predominantly centers on two dimensions: measurement 
methodologies and determinant factors (Pan et al. 2020; 
Xu et al. 2022). Initially, the predominant approach 
employed by scholars to assess carbon emission efficiency 
was the single ratio method (Ang 1999). Although the 
single indicator measurement method is simple, it results 
in errors because it does not consider the substitution 
effects of other production factors. Consequently, 
subsequent studies have conducted comprehensive 
measurements of carbon emission efficiency by 
constructing an input-output evaluation indicator system 
(Dissanayake et al. 2020; Wang and Shao 2022). For 
instance, Wang and Shao (2022) employed the Meta-
frontier and Nonradial Directional Distance Function 
(MFNDDF) methods to assess the carbon emission 
efficiency across 260 Chinese cities. Their findings suggest 
that, while the average carbon emission efficiency showed 
a general upward trend over the study period, there 
remains a notable discrepancy from the optimal level of 
efficiency. Xiao et al. (2023) utilized the Super-EBM model 
to calculate the carbon emission efficiency for 136 
countries spanning from 2000 to 2019, revealing 
substantial variability in efficiency among different nations 
and regions. Gao et al. (2021) applied the Slacks-Based 
Measure (SBM) model to measure the embodied carbon 
emissions within 28 industrial sectors in China from 2005 
to 2017, uncovering significant heterogeneity in carbon 
emission efficiency across various sectors. In a similar vein, 
Guo et al. (2023) employed the SBM model to evaluate the 
carbon emission efficiency of the pig farming industry 
across 30 provinces in China. Chandra et al. (2020) 

leveraged both Data Envelopment Analysis (DEA) and 
Stochastic Frontier Analysis (SFA) methods to 
comprehensively assess the levels of carbon emission 
efficiency in German cities. 

Regarding the determinants of carbon emission efficiency, 
the existing scholarly literature has established the 
influence of economic growth, population expansion, 
foreign trade, technological innovation, and urbanization 
on this metric (Wang et al. 2019; Acheampong et al. 2020; 
Brini 2021). Meng and Niu (2012) dissected the absolute 
change in carbon emission efficiency into the cumulative 
annual absolute impacts of various influencing factors 
across different industrial sectors, concluding that the 
contribution of technological innovation significantly 
surpasses that of adjustments in industrial structure. Sun et 
al. (2019) posited a positive correlation between a 
country's position index in the Global Value Chain (GVC) 
and its carbon emission efficiency, suggesting that nations 
with higher GVC positions tend to exhibit greater efficiency 
in carbon emissions. Li et al. (2022c), in their study of Belt 
and Road Initiative countries, identified energy efficiency 
as the primary factor contributing to disparities in carbon 
emission efficiency. Guang et al. (2023) examined the 
impact of energy allocation distortions on carbon emission 
efficiency, utilizing measurements of these distortions as a 
basis for their analysis. 

The digital economy, emerging as a novel economic 
paradigm subsequent to the agricultural and industrial 
economies, has garnered extensive scholarly attention. 
Current research endeavors within the domain of the 
digital economy are predominantly concentrated on 
elucidating its core essence, methods of quantification, and 
its transformative impact on traditional economic growth 
trajectories. Tapscott (1996) initially introduced the 
concept of the digital economy in his seminal work, "The 
Digital Economy," positing that within this new economic 
paradigm, the flow of information is transmuted into a 
digital format, thereby equating the digital economy with 
the new economy at large. The digital economy is generally 
delineated into two scopes: a narrow and a broad 
definition. In its narrowest interpretation, the digital 
economy primarily pertains to the industrialization of data, 
that is, the conversion of data into an industry (Guo and 
Lian 2020). Conversely, a broader perspective 
encompasses not only the industrialization of digital data 
but also the profound integration of digital technologies 
with traditional and real economies, which is to say, the 
digitalization of industries (Han et al. 2022). As for the 
quantification of the digital economy, a unified 
methodology has yet to be established; research 
predominantly centers on assessments of both absolute 
and relative magnitudes. 

Initial assessments of the digital economy were predicated 
on the information technology sector. In 2002, the U.S. 
Department of Commerce introduced the "Digital Economy 
Industry Classification Standard," which offered a more 
systematic approach to calculating the value added by 
digital industries. Li et al. (2022a) gauged the 
developmental level of the digital economy across two 
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dimensions: internet development and digital financial 
inclusion. They employed principal component analysis to 
derive a composite index reflecting the overall 
development of the digital economy. Fan and Wu (2021) 
devised a digitalization index system that included metrics 
for production digitization, consumption digitization, and 
circulation digitization. The weighting of these indicators 
was primarily ascertained through a combination of 
principal component analysis and expert scoring methods, 
thereby facilitating a comprehensive measurement of the 
digital economy's level. Concurrently, Han et al. (2022) 
utilized input-output table data to estimate the scale of the 
digital economy across various Chinese provinces. Their 
findings indicate a general upward trend in the scale of the 
digital economy at the provincial level in China. 

 As a pivotal element of economic development, the digital 
economy's proportion is expanding, thereby acting as a 
catalyst for economic growth. Specifically, the digital 
economy contributes to economic growth primarily by 
enhancing productivity, fostering industrial restructuring, 
and optimizing resource allocation (Liu 2019). In a similar 
vein, Berkhout and Hertin (2004) determined that the 
digital economy spearheads the transformation and 
upgrading of industrial structures through the digitalization 
of industry and the industrialization of digital technologies, 
thereby creating new opportunities for economic growth. 
Additionally, research by Ghasemaghaei and Calic (2019) 
indicates that the digital economy can elevate the quality 
and efficiency of traditional factors of production, such as 
labor and capital, ultimately bolstering economic growth. 

As scholarly inquiry advances, an increasing number of 
researchers are directing their attention towards the 
implications of digital economy development for green and 
low-carbon transitions (Wang and Shao 2024). For 
instance, Hampton et al. (2013) posit that the internet, 
leveraging big data and cloud computing capabilities, can 
integrate and analyze environmental datasets pertaining to 
air, soil, and water quality. This integration and analysis 
enhance the efficacy of environmental governance by 
providing a more comprehensive understanding of 
ecological conditions. Johansson et al. (2015) discovered 
that the internet has broadened the avenues for public 
engagement in environmental conservation efforts, 
thereby elevating environmental protection awareness 
and facilitating more robust monitoring. Erdmann and Hilty 
(2010) conducted a study on the internet's impact on 
carbon emissions across various scenarios, with their 
findings suggesting that the internet has a substantial 
mitigating effect on carbon emissions. Li and Wang (2022) 
employed the SDM and panel threshold model to 
investigate the relationship between the digital economy 
and carbon emissions. Their research revealed an inverted 
U-shaped relationship, indicating a complex interplay 
between the digital economy's growth and its impact on 
carbon emissions. These findings underscore the potential 
for the digital economy to influence environmental 
sustainability in nuanced ways. 

While a substantial body of research has attested to the 
beneficial role of the digital economy in enhancing 

environmental quality, it is crucial to acknowledge and 
examine the potential negative impacts of the digital 
economy on environmental pollution. The digital economy 
exerts a multifaceted influence on environmental 
outcomes: on one hand, it bolsters the efficiency of 
environmental governance through the deployment of 
information technology; on the other hand, it may amplify 
the emission of pollutants due to the scale expansion and 
the consequent energy rebound effect. Wang and Cao 
(2019) discovered a non-linear association between the 
advancement of the digital economy and total factor 
productivity (TFP). Moreover, they observed that the 
energy rebound effect precipitated by the digital 
economy's growth can lead to an escalation in carbon 
emissions. This finding underscores the intricate 
relationship between the digital economy and 
environmental sustainability, suggesting that while the 
digital economy holds promise for environmental 
improvement, its development must be carefully managed 
to mitigate adverse environmental consequences. 

A comprehensive review of the literature indicates that the 
majority of studies have explored the interplay among the 
digital economy, environmental quality, and carbon 
emissions. Initially, it is observed that due to disparate 
research timeframes and subjects, the conclusions drawn 
have lacked uniformity. Additionally, the methodologies 
for quantifying the digital economy are still in evolution; 
the use of diverse measurement techniques can yield 
substantially divergent results, thereby influencing the 
research findings. Moreover, the employment of proxy 
variables in empirical analyses frequently grapples with 
issues of endogeneity and estimation biases (Cheng et al. 
2019; Qiu et al. 2021). In light of these challenges, the 
present study endeavors to ascertain whether the 
establishment of the NBDZ has significantly bolstered 
carbon emission efficiency. Leveraging the initiation of the 
NBDZ as a quasi-natural experimental setting, this paper 
applies the DID model to scrutinize the policy's impact on 
carbon emission efficiency and the mechanisms through 
which these effects are transmitted. The ultimate goal is to 
furnish empirical evidence to inform policies aimed at 
realizing the "dual carbon" targets, which refer to achieving 
peak carbon dioxide emissions and carbon neutrality. 

2.2. Hypotheses development 

The digital economy represents a novel economic 
paradigm that is propelled by digital resources as pivotal 
components, with modern information networks serving as 
the primary conduits, and the convergence and utilization 
of information and communication technologies alongside 
the digitization of all elements. Within the amalgamation 
and evolution of the digital and traditional economies, the 
deployment of digital technology accelerates the swift 
circulation of various production factors, thereby 
significantly elevating the degree of societal productivity. 
This enhancement, in turn, effectively fosters the 
enhancement of carbon emission efficiency (Xu et al. 
2022). On one hand, the implementation of the NBDZ 
ensures the ongoing integration of digital technologies, 
epitomized by big data and artificial intelligence, with 
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conventional industries. This integration not only facilitates 
a gradual shift towards industrial digitization, intelligence, 
and green sectors (Ma et al. 2022), but also contributes to 
the reduction of energy consumption and carbon emissions 
while concurrently augmenting industrial added value (Qin 
and Cheng 2017). On the other hand, NBDZ enhance 
production coordination through digital management, 
enabling efficient and precise connectivity and integration 
of all stages of production, avoiding excessive consumption 
of production factors, and thereby improving urban carbon 
emission efficiency (Thompson et al. 2013). 

From a geographical economics perspective, it is argued 
that there are no independent observations in reality, and 
ignoring the spatial dependence between subjects of study 
can lead to distortions in empirical results (Anselin 1988). 
Undoubtedly, the establishment of NBDZ has significantly 
mitigated the economic interaction impediments 
stemming from geographical distances. The spatial 
externalities they engender not only influence local carbon 
emission efficiency but also exert an impact on the carbon 
emission efficiency of adjacent regions (Zhu et al. 2022). 
For instance, Liu (2021) conducted an analysis of carbon 
emissions across Chinese cities, revealing that carbon 
emissions display distinct spatial clustering characteristics. 
Xu et al. (2022) demonstrated that the development of ICT 
capital not only augments urban carbon emission efficiency 
within the region but also generates a significant spatial 
spillover effect on surrounding areas. This leads to the first 
hypothesis H1 proposed in this paper. 

H1: NBDZ not only actively promote the improvement of 
urban carbon emission efficiency but also exhibit a 
significant spatial spillover effect. 

Firstly, the establishment of NBDZ is accompanied by a 
digital transformation that shifts the focus from resource-
intensive and labor-intensive industries to technology-
intensive sectors, thereby optimizing the industrial 
structure (Zhong et al. 2022). Secondly, the extensive 
adoption of digital technologies has catalyzed the growth 
of emerging industries, including the big data sector, cloud 
computing, and artificial intelligence. Furthermore, the 
integration of digital elements into traditional production 
domains enhances the operational efficiency of these 
industries, thereby accelerating their transformation and 
upgrading processes. The optimization and upgrading of 
the industrial structure is characterized by an increased 
proportion of the tertiary sector, which is predominantly 
composed of technology-intensive industries. These 
industries are notably efficient and are low-emission, clean 
industries, which contribute to a reduction in carbon 
emissions during the production process (Li et al. 2018). 
This shift towards a more service-oriented and technology-
driven economy is essential for achieving sustainable 
development goals, including the reduction of carbon 
emissions.  

The efficient information transmission channels facilitated 
by NBDZ has enhanced the dissemination of knowledge, 
thereby promoting the concentration of high-tech talent 
and research and development capital. This concentration, 
in turn, has led to a comprehensive enhancement in the 

level of technological innovation. In the realm of digital 
industries, the advancement of digital industrialization has 
bolstered the sharing of information and knowledge 
among enterprises, thereby improving their innovation 
capacity and output. This has also mitigated information 
asymmetry, which is crucial for fostering a more equitable 
and efficient market environment (Li et al. 2020). Tang et 
al. (2021) posit that the implementation of digital policies 
has spurred green technological innovation within 
enterprises. The accumulation of digital technology capital 
has not only facilitated the development of a variety of low-
carbon technologies but also enabled technological 
spillovers. These spillovers have significantly reduced 
production redundancies and improved environmental 
impacts, thereby enhancing urban carbon emission 
efficiency (Lange et al. 2020). Anderson (2001) further 
underscores the positive role of technological innovation in 
mitigating environmental pollution, highlighting its 
importance in achieving sustainable development 
objectives. 

The establishment of NBDZ has expanded information 
dissemination channels, thereby accelerating the speed of 
information acquisition and intensifying regional 
knowledge spillovers. These zones have also contributed to 
the acceleration of human capital accumulation and the 
enhancement of its quality, providing intellectual support 
that is crucial for improving carbon emission efficiency 
(Haini 2021). As the level of human capital gradually 
increases, it aligns high-tech material capital with high-
level labor, which in turn promotes productivity 
improvements and enhances carbon emission efficiency. In 
essence, the sustained growth in both the quantity and 
quality of human capital stimulates a new cycle of 
information and communication technology development, 
creating a virtuous cycle that ultimately leads to improved 
carbon emission efficiency (Ilmakunnas and Miyakoshi 
2013). This interplay between human capital development 
and technological advancement underscores the 
importance of educational and skill-enhancing initiatives 
within the context of sustainable economic growth. The 
synergistic relationship between human capital and 
technological progress is a key driver in the transition 
towards a more efficient and environmentally conscious 
economy. Based on this, this paper proposes the 

hypothesis H2、H3 and H4. 

H2: NBDZ can promote the improvement of urban carbon 
emission efficiency by optimizing the industrial structure. 

H3: NBDZ can promote improvements in urban carbon 
emission efficiency through technological innovation. 

H4: NBDZ can promote improvements in urban carbon 
emission efficiency by accelerating the accumulation of 
human capital. 

3. Research design 

3.1. Methods of measuring urban carbon emission 
efficiency 

Chambers (1996) initially introduced the application of 
directional distance functions for the measurement of 
efficiency. Fukuyama and Weber (2009) posited that, 
despite the widespread adoption of traditional radial 
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directional distance functions as a metric for efficiency, 
these methods may overestimate efficiency values in 
scenarios where there is non-zero slack. Conversely, non-
radial approaches incorporate slack variables, permitting 
proportional adjustments in inputs and outputs, rendering 
them more appropriate for assessing energy and 
environmental efficiency. Building upon this body of 
research, the present study employs the MNDDF model to 
quantify energy efficiency (Fang et al. 2024; Hu et al. 2020; 
Wang and Shao 2022). In this analysis, each city is 
considered a Decision-Making Unit (DMU) for constructing 
the production frontier. Each DMU utilizes capital (K), labor 
(L), and energy (E) as input indicators, with the city's Gross 
Domestic Product (GDP) (Y) serving as the desired output, 
and carbon dioxide emissions (CO2) as the undesired 
output. Consequently, the technology production set that 
encompasses non-desired outputs can be articulated as 
follows: 
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(3) 

According to the researches of Cheng et al. (2018), the 
urban carbon emission efficiency (CEE) can be expressed 
as: 
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3.2. Empirical model 

To ascertain whether a data-centric digital policy can 
enhance carbon emission efficiency, this paper employs 
the establishment of NBDZ as a quasi-natural experiment. 
The study sample encompasses 268 prefectural-level cities 
and above in China. Cities under the jurisdictions of the 
provinces of Guizhou, Hebei, Guangdong, Henan, and Inner 
Mongolia, as well as the municipalities of Beijing, Shanghai, 
Tianjin, Chongqing, and Shenyang, totaling 66 cities, are 
designated as the treatment group. The remaining cities 
constitute the control group. The year 2016 is chosen as the 
policy implementation time point for the pilot zones, 
primarily because, although the State Council's "Action 
Outline for Promoting the Development of Big Data," 
issued in August 2015, explicitly proposed regional pilot 
initiatives and the advancement of big data pilot zones in 
Guizhou, it was not until February 2016 that the National 
Development and Reform Commission, the Ministry of 
Industry and Information Technology, and the Cyberspace 
Administration of China formally approved the 
establishment of Guizhou’s pilot zone. Subsequently, the 
second batch of pilot zones was approved in October of the 
same year. Consequently, this paper uniformly designates 
the policy time point as 2016 to align with the formal 
commencement of the pilot zones. 

The DID model offers a robust approach for evaluating 
policy impacts by accounting for influences other than the 
policy intervention. It captures the relative differences 
between the treatment and control groups before and 
after policy changes, thereby controlling for pre-existing 
trends and other confounding factors (Feng et al. 2023; Li 
et al. 2018; Qiu et al. 2021). The application of this method 
is predicated on certain assumptions, most notably the 
parallel trends assumption. This assumption requires that 
the control and treatment groups exhibit consistent 
development trajectories prior to the policy intervention. 
Should there be inherent disparities in development 
between the two groups, the policy evaluation outcomes 
may be compromised. Consequently, this study conducts 
parallel trend tests to ensure the validity of the DID 
approach, as detailed in subsequent sections. In this vein, 
to empirically examine the impact of the NBDZ on urban 
carbon emission efficiency, this paper draws upon existing 
literature to construct the following benchmark model 
(Gao et al. 2024b; Wang and Shao 2024; Xu 2022). This 
model serves as a foundational analytical framework to 
assess the efficacy of the NBDZ policy in enhancing carbon 
emission efficiency, while also accounting for potential 
biases due to pre-existing differences between the 
treatment and control groups. 

0 1it it j it i t itCEE NBDZ X     = + +  + + +
 

(5) 
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Here, i and t represent the city and year, respectively; CEE 
denotes the carbon emission efficiency; NBDZit = Treati × 
Timet, where Treati indicates whether it is a NBDZ, with a 
value of 1 indicating that it is a national big data pilot zones 
and a value of 0 indicating that it is not; Timet is a time 
dummy variable, with a value of 1 indicating that the policy 
of NBDZ was implemented in that year for the treatment 
group cities, and a value of 0 indicating that the NBDZ has 
not yet been implemented; X represents a set of control 
variables; i  and t  represent individual fixed effects and 

time effects, respectively; it  is a random error term. 

It should be noted that the above econometric model 
primarily examines the impact of the NBDZ on the 
conditional expectations of carbon emission efficiency, 
inherently being a mean regression, thus susceptible to 
outliers. However, in certain cases, for the unconditional 
distribution, the mean does not fully reflect the overall 
situation of the conditional distribution. The traditional 
approach involves grouping the overall sample based on 
specific statistical measures and examining it through 
grouped mean regression. While dividing the sample can 
provide information on the distribution's tails, such 
truncated regression inevitably leads to selection bias and 
sample loss. The quantile regression model can overcome 
the shortcomings of mean regression by avoiding 
subjective grouping of samples and instead using the entire 
sample dataset to model different quantiles separately, 
thus fully capturing the overall characteristics of the 
distribution. Therefore, to accurately depict the complete 
statistical characteristics of the conditional distribution and 
effectively capture the impact of the NBDZ in the extreme 
areas of urban carbon emission efficiency, illustrating the 
dynamic evolution of the marginal effects in the process of 
enhancing carbon emission efficiency, this paper further 
constructs the following quantile regression model based 
on Wang and Shao (2023). 

( ) ( ) ( )0 1it it j it i t itCEE NBDZ X        = + + + + +
 
(6) 

Herein, τ (0<τ<1) represents different quantiles of the 

conditional distribution, the core coefficient ( )1   reveals 

the marginal impact of the NBDZ on urban carbon emission 
efficiency at different quantile points. 

Tobler's first law of geography posits that everything is 
related to everything else, but nearer things are more 
closely connected than distant ones (Tobler 1969). 
Additionally, the traditional DID method is suited for 
estimating policy impacts in the absence of spillover 
effects. However, due to the presence of spatial economic 
connections, the impact of the NBDZ may have some 
degree of spillover effect. Therefore, considering that the 
influence of the NBDZ on urban carbon emission efficiency 
might exhibit spatial effects, this paper employs SDM-DID 
analysis to further examine the emission reduction effects 
of the NBDZ (Peng and Gao 2025). The econometric model 
is as follows: 

0 1 1 2it ij it it ij it

it i t it

CEE W CEI NBDZ W NBDZ

X

   

   

= +  + + 

+  + + +
 

(7) 

Where, W is the spatial weight matrix. In this paper, the 
geographic distance spatial weight matrix is used in 
benchmark regression, which measures the relationship 
between more distant spatial units. The specific calculation 
is as follows: 
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Where, ijW  is the matrix element of the ith row and column 

j; ijd  is the geographic distance between spatial unit i and 

spatial unit j, and 'd
ijW  represents the normalized spatial 

weight. At the same time, the economic distance spatial 
weight matrix is used to test the robustness, which is 
calculated as follows: 
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(11) 

Where, e
ijW  is the spatial weight matrix of economic 

distance, iY  is the average of the per capita GDP of the ith 

region in the sample period, and Y  is the average of the 
per capita GDP in the sample period. ρ is the spatial 
spillover coefficient; the meaning of the rest of the 
variables are the same as Eq. 5. 

To further investigate the mechanisms through which the 
NBDZ affect urban carbon emission efficiency, we have 
established the following model, drawing on existing 
research (Li and Du 2021): 

0 1it it j it i t itME NBDZ X     = + +  + + +
 

(12) 

Among them, MEit represents the mechanism variable, and 
the meanings of other variables are the same as Eq. 5. 

3.3. Data and variable definition 

3.3.1. Data source 

Considering the availability of data, this paper compiles 
panel data for prefecture-level cities in China from 2006 to 
2019, deliberately excluding data post-2019 to mitigate the 
confounding effects of the COVID-19 pandemic. The 
analysis is confined to 268 prefecture-level cities, excluding 
those that have been newly established, experienced 
boundary adjustments, or have incomplete data. The 
dataset is primarily derived from the China City Statistical 
Yearbook, complemented by various provincial and 
municipal statistical yearbooks, as well as the EPS 
database. For the minor gaps in the dataset, missing values 
were interpolated using trend fitting techniques. 
Moreover, given the potential for heteroscedasticity in the 
data, the majority of the data processing was conducted 
using the ratio method. This approach helps to normalize 
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the data, reducing the impact of scale differences and 
facilitating a more accurate analysis of the relationships 
under investigation. 

3.3.2. Variable and definition 

Input and output variables: According to existing research, 
the input factors for measuring carbon emission efficiency 
mainly include capital, labor, and energy, while the outputs 
comprise both desired and undesired outputs (Haider and 
Mishra 2021; Wang and Shao 2022). For capital inputs, this 
paper selects the capital stock as a representation. Since no 
official survey data on the capital stock in China are 
currently available, we use the perpetual inventory method 
to estimate the capital stock of cities (Li and Ma 2021; Lin 
and Tan 2016); labour input is represented by the number 
of employees at the end of the year in cities (Guo et al. 
2018); as major energy consumption data such as coal and 
oil are not recorded in city-level data in China, we follow 
the approach of Fu et al. (2021) and use city electricity 
consumption as a proxy for energy input. Desired output is 
selected as the gross domestic product of cities to reflect 
economic growth. Undesired output in this paper is 
measured by the CO2 emissions of the cities. 

Empirical variables: The dependent variable in this paper is 
urban carbon emission efficiency, abbreviated as CEE. The 
study uses the implementation of the NBDZ starting in 
2016 as a quasi-natural experiment. The dummy variable 
Treati indicates whether a city is part of the experimental 
group, and the dummy variable Timet denotes whether the 
experimental group city implemented the National Big 
Data Pilot Zones in that year. Hence, the interaction term 
Treati × Timet is the core explanatory variable of this paper. 
To minimise the impact of omitted variables on the model 
estimation, based on existing research, this paper includes 
the following control variables: city economic development 
level (PGDP), marketization level (MR), government 
intervention (GI), financial development (FI), urbanization 
level (UR), and population density (DP) (Hu et al. 2020; 
Wang and Shao 2022; Zhu et al. 2022). Among these, the 
level of urban economic development is measured using 
the natural logarithm of the city's per capita GDP (Murshed 
et al. 2022); the level of marketization is directly 
represented by the marketization index published in the 
"Report on the Marketization Index by Provinces in China 
(2021)" (Fan et al. 2011); government intervention is 
represented by the ratio of fiscal expenditure to GDP (Li 
and Lin 2017); financial development is assessed based on 
the ratio of city deposits and loan balances to city GDP, 
following existing literature (Rasoulinezhad and 
Taghizadeh-Hesary 2022); the level of urbanization is 
represented by the proportion of the urban population to 
the total population (Chai et al. 2023; Wang et al. 2024); 
population density is measured using the natural logarithm 
of the number of people per unit land area in cities (Zhang 
et al. 2023). 

To further analyze the mechanisms through which the 
NBDZ influence urban carbon emission efficiency, the 
paper tests industrial structure upgrading (ST), 
technological innovation (TI), and human capital (HC) as 
mechanistic variables. Industrial structure transformation 

is measured by an industrial upgrading index, denoted as: 
S=r1*1+r2*2+r3*3, where S represents the industrial 
structure upgrading index, and r1, r2, r3 respectively 
represent the shares of primary, secondary, and tertiary 
industry outputs in the city's GDP (Wang and Shao 2022). 
Patent data, reflecting regional research personnel, 
research funding, and research capabilities, serve as an 
output indicator of regional innovation inputs and can 
directly measure regional innovation capabilities. Thus, this 
paper adopts the practice of using the number of green 
invention patent applications per 10,000 people as a proxy 
for the level of technological innovation (Gao et al. 2022; 
Lin and Ma 2022). Human capital is represented by the 
ratio of the number of regular university students to the 
total population (Xue et al. 2021). 

4. Results 

4.1. Benchmark model regression 

This article utilizes the DID approach to evaluate the policy 
effects of the NBDZ on urban carbon emission efficiency. 
To bolster the robustness of the baseline regression 
analysis, control variables are incrementally incorporated 
(Gao et al. 2024c; Shao et al. 2019). Table 1 presents the 
detailed regression outcomes. In Model 1, the NBDZ is 
employed as the sole explanatory variable, with the 
coefficient being significantly positive at the 1% 
significance level. These results suggest that the policy has 
significantly contributed to the enhancement of urban 
carbon emission efficiency, aligning with the findings of 
Zhang et al. (2022) and thus validating Hypothesis 1. This 
finding implies that, on one hand, the implementation of 
the NBDZ has expedited the integration of digital 
technologies, including big data and artificial intelligence, 
with traditional industries. This integration has facilitated a 
gradual transformation of these industries towards 
digitalization, intelligence, and more environmentally 
sustainable sectors (Ma et al. 2022; Wang and Shao 2024). 
On the other hand, the policy's implementation, through 
digitalized management practices, has enhanced 
production coordination, curbed the excessive 
consumption of production factors, and consequently 
improved urban carbon emission efficiency (Thompson et 
al. 2013). These insights underscore the pivotal role of 
data-centric digital policies in fostering sustainable 
development and environmental efficiency. 

4.2. Parallel trend test 

The foundational assumption underlying the use of the DID 
model for policy effect analysis is the parallel trends 
assumption (Tan et al. 2024). This assumption posits that 
the treatment and control groups must exhibit identical 
developmental trajectories prior to the policy's 
implementation; otherwise, the policy evaluation results 
derived from the DID model may be compromised (Song et 
al. 2020; Qiu et al. 2020). Consequently, this study 
necessitates a rigorous test of the parallel trends within the 
research sample. The standard approach for testing parallel 
trends typically involves incorporating dummy variables for 
each time period relative to the policy event and 
interaction terms between these dummies and the policy 
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dummy variable into the regression model. The significance 
of the coefficients for these interaction terms is then 
scrutinized. If the interaction term's regression coefficient 
is non-significant before the policy's implementation and 
becomes significant thereafter, it suggests that the 
treatment and control groups adhere to the parallel trends 
assumption, thereby satisfying a key precondition for the 
application of the DID model. Consequently, the potential 
for selection bias to skew the policy evaluation effects is 
mitigated, enhancing the reliability of the study's 
conclusions (Roth 2022). This rigorous approach ensures 
that any observed policy effects are more likely to be 
attributable to the intervention itself rather than to pre-
existing differences between the groups. To ensure the 
accuracy of the research results, this paper constructs the 
following model to test the parallel trends: 

( )
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(13) 

In Eq. 13, the value of ,
it setyear n

i tI
− =  is determined as follows: 

it takes a value of 1 when it setyear n− = , and 0 otherwise. 

Here, t represents the year, and  isetyear  indicates the year 

in which city i became a pilot city for the NBDZ. The other 
variables are consistent with those in Eq. 5. 

The results of the parallel trends test are shown in Figure 
3. Before the implementation of the NBDZ, there were no 
significant differences in the energy transition 
development between the treatment group and the 
control group. However, after the implementation of this 
pilot policy, the NBDZ significantly promoted urban carbon 
emission efficiency. This indicates that before the 
implementation of the NBDZ, the treatment and control 
groups essentially met the prerequisite of parallel trends, 
justifying the use of the DID model for empirical testing in 
this article. 

 

Figure 3. Parallel trend test Note: The small dots in the graph 

represent point estimates, and the upper and lower bounds of 

the vertical lines represent the 95% confidence interval. 

4.3. Placebo test 

The comparability between the control and treatment 
groups is a prerequisite for employing the DID method in 
this study to analyze the impact of the NBDZ policy on 

urban carbon emission efficiency. The assumption is that, 
in the absence of the NBDZ policy, the trend in urban 
carbon emission efficiency levels between the treatment 
and control groups would remain consistent over time. 
Therefore, adhering to the methodology of Yang et al. 
(2020), this article performs 1,000 random samplings 
across all 268 prefecture-level cities. In each iteration, 66 
cities are randomly designated as the pseudo treatment 
group, with the remaining cities acting as the control group. 
The modified policy variables are introduced into the 
original model for regression analysis, and the outcomes 
are compared to ascertain the policy's effects. As depicted 
in Figure 4, the absolute value of the t-statistic for the 
majority of the sampling estimation coefficients falls within 
the range of 2, and the corresponding p-values exceed 0.1. 
This suggests that environmental information disclosure 
does not exert a significant influence in these 1,000 
random samplings. Consequently, the placebo test is 
passed, indicating that there is no spurious causal 
relationship between urban carbon emission efficiency and 
other unobserved factors. This rigorous placebo test 
strengthens the credibility of the study's findings by ruling 
out the influence of confounding variables that could 
potentially bias the policy evaluation. 

 

Figure 4. Kernel density distribution 

4.4. Robustness test based on PSM-DID method 

Another prerequisite for using the DID method is that the 
selection of the treatment and control groups must be 
random. Although logically, the implementation of NBDZ 
seems unaffected by local carbon emission efficiency, it is 
necessary to conduct a robustness test based on empirical 
results. Therefore, this paper uses control variables and 
mechanism variables as covariates and employs the one-
to-one nearest neighbor matching method to match the 
samples of the treatment and control groups, thereby 
mitigating the issue of selection bias (Wang and Shao 
2024). The effectiveness of the propensity score matching 
method relies on the assumption of balance, meaning 
there should be no significant differences in the matched 
characteristic variables between the treatment and control 
groups. Thus, the following text will test whether the 
propensity score matching has balanced the distribution of 
variables between the treatment and control groups. 
According to the test results in Table 2, after matching, 
there are no significant differences in the means of the 
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covariates between the experimental and control groups. 
Additionally, as can be visually observed from Figure 5, the 
standardized biases of most variables are reduced after 
matching. This indicates that the use of the propensity 
score matching method effectively reduces potential 
endogeneity and selection biases. According to the 
regression results in Table 3, the sign of the core 
explanatory variable is consistent with the findings of the 

baseline regression. In summary, even taking selection bias 
into account, the implementation of the NBDZ still 
significantly contributes to urban carbon emission 
efficiency, highlighting the robustness of the empirical 
results of this study. 

 

Table 1 Benchmark regression results 

Variables (1) (2) (3) (4) (5) (6) (7) 

NBDZ 
0.049*** 0.054*** 0.056*** 0.057*** 0.056*** 0.054*** 0.054*** 

(4.55) (5.06) (5.26) (5.30) (5.22) (5.12) (5.06) 

PDG  
0.088*** 0.088*** 0.078*** 0.067*** 0.071*** 0.072*** 

(7.69) (7.67) (6.53) (5.19) (5.53) (5.54) 

MR   
0.015*** 0.016*** 0.016*** 0.016*** 0.016*** 

(3.26) (3.31) (3.35) (3.35) (3.37) 

GI    
-0.170*** -0.144** -0.159*** -0.158*** 

(-3.00) (-2.49) (-2.76) (-2.74) 

FI     
-0.010** -0.009** -0.009** 

(-2.25) (-2.14) (-2.14) 

UR      
-0.189*** -0.189*** 

(-4.27) (-4.26) 

DP       
0.161 

(0.91) 

City-FE Yes Yes Yes Yes Yes Yes Yes 

Time-FE Yes Yes Yes Yes Yes Yes Yes 

Observations 3752 3752 3752 3752 3752 3752 3752 

R2 0.3791 0.3895 0.3914 0.3930 0.3939 0.3970 0.3972 

Note: ***p<0.01, **p<0.05, *p<0.1. 

Table 2. Common support test of PSM-DID method 

Variables Sample 
Mean Reduct T-test 

Treatment Control bias (%) |bias| (%) T value P>|T| 

PGDP 
Unmatched 10.744 10.344 44.9 

81.2 
7.65 0.000 

Matched 10.726 10.650 8.5 0.94 0.346 

MR 
Unmatched 12.807 10.222 112.3 

87.1 
15.53 0.000 

Matched 12.812 13.144 -14.4 -1.85 0.065 

GI 
Unmatched 0.189 0.172 22.7 

78.3 
3.21 0.001 

Matched 0.189 0.194 -4.9 -0.45 0.653 

FI 
Unmatched 2.862 2.221 51.4 

87.8 
8.53 0.000 

Matched 2.846 2.768 6.3 0.68 0.495 

UR 
Unmatched 0.604 0.509 57.7 

83.2 
9.10 0.000 

Matched 0.5951 0.6028 -5.2 1.20 0.231 

DP 
Unmatched 0.065 0.043 51.2 

59.9 
9.76 0.000 

Matched 0.064 0.055 20.6 2.25 0.025 

TI 
Unmatched 1.669 0.440 43.5 

65.7 
13.26 0.000 

Matched 1.491 1.069 14.9 1.84 0.067 

HC 
Unmatched 0.022 0.017 18.4 

61.1 
3.16 0.002 

Matched 0.022 0.020 7.2 0.82 0.414 

ST 
Unmatched 2.396 2.263 94.0 

92.5 
14.25 0.000 

Matched 2.395 2.385 7.1 0.85 0.396 

 

4.5. Other robustness tests 
To ensure the robustness of the empirical findings, this 
article conducts additional robustness checks through the 
following methodologies: (1) Acknowledging the distinctive 
characteristics of the four municipalities—Beijing, Tianjin, 
Shanghai, and Chongqing—these cities were excluded from 
the comprehensive sample. Subsequently, the reduced 

sample size was reintroduced into the model for regression 
analysis to verify the stability of the results (Li et al. 2022b). 
This exclusion is justified by the unique administrative and 
economic status of these municipalities, which may 
influence the generalizability of the findings to other 
prefecture-level cities in China. By conducting sensitivity 
analyses with and without these municipalities, the study 
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aims to provide a more nuanced understanding of the 
policy effects across different urban contexts. 

 

Figure 5. Standardized deviation diagram of each variable 

Table 3 PSM-DID regression results 

Variables (1) (2) 

NBDZ 0.081* 0.078 

(1.74) (1.62) 

Control variables No Yes 

City-FE Yes Yes 

Time-FE Yes Yes 

Observations 447 447 

R2 0.4741 0.4973 

Note: ***p<0.01, **p<0.05, *p<0.1. 

(2) To mitigate the influence of extreme values, the top and 
bottom 1% of all continuous variables were subjected to 

winsorization, a statistical technique that involves capping 
extreme values at a specified percentile. Following this 
procedure, the baseline model was re-estimated to ensure 
that the results are not unduly influenced by outliers, 
thereby enhancing the reliability of the findings (Guo et al. 
2023). This methodological approach is crucial for 
maintaining the integrity of the regression analysis by 
reducing the potential distortion caused by data points that 
deviate significantly from the rest of the distribution.  

(3) To achieve more robust empirical results, this paper 
further considers that other policies on urban development 
during the sample period might interfere with the causal 
identification of the study. Therefore, based on documents 
issued by the National Development and Reform 
Commission and the Ministry of Housing and Urban-Rural 
Development, two overlapping policies with the research 
sample were collected and organized: the "Broadband 
China" strategy (BCS) and the Low-Carbon City Pilot (LCCP). 
Accordingly, the paper incorporates dummy variables 
representing the aforementioned policies into the control 
variables and re-estimates the baseline model (Wang and 
Wang 2023).  

The outcomes of the aforementioned robustness tests, as 
delineated in Table 4, reveal that the directional signs of 
the core explanatory remain invariant, thereby 
underscoring the robustness of the baseline regression 
findings presented in this study. These consistent results 
across various methodological checks provide compelling 
evidence of the stability and reliability of the estimated 
effects. 

 

Table 4 Other robustness test results 

Variables (1) (2) (3) (4) (5) 

NBDZ 
0.040*** 0.050*** 0.054*** 0.054*** 0.054*** 

(3.58) (4.74) (5.05) (5.06) (5.03) 

BCS   Yes No Yes 

LCCP   No Yes Yes 

Control variables Yes Yes Yes Yes Yes 

City-FE Yes Yes Yes Yes Yes 

Time-FE Yes Yes Yes Yes Yes 

Observations 3696 3752 3752 3752 3752 

R2 0.3904 0.3990 0.3940 0.3942 0.3949 

Note: ***p<0.01, **p<0.05, *p<0.1. 

Table 5 Quantile regression results 

 (1) (2) (3) 

Variables Q10 Q25 Q50 

NBDZ 
0.159*** 0.081*** 0.005** 

(7.42) (4.61) (2.11) 

_cons 
1.067*** 1.211*** 1.027*** 

(5.91) (17.80) (83.21) 

Control variables Yes Yes Yes 

Observations 3752 3752 3752 

R2 0.0884 0.0767 0.0015 

Note: ***p<0.01, **p<0.05, *p<0.1. 

4.6. Nonlinear analysis 
In previous research, the main focus was on examining the 
impact of the explanatory variable x on the conditional 

expectation E (y | x) of the response variable y, i.e., mean 
regression. In actual studies, the real interest lies in the 
effect of the explanatory variable on the entire conditional 

-50 0 50 100
Standardized % bias across covariates

HC

GI

TI

PGDP

DP

FI

UR

ST

MR

Unmatched

Matched



12  LIANGHU WANG and JUN SHAO 

distribution y | x. However, the conditional expectation E 
(y | x) only characterizes one aspect of the central tendency 
of the conditional distribution y | x. If the conditional 
distribution y | x is not symmetrical, then the conditional 
expectation E (y | x) will struggle to reflect the entire scope 
of the conditional distribution. Therefore, Koenker and 
Bassett (1978) introduced the quantile regression method, 
which uses the weighted average of the absolute values of 
the residuals as the objective function to minimize. This 
method is less affected by outliers, making the regression 
results more robust. 

In order to accurately depict the asymmetric impact of the 
NBDZ on urban carbon emission efficiency and effectively 
capture the tail characteristics of the distribution between 
NBDZ and urban carbon emission efficiency, this chapter 

next utilizes quantile regression. It estimates the quantile 
equations affected by NBDZ at the 0.1, 0.25, and 0.5 
quantiles respectively. As indicated by the regression 
results in Table 5, the absolute value of the quantile 
regression coefficients for the new energy demonstration 
city policy decreases as the quantiles increase. That is, at 
different developmental stages of urban carbon emission 
efficiency, the marginal effects of the NBDZ are dynamically 
changing and show a decreasing trend. This suggests that 
the NBDZ have a more pronounced effect on enhancing 
urban carbon emission efficiency at lower levels, thus 
providing cities still at lower levels of urban carbon 
emission efficiency with opportunities to catch up, which is 
beneficial in narrowing regional disparities. 

 

Table 6 Heterogeneity analysis results 

Variables Eastern Central and Western Non-resource-based Resource-based Small and medium Large 

NBDZ 
0.068*** 0.021 0.059*** 0.027 0.033** 0.061*** 

(5.07) (1.43) (4.74) (1.55) (2.35) (4.32) 

Control variables Yes Yes Yes Yes Yes Yes 

City-FE Yes Yes Yes Yes Yes Yes 

Time-FE Yes Yes Yes Yes Yes Yes 

Observations 3752 3752 3752 3752 3752 3752 

R2 0.3972 0.3931 0.3966 0.3931 0.3937 0.3960 

Note: ***p<0.01, **p<0.05, *p<0.1. 

Table 7 SDMDID model suitability test 

Test type Statistical value P value 

Wald_ spatial_ lag 47.74 0.0000 

LR_ spatial_ lag 47.52 0.0000 

Wald_ spatial_ error 38.02 0.000 

LR_ spatial_ error 50.58 0.0000 

Hausman Test 101.64 0.0000 

Table 8 SDMDID regression results 

Variables Geographical matrix Economic matrix 

NBDZ 
0.058*** 0.060*** 

(5.56) (5.76) 

WijNBDZ 
0.146*** 0.038 

(2.81) (1.51) 

Control Variables Yes Yes 

Spatial-rho 
0.278*** 0.093*** 

(3.78) (3.26) 

sigma2-e 
0.015*** 0.016*** 

(42.91) (42.89) 

Direct effect 
0.059*** 0.061*** 

(5.58) (5.81) 

Indirect effect 
0.198*** 0.041* 

(3.62) (1.83) 

Total effect 
0.257*** 0.102*** 

(4.64) (4.24) 

City-FE Yes Yes 

Time-FE Yes Yes 

Observations 3682 3682 

R2 0.0649 0.0524 

Note: ***p<0.01, **p<0.05, *p<0.1. 

 

4.7. Heterogeneity analysis 
The analysis presented above indicates that, overall, the 
NBDZ have exerted a significant influence on enhancing 

carbon emission efficiency. On one hand, as a pivotal 
catalyst in the new technological revolution, the NBDZ 
profoundly shape the economic development paradigm of 
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cities, with this impact exhibiting distinct heterogeneity 
across different entities. On the other hand, given China's 
extensive geographical expanse and intricate social 
characteristics, there are pronounced disparities among 
cities in terms of natural geography, economic 
development, and resource endowment (Ma and Lin 2023). 
Consequently, examining the diverse effects of the NBDZ 
on carbon emission efficiency has emerged as a critical area 
of focus for comprehending this heterogeneity. Building on 
this foundation, this paper further dissects the 
heterogeneous impacts of the NBDZ on carbon emission 
efficiency across three dimensions: urban location, urban 
attributes, and city size. By adopting a multifaceted 
approach, the study aims to provide a more nuanced 
understanding of how the NBDZ policy influences carbon 
emission efficiency in different urban contexts. This 
granular analysis is essential for tailoring policy 
interventions to the specific needs and characteristics of 
each city, thereby maximizing the policy's effectiveness in 
promoting sustainable development and environmental 
efficiency. 

The regression results from Table 6 show that, firstly, the 
coefficients for the Eastern region are significantly positive 
at the 1% level and above, while in the Central and Western 
regions, the coefficients are also positive but not 
significant. This may be because cities in the Eastern region 
have clear advantages in infrastructure, labor quality, 
transportation, and innovation (Zhang et al. 2023), 
providing a solid material basis for the national-level big 
data comprehensive pilot zones, thereby stimulating policy 
effects. In contrast, the Central and Western regions face 
many challenges due to uneven terrain, sparse 
populations, and underdeveloped economic conditions, 
which hinder the construction of national-level big data 
comprehensive pilot zones. Additionally, the industries in 
these regions are more dispersed and lack scalability (Dong 
et al. 2018), thus limiting the policy effects of the NBDZ. 
Secondly, the regression coefficients for non-resource-
based cities are significantly positive, whereas for resource-
based cities, the coefficients are not significant. The likely 
reason is that cities based on resources are more 
dependent on energy-intensive and highly polluting 
industries related to traditional resources, making it 
difficult to adjust the industrial structure. They also 
compete for capital and talent with other emerging 
industries, exacerbating the "resource curse," thus 
inhibiting the ability of the NBDZ to enhance urban carbon 
emission efficiency. Lastly, regardless of whether they are 
small or large cities, the core explanatory variable's 
coefficients are significantly positive at the 5% level and 
above. However, for large cities, the absolute values of the 
coefficients are greater than those for small and medium-
sized cities, indicating that the NBDZ have a higher impact 
on enhancing carbon emission efficiency in large cities than 
in smaller ones. 

4.8. Spatial spillover effect test 

Previous research has shown that the implementation of 
NBDZ has a significant promoting effect on enhancing 
carbon emission efficiency. However, an implicit 

assumption of the DID model is that no individual will be 
affected by the treatment status of others, hence 
neglecting the spatial interdependence among study units 
could lead to biased estimation results. Based on this, this 
paper utilizes the SDM-DID model to examine the impact 
of the implementation of NBDZ on local and neighboring 
carbon emission efficiency. 

In order to investigate whether the SDM-DID model 
degenerates into the Spatial Autoregressive DID (SAR-DID) 
and Spatial Error Model DID (SEM-DID) models, the 
simplification test for spatial econometric models is carried 
out following the testing approach by Elhorst (2014). Table 
7 reports the specific test results, with both the Wald test 
and the LR test rejecting the null hypothesis, indicating that 
the use of the SDM-DID model is appropriate. In 
conjunction with the Hausman test results, this paper uses 
a model with time and spatial fixed effects for estimation. 
Considering that the spatial autoregressive model has 
some endogeneity issues, if OLS estimation is used, it 
would result in some bias in the estimation results. 
Therefore, this paper opts to estimate the SDM-DID model 
using the maximum likelihood method. Table 8 displays the 
regression results of the SDM-DID model, showing that the 
implementation of the NBDZ has a positive effect on 
enhancing carbon emission efficiency, further validating 
Hypothesis 1. 

Additionally, the coefficient of the spatial lag term of the 
NBDZ, denoted as, ijW NBD , is 0.146 and significant at the 

1% level, indicating that the implementation of the NBDZ 
affects not only the local urban carbon emission efficiency 
but also has a significant spatial spillover effect. The 
conclusions obtained from the regression using the 
economic distance matrix are similar, demonstrating that 
the model's regression results possess a certain degree of 
robustness. 

Since the regression coefficients of the SDM-DID model do 
not reflect the magnitude of the spatial spillover effects, to 
further measure the direct effects and spatial spillover 
effects of the implementation of the NBDZ on carbon 
emission efficiency, this paper employs the partial 
differential approach as proposed by Pace and LeSage 
(2009). The specific calculation results are shown in Table 
8. Both the direct and indirect effects' coefficients are 
significantly positive, indicating that the NBDZ have a 
significant positive spillover effect. They not only enhance 
the carbon emission efficiency of the pilot cities but also 
drive improvements in the neighboring cities. The findings 
suggest that the implementation of the NBDZ does not lead 
to predatory behavior by pilot cities towards neighboring 
cities. Instead, by establishing a normalized knowledge 
feedback mechanism and an information-sharing platform, 
pilot cities strengthen inter-city collaborative cooperation. 
This, on one hand, accelerates the cross-regional transfer 
and flow of knowledge and information technology, and on 
the other hand, optimizes the spatial allocation of 
information and innovative resource elements. This 
facilitates the spillover and diffusion of knowledge and 
technology, thereby impacting the enhancement of urban 
carbon emission efficiency in neighboring cities and playing 
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a positive role in promoting "demonstration-led 
collaborative development." 

4.9. Mechanism analysis 

The empirical analysis and robustness checks delineated 
previously demonstrate that the implementation of NBDZ 
can significantly enhance urban carbon emission efficiency. 
However, the specific policy mechanisms underlying this 
effect remain to be established. To gain a more profound 
comprehension of the nexus between the implementation 
of NBDZ and urban carbon emission efficiency, this paper 
delves into the potential mechanisms through which the 
NBDZ policy exerts its influence on urban carbon emission 
efficiency. This exploration is crucial for elucidating the 
pathways through which the NBDZ policy contributes to 
environmental efficiency improvements. By identifying the 
key mechanisms, policymakers can design more targeted 
and effective interventions to harness the full potential of 
big data in promoting sustainable development. 
Furthermore, this analysis can provide valuable insights 
into the conditions under which the NBDZ policy is most 
likely to succeed, thereby informing the strategic allocation 
of resources and the prioritization of policy efforts.  

According to the regression results shown in Table 9, 
column (1) indicates that NBDZ have a significant positive 
impact on technological innovation. The implementation of 
these zones reduces the cost of technological innovation 
and enhances the innovative vitality of industries and 
enterprises, thereby facilitating an increase in carbon 
emission efficiency, thus validating Hypothesis 3. Column 
(2) shows that the NBDZ have a positive effect on 
enhancing human capital. Their implementation speeds up 
information acquisition, strengthens regional knowledge 
spillover, accelerates the accumulation of human capital, 
and improves the quality of human capital. Column (3) 
reveals that the NBDZ have not significantly promoted the 
upgrading of industrial structures. The likely reason is that 
industrial upgrading emphasizes the optimization of 
existing industrial efficiency and productivity, which is a 
lengthy process. Thus, to date, the impact of NBDZ on 
promoting industrial structure upgrades remains unclear. 

Table 9 Mechanism test 

Variables TI HC ST 

NBDZ 
0.485*** 0.001*** -0.005 

(6.57) (2.64) (-1.47) 

Control variables Yes Yes Yes 

City-FE Yes Yes Yes 

Time-FE Yes Yes Yes 

Observations 3752 3752 3752 

R2 0.6798 0.9608 0.9271 

Note: ***p<0.01, **p<0.05, *p<0.1. 

5. Conclusions and policy implications 

In light of the recent degradation of environmental 
conditions and the ensuing heightened public concern for 
health, the shift in developmental paradigms and the 
reduction of pollution emissions have become pivotal for 
achieving sustainable development in both the present and 
the future. The burgeoning digital economy is at the 

forefront of this transformation, driving innovations in 
production technologies and industrial activities. This 
digital revolution provides a novel impetus for the 
reduction of urban carbon emissions and the advancement 
of sustainability initiatives. The integration of digital 
technologies into traditional sectors not only enhances 
operational efficiencies but also facilitates more 
sustainable practices. By optimizing resource allocation 
and enabling real-time monitoring and management, the 
digital economy can significantly contribute to the 
mitigation of environmental impacts. Therefore, this paper 
views the implementation of NBDZ as a quasi-natural 
experiment, empirically examining the impact of data-
centric digital policies on urban carbon emission efficiency. 
The research findings indicate: (1) NBDZ significantly 
promote urban carbon emission efficiency. This conclusion 
remains valid after undergoing placebo tests and excluding 
other policy interferences. (2) Nonlinear regression results 
demonstrate that the marginal effect of NBDZ on urban 
carbon emission efficiency varies dynamically at different 
levels, showing a continuous declining trend. (3) 
Heterogeneity tests reveal that NBDZ can significantly 
promote energy transition development in eastern regions, 
non-resource-based cities, and large cities, but their impact 
on central and western regions and resource-based cities is 
not significant. (4) Spatial effects tests find that the 
implementation of NBDZ does not lead to predatory 
behavior of pilot cities towards adjacent cities. On the 
contrary, this pilot policy promotes the spatial diffusion of 
technological innovation in pilot cities to a certain extent, 
playing a positive role in "demonstration to promote 
coordinated development." (5) The mechanism analysis 
suggests that NBDZ can affect energy transition 
development by enhancing levels of human capital and 
technological innovation. 

Drawing from the research findings presented herein, this 
paper consequently centers on formulating targeted 
recommendations for the refinement of digital policy 
action mechanisms and for fostering the augmentation of 
urban carbon emission efficiency. The aim is to provide 
actionable insights that can guide policymakers in 
enhancing the efficacy of digital policies, thereby 
contributing to more sustainable environmental outcomes. 
Firstly, it is necessary to further expand the scope of NBDZ 
to facilitate the rapid development of the digital economy. 
The research in this paper indicates that data-centric digital 
policies not only contribute to economic growth but also 
help achieve the goal of low-carbon transformation and 
development. Therefore, the scope of NBDZ should be 
expanded to allow their successful experiences to generate 
positive policy effects over a wider range. Accelerating the 
depth and breadth of integration between data elements 
and traditional industries will spur the emergence of new 
industries and development models, continually enhancing 
industrial and value chains. 

Secondly, it is important to reasonably promote the 
process of NBDZ, tailoring the approach to local conditions 
and guiding the process according to the situation to 
enhance its flexibility and inclusiveness. Based on the 
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geographical location, resource endowment, and 
economic development of each city, targeted development 
plans for NBDZ should be formulated, and efforts should be 
made to ensure alignment with other plans. Furthermore, 
it is essential to strengthen cross-regional cooperation in 
the digital economy and expand channels for inter-regional 
dialogue and collaboration. As regions continuously 
promote the deep integration of the digital economy with 
the traditional economy, they should also enhance cross-
regional cooperation and assistance. Leveraging the 
advantages of the digital economy in information 
dissemination and resource allocation, promoting the 
cross-regional flow of production factors within the digital 
economy, and effectively harnessing spatial spillover 
effects are crucial.  

Lastly, exploring multidimensional pathways for NBDZ to 
enhance carbon emission efficiency. On one hand, efforts 
should focus on promoting interregional green innovation 
cooperation to improve the efficiency of transforming new 
green innovation achievements. On the other hand, 
enhancing relevant supporting systems and measures to 
create a conducive environment for accelerating the 
development of human capital. Additionally, expediting 
the elimination of outdated production capacity, 
facilitating the low-carbon transformation of traditional 
"three-high" industries, guiding the aggregation of high-
tech industries to form smart industry clusters, optimizing 
urban industrial layout, and driving industrial structural 
upgrading are essential. 

However, this study still has some limitations. Concerning 
variable selection, although an attempt was made to cover 
some key variables for measuring digital policy and the 
urban carbon emission efficiency, some potentially 
important influencing factors may still have been omitted. 
In terms of data, the study may have utilised data from a 
specific time period or region only, which could limit the 
generalisability of the findings. Therefore, future research 
could explore the following directions. In terms of data 
refinement, integrating multi-source data could enable the 
construction of richer and more precise datasets, thereby 
providing robust support for in-depth studies. In the realm 
of variable expansion, further exploration could involve 
incorporating additional variables that may influence the 
relationship between digital policy and urban carbon 
emission efficiency. 
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Abbreviations Full name 

NBDZ National Big Data Comprehensive Pilot Zone 

MFNDDF 
Meta-frontier Non-radial Directional Distance 

Function 

DID Difference-in-Differences 

ICT Information and Communication Technologies 

SDM Spatial Durbin Model 

SBM Slacks-Based Measure 

DEA Data Envelopment Analysis 

SFA Stochastic Frontier Analysis 

GVC Global Value Chain 

TFP Total Factor Productivity 

DMU Decision-Making Unit 

GDP Gross Domestic Product 

VRS Variable Scale Return 

PSM Propensity Score Matching 

BCS Broadband China Strategy 

LCCP Low-Carbon City Pilot 

SAR Spatial Autoregressive 

SEM Spatial Error Model 

References 

Acheampong, A., O., Amponsah, M., Boateng, E. (2020). Does 

financial development mitigate carbon emissions? Evidence 

from heterogeneous financial economies. Energy Economics. 

88, 104768. http://dx.doi.org/10.1016/j.eneco.2020.104768. 

Anderson, D. (2001). Technical progress and pollution abatement: 

An economic view of selected technologies and practices. 



16  LIANGHU WANG and JUN SHAO 

Environment and Development Economics. 6, 283–311. 

https://doi.org/10.1017/S1355770X01000171. 

Ang, B., W. (1999). Is the energy intensity a less useful indicator 

than the carbon factor in the study of climate change? Energy 

Policy. 27, 943–946. http://dx.doi.org/10.1016/S0301-

4215(99)00084-1. 

Anselin, L. (1988). Spatial econometrics: Methods and models. 

Dordrecht: Kluwer Academic. 

Arvin, M., B., Pradhan, R., P., Nair, M. (2021). Uncovering 

interlinks among ICT connectivity and penetration, trade 

openness, foreign direct investment, and economic growth: 

The case of the G-20 countries. Telematics and Informatics. 

29, 101–105. https://doi.org/10.1016/j.tele.2021.101567. 

Baiardi, D., Morana, C. (2021). Climate change awareness: empirical 

evidence for the European Union. Energy Economics. 96, 

105163. https://doi.org/10.1016/j.eneco.2021.105163. 

Baron, R., M., Kenny, D., A. (1986). The moderator-mediator 

variable distinction in social psychological research: 

Conceptual, strategic, and statistical considerations. Journal 

of Personality and Social Psychology. 51, 1173–1182. 

https://doi.org/10.1037/0022-3514.51.6.1173. 

Berkhout, F., Hertin, J. (2004). De-materialising and re-materialising: 

Digital technologies and the environment. Futures. 36, 903–920. 

https://doi.org/10.1016/j.futures.2004.01.003. 

Brini, R. (2021). Renewable and non-renewable electricity 

consumption, economic growth and climate change: Evidence 

from a panel of selected African countries. Energy. 223, 

120064. http://dx.doi.org/10.1016/j.energy.2021.120064. 

Chai, J., Tian, L., Jia, R. (2023). New energy demonstration city, 

spatial spillover and carbon emission efficiency: Evidence 

from China's quasi-natural experiment. Energy Policy. 173, 

113389. https://doi.org/10.1016/j.enpol.2022.113389. 

Chambers, R., Chung, Y., Fare, R. (1996). Benefit and distance 

functions. Journal of Economic Theory. 70, 407–419. 

https://doi.org/10.1006/jeth.1996.0096. 

Chandra, S., Shirish, B., Srivastava, S., C. (2020). Theorizing 

technological spatial intrusion for ICT enabled employee 

innovation: The mediating role of perceived usefulness. 

Technological Forecasting and Social Change. 161, 120–132. 

http://dx.doi.org/10.1016/j.techfore.2020.120320. 

Cheng, J., Yi. J., Dai, S., Xiong, Y. (2019). Can low-carbon city 

construction facilitate green growth? Evidence from China's pilot 

low-carbon city initiative. Journal of Cleaner Production. 231, 

1158–1170. https://doi.org/10.1016/j.jclepro.2019.05.327. 

Cheng, S., Fan, W., Meng, F., Chen, J., Cai, B., Liu, G., Liang, S., 

Song, M., Zhou, Y., Yang, Z. (2020). Toward low-carbon 

development: Assessing emissions-reduction pressure among 

Chinese cities. Journal of Environmental Management. 271, 

111036. https://doi.org/10.1016/j.jenvman.2020.111036. 

Cheng, Z., H., Li, L., S., Liu, J., Zhang, H., M. (2018). Total-factor carbon 

emission efficiency of China's provincial industrial sector and its 

dynamic evolution. Renewable & Sustainable Energy Reviews. 94, 

330–339. https://doi.org/10.1016/j.rser.2018.06.015. 

Dissanayake, S., Mahadevan, R., Asafu-Adjaye, J. (2020). 

Evaluating the efficiency of carbon emissions policies in a 

large emitting developing country. Energy Policy. 136, 

111080. http://dx.doi.org/10.1016/j.enpol.2019.111080. 

Dong, K., Sun, R., Hochman, G., Li, H. (2018). Energy intensity and 

energy conservation potential in China: A regional 

comparison perspective. Energy. 155, 782–795. 

https://doi.org/10.1016/j.energy.2018.05.053. 

Elhorst, J., P. (2014). Matlab software for spatial panels. 

International Regional Science Review. 37, 389–405. 

https://doi.org/10.1177/0160017612452429. 

Erdmann, L., Hilty, L., M. (2010). Scenario analysis. Journal of 

Industrial Ecology. 14, 826–843. https://doi.org/10.1111/ 

j.1530-9290.2010.00277.x. 

Fan, G., Wang, X., L., Ma, G., G. (2011). Contribution of 

marketization to China’s economic growth. Economic 

Research Journal. 46, 4–16. 

Fan, H., J., Wu, T. (2021). On whether the digitalization can 

promote the economic growth and high-quality development: 

An empirical evidence from China's provincial panel data. 

Journal of Management. 34, 36–53. https://doi.org/10.19808 

/j.cnki.41-1408/F.2021.0021. 

Fang, S., Li, W., Xu, J., Li, Q., Zhang, Y., Wang, C., Gong, W., Zhang, 

R. (2024). Industrial co-agglomeration, green finance and 

urban carbon emission efficiency: empirical evidence from 

shandong province in China. Global Nest Journal. 26, 05949. 

https://doi.org/10.55555/gnj.05949. 

Feng, Y., Lee, C., Peng, D. (2023). Does regional integration 

improve economic resilience? Evidence from urban 

agglomerations in China. Sustainable Cities and Society. 88, 

104273. https://doi.org/10.1016/j.scs.2022.104273. 

Fu, Y., He, C., Y., Luo, L. (2021). Does the low-carbon city policy 

make a difference? Empirical evidence of the pilot scheme in 

China with DEA and PSM-DID. Ecological Indicators. 122, 

107238. https://doi.org//10.1016/j.ecolind.2020.107238. 

Fukuyama, H., Weber, W. (2009). A directional slacks-based measure 

of technical efficiency. Socioeconomic Planning Sciences. 43, 274–

287. https://doi.org/10.1016/J.SEPS.2008.12.001. 

Gao, D., Feng, H., Cao, Y., J. (2024a). The spatial spillover effect of 

innovative city policy on carbon efficiency: Evidence from 

China. Singapore Economic Review. https://doi.org/10.1142/ 

S0217590824500024. 

Gao, D., Zhou, X., T., Wan, J. (2024b). Unlocking sustainability 

potential: The impact of green finance reform on corporate 

ESG performance. Corporate Social Responsibility and 

Environmental Management. 31, 4211–4226. https://doi.org/ 

10.1002/csr.2801. 

Gao, D., Tan, L., F., Duan, K. (2024c). Forging a path to 

sustainability: the impact of Fintech on corporate ESG 

performance. The European Journal of Finance. https://doi. 

org/10.1080/1351847X.2024.2416995. 

Gao, P., F., Wang, Y., D., Zou, Y., Sun, X., F., Che, X., H., Yang, X., D. 

(2022). Green technology innovation and carbon emissions 

nexus in China: Does industrial structure upgrading matter? 

Frontiers in Psychology. 13, 951172. https://doi.org/10.3389/ 

fpsyg.2022.951172. 

Gao, P., Yue, S., J., Chen, H., T. (2021). Carbon emission efficiency 

of China's industry sectors: From the perspective of embodied 

carbon emissions. Journal of Cleaner Production. 283, 124655. 

https://doi.org/10.1016/j.jclepro.2020.124655. 

Ghasemaghaei, M., Calic, G. (2019). Does big data enhance firm 

innovation competency? The mediating role of data-driven 

insights. Journal of Business Research. 104, 69–84. 

https://doi.org/10.1016/j.jbusres.2019.07.006. 

Guang, F., T., Deng, Y., T., Wen, L., et al. (2023). Impact of regional 

energy allocation distortion on carbon emission efficiency: 

Evidence from China. Journal of Environmental Management. 

342, 118241. https://doi.org/10.1016/j.jenvman.2023.118241. 



HAS DIGITAL POLICY IMPROVED URBAN CARBON EMISSION EFFICIENCY? QUASI-NATURAL EXPERIMENT  17 

Guo, B., N., Wang, Y., Zhang, H., Liang, C., Feng, Y., Hu, F. (2023). 

Impact of the digital economy on high-quality urban economic 

development: Evidence from Chinese cities. Economic Modelling. 

120, 106194. https://doi.org/10.1016/j.econmod.2023.106194. 

Guo, H., P., Li, S., Pan, C., L., Xu, S., Lei,Q. (2023). Analysis of spatial 

and temporal characteristics of carbon emission efficiency of 

pig farming and the influencing factors in China. Frontier in 

Public Health. 11, 1073902. https://doi.org/10.3389/fpubh. 

2023.1073902. 

Guo, P., Qi, X., Zhou, X., Li, W. (2018). Total-factor energy efficiency 

of coal consumption: an empirical analysis of China’s energy 

intensive industries. Journal of Cleaner Production. 172, 2618–

2624. https://10.1016/j.jclepro.2017.11.149. 

Haider, S., Mishra, P., P. (2021). Does innovative capability 

enhance the energy efficiency of Indian Iron and Steel firms? 

A Bayesian stochastic frontier analysis. Energy Economics. 95, 

105128. https://10.1016/j.eneco.2021.105128. 

Haini, H. (2021). Examining the impact of ICT, human capital and 

carbon emissions: Evidence from the ASEAN economies. 

International Economics. 166, 116–125. https://doi.org/10. 

1016/j.inteco.2021.03.003. 

Haldar, A., Sethi, N. (2022). Environmental effects of information 

and communication technology-exploring the roles of 

renewable energy, innovation, trade and financial 

development. Renewable & Sustainable Energy Reviews. 153, 

111754. https://doi.org/10.1016/j.rser.2021.111754. 

Hampton, S., Strasser, A., Tewksbury, J., Gram, W. (2013). Big data 

and the future of ecology. Frontiers in Ecology and the 

Environment. 11, 156–162. https://doi.org/10.1890/120103. 

Hu, J., F., Shi, H., M., Huang, Q., H., Luo, Y., L., Li, Y., M. (2020). The 

impacts of freight trade on carbon emission efficiency: evidence 

from the countries along the "Belt and Road". Complexity. 20, 

2529718. https://doi.org/10.1155/2020/2529718. 

Ilmakunnas, P., Miyakoshi, T. (2013). What are the drivers of TFP 

in the aging economy? Aging labor and ICT capital. Journal of 

Comparative Economics. 41, 201–211. https://doi.org/10. 

1016/j.jce.2012.04.003. 

Johansson, L., Epitropou, V., Karatzas, K., Karppinen, A., Wanner, 

L., Vrochidis, S., Bassoukos, A., Kukkonen, J., Kompatsiaris, I. 

(2015). Fusion of meteorological and air quality data 

extracted from the web for personalized environmental 

information services. Environmental Modelling & Software. 

64, 143–155. https://doi.org/10.1016/j.envsoft.2014.11.021. 

Kim, J., Park, J., C., Komarek, T. (2021). The impact of mobile ICT 

on national productivity in developed and developing 

countries. Information & Management. 58, 103442. 

https://doi.org/10.1016/j.im.2021.103442. 

Koenker, R., Bassett, G. (1978). Regression quantiles. 

Econometrica. 46, 33–50. 

Lange, S., Pohl, J., Santarius, T. (2020). Digitalization and energy 

consumption. Does ICT reduce energy demand? Ecological 

Economics. 176, 106760. https://doi.org/10.1016/j.ecolecon 

.2020.106760. 

Li J., Wang, Q., M. (2022). Impact of the digital economy on the 

carbon emissions of China’s logistics industry. Sustainability. 

14, 8641. https://doi.org/10.3390/su14148641. 

Li, G., He, Q., Shao, S., Cao, J. (2018). Environmental non-

governmental organizations and urban environmental 

governance: Evidence from China. Journal of Environmental 

Management. 206, 1296–1307. https://doi.org/10.1016/ 

j.jenvman.2017.09.076. 

Li, J., Lin, B. (2017). Does energy and CO2 emissions performance 

of China benefit from regional integration? Energy Policy. 101, 

366–378. https://doi.org/10.1016/j.enpol.2016.10.036. 

Li, J., Wu, Y., Xiao, J., J. (2020). The impact of digital finance on 

household consumption: Evidence from China. Economic 

Modelling. 86, 317–326. https://doi.org/10.1016/j.econmod 

.2019.09.027. 

Li, M., J., Du, W., J. (2021). Can Internet development improve the 

energy efficiency of firms: Empirical evidence from China. Energy. 

237, 121590. https://doi.org/10.1016/j.energy.2021.121590. 

Li, M., Pan, X., Yuan, S. (2022b). Do the national industrial 

relocation demonstration zones have higher regional energy 

efficiency? Applied Energy 306, 117914. https://doi.org/10. 

1016/j.apenergy.2021.117914. 

Li, R., Rao, J., Wan, L.Y. (2022a). The digital economy, enterprise 

digital transformation, and enterprise innovation. Managerial 

and Decision Economics. https://doi.org/10.1002/mde.3569. 

Li, X., Ma, D. (2021). Financial agglomeration, technological 

innovation, and green total factor energy efficiency. 

Alexandria Engineering Journal. 60, 4085–4095. https://10. 

1016/j.aej.2021.03.001. 

Li, Y., M., Sun, X., Bai, X., S. (2022c). Differences of carbon 

emission efficiency in the Belt and Road initiative countries. 

Energies. 15, 1576. https://doi.org/10.3390/en15041576. 

Li, Z., G., Wang, J. (2022). The dynamic impact of digital economy 

on carbon emission reduction: evidence city-level empirical 

data in China. Journal of Cleaner Production. 351, 131570. 

https://doi.org/10.1016/j.jclepro.2022.131570. 

Li, Z., Shao, S., Shi, X., Sun, Y., Zhang, X. (2018). Transformation of 

manufacturing, natural resource dependence, and carbon 

emissions reduction: Evidence of a threshold effect from 

China. Journal of Cleaner Production. 206, 920–927. 

https://doi.org/10.1016/j.jclepro.2018.09.241. 

Lin, B., Q., Ma, R., Y. (2022). Green technology innovations, urban 

innovation environment and CO2 emission reduction in China: 

Fresh evidence from a partially linear functional-coefficient 

panel model. Technological Forecasting and Social Change. 176, 

121434. https://doi.org/10.1016/j.techfore.2021.121434. 

Lin, B., Tan, R. (2016). Ecological total-factor energy efficiency of 

China’s energy intensive industries. Ecological Indicators. 270, 

480–497. https://10.1016/j.ecolind.2016.06.026. 

Liu, Q., Wu, S., Lei, Y., Li, S., Li, L. (2021). Exploring spatial 

characteristics of city-level CO2 emissions in China and their 

influencing factors from global and local perspectives. Science 

of the Total Environmental. (2021), 754, 142206. 

https://doi.org/10.1016/j.scitotenv.2020.142206. 

Liu, S., C. (2019). Targeting path and policy supply for the high 

quality development of China’s digital economy. Economist 6, 

52–61. https://doi.org/10.16158/j.cnki.51-1312/f.2019.06.006. 

Lu, H., Y., Yao, Z., Cheng, Z., Xue, A. N. (2025). The impact of 

innovation-driven industrial clusters on urban carbon 

emission efficiency: Empirical evidence from China. 

Sustainable Cities and Society. 121, 106220. 

https://doi.org/10.1016/j.scs.2025.106220. 

Ma, Q., Tariq, M., Mahmood, H., and Khan, Z. (2022). The nexus 

between digital economy and carbon dioxide emissions in 

China: The moderating role of investments in research and 

development. Technology Society. 68, 101910. 

https://doi:10.1016/j.techsoc.2022.101910. 

Ma, R., Y., Lin, B., Q. (2023). Digitalization and energy-saving and 

emission reduction in Chinese cities: Synergy between 



18  LIANGHU WANG and JUN SHAO 

industrialization and digitalization. Applied Energy. 345, 

121308. https://doi.org/10.1016/j.apenergy.2023.121308. 

Meng, M., Niu, D. (2012). Three-dimensional decomposition 

models for carbon productivity. Energy. 46, 179–187. 

http://dx.doi.org/10.1016/j.energy.2012.08.038. 

Murshed, M., Khan, S., Rahman, A. (2022). Roadmap for achieving 

energy sustainability in Sub-Saharan Africa: the mediating 

role of energy use efficiency. Energy Reports. 8: 4535–4552. 

https://doi.org/10.1016/j.egyr.2022.03.138. 

Pace, R., K., LeSage, J., P. (2009). A sampling approach to estimate 

the log determinant used in spatial likelihood problems. 

Journal of Geographical Systems. 11, 209–225. 

https://doi.org/10.1007/s10109-009-0087-7. 

Pan, X., Li, M., Wang, M., Chu, J., Bo, H. (2020). The effects of 

outward foreign direct investment and reverse technology 

spillover on China’s carbon productivity. Energy Policy. 145, 

111730. http://dx.doi.org/10.1016/j.enpol.2020.111730. 

Peng, B., H., Gao, F. (2025). Crafting the perfect policy combination: 

Exploring the synergistic effects of dual-pilot energy policies on 

urban carbon emission efficiency. Urban Climate. 59, 102260. 

http://dx.doi.org/10.1016/j.uclim.2024.102260. 

Qin, S., F., Cheng, K. (2017). Future digital design and 

manufacturing: Embracing industry 4.0 and beyond. Chinese 

Journal Mechanical Engineering. 30, 1047–1049. 

https://doi.org/10.1007/s10033-017-0176-3. 

Qiu, S., Wang, Z., Liu, S. (2020). The policy outcomes of low-

carbon city construction on urban green development: 

Evidence from a quasi-natural experiment conducted in 

China. Sustainable Cities and Society. 66, 102699. 

https://doi.org/10.1016/j.scs.2020.102699. 

Rasoulinezhad, E., Taghizadeh-Hesary, F. (2022). Role of green 

finance in improving energy efficiency and renewable energy 

development. Energy Efficiency. 15, 14. https://doi.org/10. 

1007/s12053-022-10021-4. 

Roth, J. (2022). Pretest with caution: Event-study estimates after 

testing for parallel trends. American Economic Review 

Insights. 4, 305–322. https://doi.org/10.1257/aeri.20210236. 

Shao, S., Chen, Y., Li, K., Yang, L. (2019). Market segmentation and 

urban CO2 emissions in China: Evidence from the Yangtze River 

Delta region. Journal of Environmental Management. 248, 

109324. https://doi.org/10.1016/j.jenvman.2019.109324. 

Song, M., Zhao, X., Shang, Y. (2020). The impact of low-carbon city 

construction on ecological efficiency: Empirical evidence from 

quasi-natural experiments. Resources Conservation and 

Recycling. 157, 104777. https://doi.org/10.1016/j.resconrec 

.2020.104777. 

Sun, C., Li, Z., Ma, T., He, R. (2019). Carbon efficiency and 

international specialization position: evidence from global 

value chain position index of manufacture. Energy Policy. 128, 

235–242. http://dx.doi.org/10.1016/j.enpol.2018.12.058. 

Tan, L., F., Gao, D., Liu, X., W. (2024). Can environmental 

information disclosure improve energy efficiency in 

manufacturing? Evidence from Chinese enterprises. Energies. 

17, 2342. http://dx.doi.org/10.3390/en17102342. 

Tang, C., Xu, Y., Hao, T. (2021). What is the role of 

telecommunications infrastructure construction in green 

technology innovation? A firm-level analysis for China. Energy 

Economics, 103, 105576. https://doi.org/10.1016/j.eneco. 

2021.105576. 

Tapscott, D. (1996). The digital economy: promise and peril in the 

age of networked intelligence. McGraw-H, New York. 

Thompson, P., Williams, R., Thomas, B. (2013). Are UK SMEs with 

active websites more likely to achieve both innovation and 

growth? Journal of Small Business and Enterprise 

Development. 20, 934–965. https://doi.org/10.1108/JSBED-

05-2012-0067. 

Tobler, W., R. (1969). Geographical filters and their Inverses. 

Geographical Analysis. 1, 234–253. https://doi.org/10.1111/ 

j.1538-4632.1969.tb00621.x. 

Wang, D., F., Cao, J., H. (2019). Research on the influence of 

internet development on China’s total factor energy 

efficiency and network effects. China Population, Resources 

and Environment 29, 86–95. 

Wang, F., Wang, Z. (2023). The impact of the digital economy on 

occupational health: A quasi-experiment based on 

"Broadband China" pilot. Frontiers in Public Health. 10, 

1007528. https://doi.org/10.3389/fpubh.2022.1007528. 

Wang, K., Wu, M., Sun, Y., Shi, X., Sun, A., Zhang, P. (2019). 

Resource abundance, industrial structure, and regional 

carbon emissions efficiency in China. Resources Policy. 60, 

203–214. http://dx.doi.org/10.1016/j.resourpol.2019.01.001. 

Wang, L., H., Shao, J. (2022). The impact of foreign direct 

investment on China's carbon emission efficiency through 

energy intensity and low-carbon city pilot policy. Energy & 

Environment. http://dx.doi.org/10.1177/0958305X221100524. 

Wang, L., H., Shao, J. (2023). Can digitalization improve the high-

quality development of manufacturing? An analysis based on 

Chinese provincial panel data. Journal of the Knowledge 

Economy. 1–27. https://doi.org/10.1007/s13132-023-01356-z. 

Wang, L., H., Shao, J. (2024). Digital economy and urban green 

development: A quasi-natural experiment based on national 

big data comprehensive pilot zone. Energy & Environment. 1–

25. https://doi.org/10.1177/0958305X241238348. 

Wang, L., H., Shao, J. (2025). How does regional integration policy 

affect urban energy efficiency? A quasi-natural experiment 

based on policy of national urban agglomeration. Energy. 319, 

135003. https://doi.org/10.1016/j.energy.2025.135003. 

Wang, X., Long, R., Sun, Q., Chen, H., Jiang, S., Wang, Y., Li, Q., 

Yang, S. (2024). Spatial spillover effects and driving 

mechanisms of carbon emission reduction in new energy 

demonstration cities. Applied Energy. 357, 122457. 

https://doi.org/10.1016/j.apenergy.2023.122457. 

Xiao, Y., P., Ma, D., L., Zhang, F., T., Zhao, N., Wang, L., Guo, Z., 

Zhang, J., An, B., Xiao, Y. (2023). Spatiotemporal 

differentiation of carbon emission efficiency and influencing 

factors: From the perspective of 136 countries. Science of the 

Total Environment. 879, 163032. https://doi.org/10.1016/ 

j.scitotenv.2023.163032. 

Xu, L., X. (2022). Towards green innovation by China's industrial 

policy: Evidence from made in China (2025). Frontiers in 

Environmental Science. 10, 924250. https://doi.org/10.3389/ 

fenvs.2022.924250. 

Xu, Q., Zhong, M., R., Cao, M., Y. (2022). Does digital investment 

affect carbon efficiency? Spatial effect and mechanism 

discussion. Science of the Total Environment. 827, 154321 

http://dx.doi.org/10.1016/j.scitotenv.2022.154321. 

Xue, S., Zhang, B., Zhao, X. (2021). Brain drain: The impact of air 

pollution on firm performance. Journal of Environmental 

Economics and Management. 110, 102546. https://doi.org/ 

10.1016/j.jeem.2021.102546. 



HAS DIGITAL POLICY IMPROVED URBAN CARBON EMISSION EFFICIENCY? QUASI-NATURAL EXPERIMENT  19 

Zhang, N., Zhou, P., Choi, Y. (2013). Energy efficiency, CO2 

emission performance and technology gaps in fossil fuel 

electricity generation in Korea: A meta-frontier non-radial 

directional distance function analysis. Energy Policy. 56, 653–

662. https://doi.org/10.1016/j.enpol.2013.01.033. 

Zhang, W., Fan, H., Zhao, Q. (2023). Seeing green: How does 

digital infrastructure affect carbon emission intensity? Energy 

Economics. 127, 107085. https://doi.org/10.1016/ 

j.eneco.2023.107085. 

Zhang, W., Liu, X., Wang, D., and Zhou, J. (2022). Digital economy 

and carbon emission performance: Evidence at China’s city  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

level. Energy Policy. 165, 112927. https://doi:10.1016/j.enpol 

.2022.112927. 

Zhong, K., M., Fu, H., Y., Li, T., H. (2022). Can the digital economy 

facilitate carbon emissions decoupling? An empirical study 

based on provincial data in China. International Journal of 

Environmental Research and Public Health. 19, 6800. 

https://doi.org/10.3390/ijerph19116800. 

Zhu, Z., C., Liu, B., Yu, Z., X., Cao, J., H. (2022). Effects of the Digital 

Economy on Carbon Emissions: Evidence from China. 

International Journal of Environmental Research and Public 

Health. 19. 9450 https://doi.org/10.3390/ijerph19159450. 


