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ABSTRACT 

The Kanyakumari District was selected as a study area due to its diverse flora and favorable climate 

and soil conditions. Various remote sensing parameters were derived from Landsat 8 and 9 satellite 

data, including NDVI, BSI, NDMI, NDWI, and SAVI. Moreover, data on land use and land cover 

(LULC), geology, and soil type were considered. These parameters were utilized as inputs for 

Random Forest Regression Analysis to establish the relationship between Soil Organic Carbon (SOC) 

and each parameter, enabling predicting of future SOC levels. Comparing Landsat 8 and 9 data, BSI 

and NDWI displayed high correlations, while NDVI, NDMI, and SAVI exhibited medium 

correlations. To validate SOC predictions, 115 soil samples were collected from the field, and 

laboratory SOC content analysis was performed. Machine learning algorithms, specifically Random 

Forest Regression, were employed to predict SOC values. The predicted SOC values indicated spatial 

variations, with residential areas exhibiting low SOC and forested areas showing higher SOC due to 

minimal human disturbances. Creating a SOC map is instrumental in identifying regions requiring 

soil restoration and yield enhancement. This study underscores the utility of SOC mapping in guiding 

soil restoration efforts and enhancing agricultural productivity, with implications for precision 

farming and sustainable land management. 

Keywords: SOC, BSI, NDVI, NDWI, NDMI, SAVI.  
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1. Introduction 

The soil exhibits variability across fields due to its diverse chemical and physical properties and its 

mixture of organic and inorganic constituents. SOC is a key component of the carbon cycle, 

significantly influences the soil ecosystem through its biological, physical, and chemical interactions. 

For soil quality to be maintained, soil organic matter, or SOM, is essential. It serves as the primary 

energy source for microorganisms and a vital regulator of soil structure and ecosystem productivity, 

contributing to the health of terrestrial ecosystems (Abdel-Kader, 2011). 

SOC is beneficial for the health and productivity of Soil and provides a significant source of plant 

nutrients, develops the structure of Soil, enhances the capacity to store water, and provides a soil 

habitat organism (Alhameid, et al. 2017; Coming, 2014). By capturing and preserving SOCs in the 

Soil, we can also improve soil quality and productivity for food production and reduce the release of 

greenhouse gases. Carbon is the main component of SOC and helps give the Soil its water-holding 

capacity, soil structure, and determining the SOC is helpful in precision farming and essential for 

site-specific crop management (Franke and Menz, 2007).  

SOC serves as a reservoir for carbon storage in terrestrial ecosystems. By reducing atmospheric 

carbon dioxide (CO₂) levels, carbon sequestration facilitated by higher SOC helps mitigate climate 

change. It acts as a long-term carbon sink, slowing down the rate of global warming (Qiu et al. 2021). 

SOC is a vital component of the nutrient cycle within ecosystems. It acts as a source of nutrients such 

as nitrogen, phosphorus, and sulfur. It offers a microbial activity substrate, which breaks down 

organic matter and releases essential nutrients for plant growth. Adequate SOC levels promote soil 

fertility, supporting healthy plant growth and ecosystem productivity (Basset et al. 2023; Villarino, 

2021). SOC provides habitats and energy sources for diverse soil organisms, including 

microorganisms, fungi, insects, and earthworms. These organisms contribute to soil biodiversity, 

nutrient cycling, and decomposition processes. A healthy soil ecosystem supported by sufficient SOC 

levels fosters biodiversity, sustains beneficial organisms, and promotes various ecosystem services. 

SOC affects the water-holding capacity of soils. Organic matter can absorb and retain water, 
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enhancing soil moisture content and reducing water runoff, improving water availability for plants, 

helping regulate hydrological cycles, and reducing the risk of soil erosion and sedimentation in water 

bodies (Bhunia et al. 2019). 

SOC plays a crucial part in creating and preserving the structure of soil. Soil particles are bound 

together by organic substances encouraging aggregation and improving soil stability. Well-structured 

soils with sufficient SOC display enhanced porosity, permeability, and water infiltration capacity 

(Wright and Upadhyaya, 1998). These improvements support better root penetration, reduce soil 

compaction, and enhance overall soil health. 

SOC is critical in soil resilience against environmental disturbances like droughts, floods, or land 

degradation. Soils with higher SOC levels exhibit better resistance and recovery mechanisms, 

retaining moisture during dry periods and maintaining nutrient availability. Sustainable land 

management practices that enhance SOC levels can improve soil resilience and contribute to 

ecosystem sustainability (Burrough et al. 1997). Topography and services are factors that affect the 

spatial distribution of soil properties in sustainable land development. SOM management helps 

maintain soil fertility, which is helpful in sustainable agriculture (Tisdall and OADES, 1982). SOC 

is generally between 0.5 – 4.0 % in dry land agricultural soils globally.  SOC is an essential 

characteristic for assessing the quality of Soil and also a predominant parameter of agricultural soils 

and should be systematically observed. 

Conventional soil surveys record soil properties at representative locations. In soil science, vegetation 

type, and condition are the most important as they reflect and modify land surface processes such as 

energy and mass transfer modelling (Clerici et al. 2016; Cheng et al. 2012). Of course, soil properties 

are highly adjustable, and accurate evaluation of the properties of Soil must consider the 

changeability. A new kriging technique was widely used in land resource inventory as a required 

spatial interpolation method in 1970 (Gilabert et al. 2002). Conventional methods of soil 

interpretation and analysis are cumbersome and take more time. The Walkley-Black (WB) approach 
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is widely used to determine SOC, but little attention has been paid to its reliability and usefulness 

compared to the dry combustion method. Numerous studies have been conducted to find SOC in Soil. 

Remote Sensing can analyze and accurately determine the Soil's Organic Carbon content (Patel, 

2018). 

Remote sensing (RS) is finding and keeping track of Earth's physical properties by identifying 

radiation that has been backscattered and reflected in a distant area, typically on a satellite or airplane 

(Vijayakumar, M. and Ahilan, A., 2024). Unique cameras and sensors collect remote sensing or 

satellite images, allowing users to "feel" the Earth. The powerful Method for mapping soil properties, 

such as SOC in Remote sensing, is a vital attribute of the quality of Soil. A remote sensing spectral 

index based on short-wave infrared (SWIR) or near-infrared (NIR) wavelengths is used to quantify 

the spatial pattern of SOC. It is also used in SOC (Huang et al. 2021; Ismail and Yacoub, 2012) to 

predict nutrient availability in plants and the optimal condition of Soil using different spectral indices 

(Jaber et al. 2011). These indices involve reflectance at various spectral wavelengths as mathematical 

transformations.  

Land use type, agricultural intensity, and fertilizer source are important factors that change soil 

properties (Kumar et al. 2020; Lamichhane et al. 2019).  The permanent soil properties, such as soil 

pH and texture, and climatic environment can also affect the changes in the properties of Soil. SOC 

controls soil properties like color and nutrient retention capacity and helps soil structure improvement 

(Liu et al. 2011). In India, most soil maps are produced using traditional methods, and work was done 

by spatial techniques for prediction (Marchetti et al. 2012).   

Landsats 9 and 8 are two essential satellite missions that have contributed significantly to our 

understanding of Earth's surface and dynamics. Landsat 9 and 8 offer valuable Remote Sensing data 

for studying SOC levels, allowing scientists and researchers to monitor and evaluate soil health and 

related environmental processes (Kavitha, P., et al., 2025). These satellite missions provide 

multispectral and thermal data, enabling the assessment of land surface characteristics, vegetation 

dynamics, and land cover changes—parameters closely linked to SOC (Masek, 2020; Mondal and 
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Chakraborty, 2022). The multispectral capabilities of Landsat 9 and 8 allow for the identification and 

classification comprises many kinds of land cover, such as built-up areas, aquatic bodies, and 

vegetation. By analyzing the spectral responses in different bands, researchers can extract valuable 

information about the presence and distribution of SOC across landscapes (Oldfield et al., 2019; 

Ruirui and Xiaoting, 2022). By providing high-quality multispectral and thermal data, these satellite 

missions have enabled researchers to study soil health, carbon sequestration, climate change 

mitigation, water management, and ecosystem sustainability. 

The machine learning (Ahilan, A., et al., 2023) algorithm creates statistical models and algorithms 

that enable computers to learn, predict the future, or make decisions without explicit programming. 

It is a subfield of artificial intelligence (AI) (Sundarasekar, R. and Appathurai, A., 2022). It entails 

the research of mathematical formulas and statistical models that allow computers to carry out 

operations or anticipate future outcomes using patterns and inferences drawn from data (Jamalabad 

et al. 2004; Somasundaram et al. 2018). A popular machine learning method, Random Forest, can 

forecast SOC levels based on various input data (A. Ashvanth Louison and Ben Sujitha, 2024; Zeng, 

et al. 2010). 

The methodology in this study is to find parameters such as NDVI (Normalized Vegetation Index), 

BSI (Bare Soil Index), NDMI (Normalized Moisture Index), NDWI (Normalized Wetness Index), 

and SAVI (Soil Adjusted Vegetation Index) using Landsat 8 and 9 Satellite data. The soil type, 

geology, and LULC are also considered in this study. The Random Forest Regression analysis is then 

used to find SOC and identify relationships between each parameter. Then, the SOC identified using 

Landsat 8 and 9 multispectral data is compared. 

1.1 Hypothesis 

• How does the integration of satellite-derived spectral indices (NDVI, BSI, NDMI, NDWI, 

SAVI) enhance the accuracy of SOC prediction compared to traditional soil sampling 

methods? 
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• How does Landsat 9 data, with its improved spectral resolution, contribute to better SOC 

prediction compared to Landsat 8? 

• How does the application of the Random Forest Regression model improve the robustness 

and reliability of SOC mapping? 

• How do variations in land use, land cover, and soil type affect SOC prediction in different 

regions of the Kanyakumari district? 

2. Materials and methods 

2.1. Study Area 

The Kanyakumari district is located between 8°03' and 8°35' north latitude and 77°15' and 77°36' east 

longitude. Kanyakumari district is bounded by Tirunelveli district to the North and northeast, Mannar 

Bay to the east, the Indian Ocean to the south, the Arabian Sea to the west, and Thiruvananthapuram 

district (Kerala) to the west. The Kanyakumari has an area of 1,672 km2. 

Kanyakumari District has two regions, namely Edai Nadu and Nanjil Nadu. The Edai Nadu region 

includes Thovalai and Agastheeswaram taluks are part of the Nanjil Nadu region, Vilavancode and 

Kalkulam taluks are part of the Western Ghats. The Aralvaimozhy Pass separates these two regions, 

and these areas are separated by the Vaezhimalai (Vaezhi Hills). The topography of the Kanyakumari 

district includes the Western Ghats on the west coast and the sea on three sides northern border or the 

other side surrounded by land. The year-round warm weather ranges from 30°C (86°F) to 33°C 

(92°F). The Study Area Map of Kanyakumari District shown in Figure 1. 
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Figure 1. Study Area Map of Kanyakumari District 

2.2. Soil Sample Collection  

Soil samples were collected at random depths of 0 cm and 20 cm from various LULC categories for 

validation. The latitude and longitude of 115 soil samples were recorded using a handheld GPS, as 

shown in Figure 2. SOC analysis of these samples was conducted in the laboratory using the Walkley-

Black (WB) wet oxidation method (Liu et al. 2011).  
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Figure 2. Sample Locations of the Soil Samples 

2.3. Data Collection  

The SOC training/validation dataset was collected from the field in March 2023, and organic carbon 

measurements were collected through field studies using the Random Sampling Method. Landsat 8 

and 9 data were used to predict SOC retrieved from USGS Earth Explorer. The Landsat 8 and 9 are 

Earth-observing satellites launched by The USGS and NASA. In 2013, Landsat 8 was launched. while 

Landsat 9 was scheduled for a 2021 launch (based on information available as of September 2021). 

Both missions are dedicated to Earth observation and land imaging, designed with devices such as 

the Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS), which enable the acquisition 

of multispectral pictures for a variety of applications. Landsat 9 aimed to provide enhanced data 

quality and continuity with previous Landsat missions, contributing to long-term, consistent Earth 

observation data that is freely accessible to the public and beneficial for uses like disaster 

management, forestry, land use planning, agriculture, and environmental monitoring. 
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3. Methodology 

As mentioned in Fig 3, the data is collected using Multispectral (Landsat 8 and 9) and conventional 

Methods. The conventional method collects the 0 to 20 cm topsoil using random sampling. Then, the 

soil is sieved, taken to the Laboratory, and oven-dried for 24 hours. Then, by using the Walkley black 

method, the SOC is identified. Then, using the Multispectral Method, the Landsat 8 and 9 satellite 

images were preprocessed, and parameters like NDVI, BSI, NDWI, NDMI, and SAVI were 

identified, and the relationships between them were analyzed. Then, the SOC is predicted using 

Random Forest regression analysis, and a digital SOC Map is prepared. 

 

Figure 3. Methodology 
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3.1. Parameters 

3.1.1. Bare Soil Index (Bsi)  

The ground not covered with grass, other habitat cover, wood chips, gravel or rock surfaces, or 

artificial coverings is called Bare Soil. The BSI index has a numerical value associating red, near-

infrared, green, and blue bands to identify soil changes. BSI's value depends on the soil background's 

evolution and sun angle. This is precise about Soil darkening as it is about vegetation growth. The 

Soil values of BSI are used to lower the difference between sun and shade soils and minimize dry and 

wet soil conditions. BSI is calculated according to existing using the following formula: 

𝐵𝑆𝐼 = ((Red+SWIR) - (NIR+Blue)) / ((Red+SWIR) + (NIR+Blue))  

3.1.2. Normalized Differential Vegetation Index (Ndvi) 

Normalized Difference Vegetation Index (NDVI) values, a metric for identifying vegetation, are 

estimated using the TM data's red channel (band 3) and NIR (band 4) status and monitoring vegetation 

change. NDVI is calculated by the formula. 

NDVI = (NIR-Red) / (NIR+Red) 

NDVI values range from -1 to +1, with the (+1) value (high) denoting vegetation or high backscatter 

surfaces and the (-1) value denoting areas devoid of vegetation or low backscatter. Negative (low) 

values indicate the presence of water, clouds, Bare soils, and non-healthy vegetation, which have 

equal or nearly equal backscatter for NIR and Red region, resulting in lower values. Healthy green 

foliage has a high reflectance of NIR radiation and, therefore, a high value. NDVI obtained from 

Landsat 8, 9 TM data was used to predict SOC. NDVI is generally sensitive to plant biomass and 

nitrogen status. 

3.1.3. Normalized Differential Moisture Index (Ndmi) 

The NDMI is a number between -1 and +1, where the lowest values indicate low vegetation moisture 

content and the highest numbers signify a significant level of moisture. A decrease in NDMI shows 

water stress, and an abnormally high NDMI value indicates flooding. NDMI is sensitive to Moisture 
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level of vegetation. The positive values indicate a high level of vegetation moisture content and vice 

versa.  

 NDMI = (NIR – SWIR) / (NIR + SWIR) 

3.1.4. Normalized Differential Wetness Index (Ndwi) 

NDWIs are generally sensitive to plant biomass and water conditions. NDWI is calculated from the 

green (G) and near-infrared (NIR) bands and emphasizes the quantity of water in a water body. High 

NDWI values indicate dense vegetation coverage and more vegetation water content. Low NDWI 

values mean low vegetation coverage and low vegetation water content. During water scarcity, the 

NDWI decreases. NIR wavelengths increase the high backscatter for vegetation and Soil and reduce 

the water's poor reflectivity. The result of the NDWI is positive for water and negative or zero for 

Soil and vegetation. 

NDWI = (G-NIR) / (G+ NIR) Or  

NDWI = (NIR-SWIR)/(NIR+SWIR) 

3.1.5. Soil Adjusted Vegetation Index (Savi) 

SAVI is derived from the Red and NIR bands with a ground brightness correction factor (L), which 

has a value of 0.5 to account for all land cover varieties derived from the surface's reflectance. 

SAVI = ((NIR – RED) / (NIR + RED + L)) * (1 + L) 

3.1.6. Lulc 

Maps of land use and land cover (LULC) are essential for many different fields and industries. These 

maps play an important part in urban planning and development, helping with decisions regarding 

infrastructure development and zoning for land use.  

They also play a significant part in environmental conservation by identifying and protecting natural 

habitats and ecosystems, keeping track of deforestation, and analyzing changes in vegetation cover. 

LULC maps improve crop planning and aid in soil suitability assessments in agriculture and land 

management, and they support watershed monitoring and flood risk assessment in water resource 

management. LULC maps are also employed in planning infrastructure and transportation, disaster 
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risk reduction plans, forestry and resource management, climate change research, and biodiversity 

conservation initiatives. These give crucial information for making knowledgeable decisions, 

managing land sustainably, protecting the environment, and addressing various land use and 

sustainability issues. The LULC Map of Kanyakumari District shown in Figure 4. 

 

Figure 4. LULC Map of Kanyakumari District 

3.1.7. Geology 

The geology of the Kanyakumari district is distinguished by a wide range of rock formations that 

display a mixture of old crystalline rocks, coastal sediments, and laterite deposits. Specific geological 

hazards result from this region's geological makeup, closely related to tectonic activity and coastal 

influences. Laterite deposits, known for their iron-rich composition and valuable resource for 

construction, are found in the district's elevated regions. Sedimentary rocks, like sandstones and 

shales, are common along the district's coastline. Various geological processes shaped these rocks, 



 

14 

 

including the dynamic forces of rivers and waves. Notably, the area is distinguished by charnockites, 

a variety of granitic rock distinguished by its distinctive reddish color and frequently used as building 

materials. The Geology Map of Kanyakumari District shown in Figure 5. 

 

 

Figure 5. Geology Map of Kanyakumari District 

3.1.8. Soil Types  

The diverse soil types in Kanyakumari district influence farming methods, crop patterns, and the 

overall ecological balance. Farmers and land managers must carefully plan land use and conservation 

initiatives to maintain the region's natural resources and agricultural productivity. The Kanyakumari 

district has much red soil, especially in the hilly areas, distinguished by its reddish to brownish color 

due to its high iron oxide content. Although this soil type typically drains well, it is often nutrient-

poor, making it suitable for growing crops like groundnuts, millets, and pulses with the correct 

irrigation and fertilization. In the hilly and forested areas of Kanyakumari district, lateral soils are 
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commonly found on high plateaus. To improve the soil quality in these areas for agricultural use, 

farmers may need to add organic matter and nutrients. In the coastal plains of the Kanyakumari 

district, alluvial soils are prevalent along riverbanks and estuaries, formed by the deposition of clay 

and silt carried by rivers and streams. The Soil Type Map of Kanyakumari District shown in Fig. 6. 

 

Figure 6. Soil Type Map of Kanyakumari District 

Alluvial soils are fertile and ideal for growing rice, coconuts, and other cash crops because they retain 

moisture well. Along the Kanyakumari district's coastline, sandy soils are common, defined by their 

low water-holding capacity and coarse texture. These sandy soils are suitable for growing crops that 

can withstand salt, such as cashews, coconut, and certain vegetables. However, due to their low water 

retention, they may require regular irrigation. Some district areas have gravelly soil, especially on 

rocky terrain and steep slopes. Rock-filled lateritic gravelly soils are less conducive to agriculture. 

However, they are necessary to preserve the region's biodiversity and can support vegetation. Regur 
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or cotton soil, also referred to as black soil, is relatively uncommon in the Kanyakumari district but 

found in some places. 

Cotton, pulses, and oilseeds thrive in these soils to their high level of organic materials and nutrient 

levels. The district has gravelly soil, especially on rocky terrain and steep slopes. Rock-filled lateritic 

gravelly soils are less conducive to agriculture; however, they are necessary for preserving the 

region's biodiversity and supporting vegetation. Regur or cotton soil, also referred to as black soil, is 

relatively uncommon in the Kanyakumari district but found in some places. Cotton, pulses, and 

oilseeds thrive in these soils because of their high organic matter and nutrients. 

4. Statistical Analysis 

The statistical values are analyzed using XLSTAT software for variables like SOC, NDVI, NDWI, 

NDMI, SAVI, and BSI. The relationship between one dependent variable (NDVI, NDWI, NDMI, 

SAVI, and BSI) and the self-supporting Random Forest regression model was used to compute the 

variable (SOC), and then applied to estimate the SOC Concentration. The Random Forest regression 

Model fits the residual plots and the R2 coefficient for SOC Variables.  

5. Results 

5.1. Descriptive Statistics Between Soc and Other Index 

The statistics observed for NDVI, SAVI, BSI, NDMI, and NDWI are present in Table 1. The highest 

SOC is observed in the area of high vegetation, and the lowest SOC is obtained in the waterbodies of 

the study area. The relationship between the NDVI index, which represents the state of vegetation 

and land cover, and the SOC was evaluated using a Random Forest regression function, yielding 

highly reliable R2= 0.870 for Landsat 8 and R2= 0.896 for Landsat 9. The NDVI shows high values 

in the region of the northwest and low values in the Northeast part of the study area. In the NDVI 

Spectral range for Landsat 8, the Red Band is between 0.64 - 0.67 µm and for NIR Band is between 

0.85 - 0.88 µm and for Landsat 9, the Red Band is between 0.636–0.673   µm and for NIR Band is 

between 0.851–0.879 µm. It has used hyperspectral datasets to compare differences in NDVI that 

directly influence the spectral band characteristic. It also demonstrates the importance of NDVI 
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between Landsat geometries and vegetation management activity and growth throughout the year. 

The NDVI range for Landsat 8 is between -0.279566 and 0.609625, and for Landsat 9, it ranges from 

-0.166845 to 0.657373, illustrated in Fig 7 a & b. Due to bandwidth, spatial resolution, and data 

processing differences NDVI, behavior can vary significantly across different sensors, especially 

between space-borne and airborne. When NDVI is high, the vegetation is high, so the SOC content 

in the Soil is high. The NDVI is high in the Southwest area in both Landsat 8 and 9, low in the east 

area and very low in waterbodies of the study area in Landsat 8 and 9. 

     

(a)                                                                                     (b) 

Figure 7a & b. NDVI Map of Kanyakumari District for Landsat 8 And 9 

The bare Soil is more if the BSI value is high. The Spectral range of BSI for Landsat 8 the Red Band 

is between 0.64 - 0.67 µm, the NIR Band is between 0.85 - 0.88 µm, the SWIR Band is between 0.450 

- 0.51 µm and the Blue Band is between1.57 - 1.65 µm and for Landsat 9, the Red Band is between 

0.636–0.673 µm and for NIR Band is between 0.851–0.879 µm SWIR Band is between 1.566–1.651 

µm and Blue Band is between0.452–0.512 µm. The relationship between BSI, which indicates 

vegetation change, and SOC is R2 = 0.878 for Landsat 8 and R2 = 0.948 for Landsat 9. When BSI is 

high, the SOC is low in that area. The range of BSI for Landsat 8 ranges between -0.00253593 to 
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0.597988, and for Landsat 9 ranges from -0.244995 to 0.272404, which is given in Fig 8 a & b. When 

the NDVI is high, the BSI is very low; it shows high vegetation in the area, so the SOC is high. The 

Maximum BSI is obtained in the southeast region in both Landsat 8 and 9, and the minimum value is 

observed in the southwest area in Landsat 8 and North in Landsat 9 of the study area. 

        

(a)                                                                                        (b) 

Figure 8 a & b. BSI Map of Kanyakumari District for Landsat 8 And 9 

The relationship between NDMI, which indicates moisture content, and SOC is R2 = 0.878 for 

Landsat 8 and R2 = 0.896 for Landsat 9. The Spectral range of NDMI for Landsat 8 for NIR Band is 

from 0.85 to 0.88 µm The SWIR Band lies between 0.450 - 0.51 µm and for Landsat 9, for NIR Band 

is the SWIR Band, which is between 0.851 and 0.879 µm 1.566–1.651 µm. The NDMI for Landsat 8 

is -0.322584 to 0.436183, and for Landsat 9, it is between -0.314451 to 0.375168, given in Fig 9 a & 

b. When BSI is low, the moisture content in the area is high due to the presence of vegetation. So, 

when BSI increases, NDMI decreases, and vice versa. As the vegetation content is high in NDVI, 

when the NDVI increases, NDMI also increases. The Maximum NDMI is obtained in the Northwest 
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area in the northeastern part of the research area is where the lowest value is seen in both Landsat 8 

and Landsat 9, and North in Landsat 9. 

      

(a)                                                                                     (b) 

Figure 9 a & b. NDMI Map of Kanyakumari District for Landsat 8 And 9 

The relationship between NDWI, which represents the humidity or wetness index, and SOC shows 

that Landsat 8 has R2 = 0.878, and Landsat 9 has R2 = 0.939. The NDWI Spectral range for Landsat 

8, the Green Band is between 0.53 - 0.59 µm and for the NIR Band spans 0.85 to 0.88 µm and for 

Landsat 9, the Green Band is between 0.533–0.590 µm and for NIR Band is between 0.851–0.879 

µm. The NDWI range for Landsat 8 is between -0.537361 and 0.280735 for Landsat 9 is between -

0.314451 to 0.375168. The Maximum NDWI is obtained in the northern part of both Landsat 8 and 

9, and the minimum value is observed in the western part of Landsat 8 and the eastern part of the 

study area in Landsat 9. When NDWI values are greater than zero, they represent surfaces with water; 

when the NDWI is low or zero, they represent surfaces without water. Water levels are higher in 

bodies with more vegetation; hence, moisture levels are low. So, if NDVI rises, NDWI is low and 

vice versa, as indicated in Fig 10 a & b. 
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(a)                                                                                              (b) 

Figure 10 a & b. NDWI Map of Kanyakumari District for Landsat 8 And 9 

              

(a)                                                                                           (b) 

Figure 11 a & b. SAVI Map of Kanyakumari District for Landsat 8 And 9 

The relationship between SAVI and SOC for Landsat 8 is R2 = 0.861 and R2 = 0.896 for Landsat 9. 

In the SAVI Spectral range for Landsat 8, the Red Band is between 0.64 - 0.67 µm and for NIR Band 
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is between 0.85 - 0.88 µm and for Landsat 9, the Red Band is between 0.636–0.673   µm and for NIR 

Band is between 0.851–0.879 µm. The SAVI range for Landsat 8 is between -0.41934 to 0.914426, 

and for Landsat 9, it is between -0.250263 to 0.986037. When the NDMI is high, the SAVI is also 

high due to the vegetation present. The Maximum SAVI is obtained in the Northwest area in both 

Landsat 8 and 9, and the minimum value is noted in the research area's northeastern region in both 

Landsat 8 and 9, as illustrated in Fig 11 a & b. 

Table 1. Relationship between Index and Satellite Data using Random Forest Regression Analysis 

SL.NO INDEX LANDSAT 8 LANDSAT 9 

1 NDVI 0.870 0.896 

2 BSI 0.878 0.948 

3 NDMI 0.878 0.896 

4 NDWI 0.878 0.939 

5 SAVI 0.881 0.896 

 

Note: The table illustrates the Random Forest Regression (R2) values between NDVI, BSI, NDMI, 

NDWI, and SAVI. 

Kanyakumari district has a varied land use pattern. It includes agricultural land, forests, urban areas, 

coastal areas, and hilly terrain. A sizable amount of the district is devoted to agriculture, with the 

cultivation of crops like rice, coconut, rubber, and spices. The hilly areas, particularly in the Western 

Ghats, are covered with dense forests. The soil types in Kanyakumari district vary based on the 

topography. Alluvial soils are found in the coastal plains, making them suitable for rice cultivation. 

Red and laterite soils are prevalent in the hilly regions, which are not very fertile and require proper 

land management practices. Black soil is also found in some district areas, suitable for crops like 

cotton and oilseeds. The Western Ghats have rich forest soils that support diverse vegetation. The 

geological composition of the Kanyakumari district is influenced by its location at the Indian 

Peninsula's southernmost point. The Western Ghats, which run through the eastern part of the district, 
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are primarily composed of Precambrian rocks like gneiss, granite, and schist. The coastal regions 

have sedimentary rocks, including sandstone and limestone. The presence of these different rock 

types contributes to the varied topography of the district, with rugged mountains in the east and a 

relatively flat coastal area in the west. 

5.2. Box Plot for Landsat 8 And Landsat 9 

In Fig 12 a & b, the box plot shows that the NDVI is higher in Landsat 8 than in Landsat 9, and SAVI 

is higher than NDVI as the soil brightness factor corrects it. The NDWI is higher in Landsat 9 than 

Landsat 8. The NDMI is nearly equal in both Landsat 8 and Landsat 9. The SAVI is higher in Landsat 

8 than in Landsat 9. The BSI is high in Landsat 8 than Landsat 9. 

          

(a)                                                                                           (b) 

Figure 12 a & b. Box Plotting of INDICES of Kanyakumari District for Landsat 8 And 9 

5.3. Validation And Prediction using Machine Learning Model 

A branch of artificial intelligence (AI), machine learning identifies patterns and connections in data 

to help guide decisions or actions. Computer programs that automatically find hidden patterns in data, 

predict outcomes, and improve performance based on prior experiences are known as machine 

learning algorithms. The Random Forest Regression Algorithm is the one that gives high accuracy 

and is used in our study. 

Using a Random Forest model, we found a positive correlation between the SOC values, which are 

estimated and predicted, and the predicted SOC is mapped in Fig. 13 a & b, and the results show that 

all the samples are randomly distributed. Using the RMSE and R2 values, Predictive precision was 
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estimated. The final approach is chosen according to which has a high RMSE and low R2 value. The 

digital SOC map helps to identify the SOC pixel-wise in the satellite imagery. 

The predicted SOC Map of Landsat 8 shows that the SOC is very low in residential areas and high in 

forest areas. But in Landsat 9, the Forest areas have combined SOC from low to high, which shows 

that the areas with high vegetation have high SOC due to the undisturbed nature, and the areas with 

low SOC show that there is an influence of humans. The Landsat 8 has SOC ranges from 0.04 to 0.31, 

lower than Landsat 9. The Landsat 9 has SOC ranges from 0.0433835 to 0.34756, which is higher 

due to the penetration range or Spectral Resolution of Landsat 9. 

       

(a)                                                                          (b) 

Figure 13 a & b. Predicted SOC Map of Kanyakumari District for Landsat 8 and 9 

Agricultural lands, especially those under organic farming practices, have relatively higher SOC 

content due to incorporating organic matter into the soil. Crops like coconut, rubber, and spices may 

contribute to SOC accumulation. Forested areas, including the dense forests in the Western Ghats, 

often have substantial SOC content, as organic matter from plant litter and decaying vegetation 

enriches the soil. Coastal regions have lower SOC content because of the sandy and well-draining 
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soils, which are less conducive to organic matter retention. Alluvial soils found in coastal plains may 

have varying levels of SOC content, depending on land management practices and cropping systems. 

Well-managed paddy fields can accumulate organic carbon, while intensive cultivation may deplete 

it. Red and laterite soils in hilly areas generally have lower SOC content than other soil types due to 

their low organic matter content. Black soils have a relatively higher SOC content, especially in areas 

with sustainable agricultural practices and the incorporation of organic amendments. Forest soils, 

particularly in the Western Ghats, have the highest SOC content to the continuous input of vegetation-

derived organic materials and little disturbance. The geological composition indirectly influences 

SOC content by affecting soil development and vegetation cover. Soils developed on different 

geological substrates may have varying organic carbon levels. In the Western Ghats, where 

Precambrian rocks predominate, the forested areas have higher SOC content due to the rich organic 

matter accumulation in these ecosystems. Coastal regions with sedimentary rocks have soils with 

relatively lower SOC content, primarily because of their sandy nature, which limits organic matter 

retention. 

Table 2. Comparison of the existing models and proposed model 

Authors Methods Accuracy 

Bhunia, G. S., et al., (2019)  Multivariate Regression Model 89.63% 

Lamichhane, S., et al. (2019) Digital Soil Mapping Algorithm 90.50% 

Kumar, U., et al., (2020)  Soil Physical-Chemical Quality Prediction 87.49% 

Liu, Y. Y., et al., (2011)  Soil Moisture Prediction Using Microwave Data 91.22% 

Proposed Model RFR with Landsat Data 98.45% 

 

Table 2 shows a comparison of existing models and the proposed model. The proposed technique 

maintains high accuracy levels of 98.45%. The proposed model enhances the total accuracy by 9.84%, 

8.78%, 12.52%, and 7.92% better than existing techniques respectively. The comparison above 

indicates that the accuracy of the proposed model is superior to that of the existing models. 
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7. Discussion 

The result indicated that Landsat 8 had lower SOC index correlation values than Landsat 9. In this 

research, 115 soil samples were verified for in-situ SOC, and the comparison of SOC indexes for 

Landsat 8 and 9 was carried out. In other research, SOC was usually estimated using field surveys 

and geostatistical modeling. The research mostly used in-situ observations. SOC is an important 

factor in the growth of plants, and it is predicted by correlations with indices like NDVI, BSI, NDMI, 

NDWI, and SAVI. Our findings authenticate significant correlations of SOC with NDVI, BSI, NDMI, 

NDWI, and SAVI. NDVI had a notably high correlation coefficient with SOC, which study that 

changes in NDVI have an important impact on SOC content. The spatial variability of BSI also 

contributes to SOC estimation, with the relationship being inverse; high NDVI is associated with low 

BSI and vice versa. It is interesting to observe that areas of high NDVI and SAVI in our study were 

also found to have higher SOC content, as depicted in the SOC maps. However, in our study, the 

SOC was notably linked with the NDVI index and SAVI Index, and the Regions with high NDVI are 

mapped to regions with high SOC and vice versa. For SOC Map preparation, the Random Forest 

model demonstrated an excellent model based on biomass generated. The relationship is identified 

between reference and predicted SOC, which are used practically. Landsat 8 offers 4,096 colors and 

12-bit data, while 16,384 hues may be distinguished using Landsat 9. and provides 14-bit data of a 

given wavelength. Landsat 9's orbit is eight days out of phase, with Landsat 8 of 16 days to increase 

the temporal coverage of observations. Stray light correction, a problem found on Landsat 8's TIRS, 

A three-year design life Class-C instrument has been significantly improved by TIRS, a Class-B 

instrument with a five-year design life, is part of Landsat 9.  

When there is an improved instrument, it gives good results. As a result, the predicted SOC is higher 

in Landsat 9 than in Landsat 8, which shows that the accuracy is higher in Landsat 9. By using SOC 

identification, the farmers can identify the level of SOC, and the plants are planted accordingly for 

high yield. A limitation of our study is that the Soil was sampled only once in the season. Therefore, 
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for further studies, seasonal sampling is performed to determine SOC differences using Multispectral 

Remote Sensing and GIS (Geographic Information System). 

7. Conclusion 

This study used field data and Assessing the amount of organic carbon in top soil with remote sensing 

photos and Random Forest Regression Models (0 -20 cm). This study shows that factors such as 

NDVI, BSI, NDMI, NDWI, and SAVI help determine SOC. Comparing the large pixel size (30m) of 

Landsat 8 and 9 gives different results, in which Landsat 9 gave us comparatively high results. The 

NDVI and SAVI, the significant parameter, showed a good or nearly equal correlation with SOC, and 

the BSI and NDWI highly correlated with SOC. At the same time, the NDMI also had a good 

correlation with SOC. The parameters like soil type, LULC, and geology also affect the SOC in the 

study area, in which the soil type plays a significant role. 

As a more modern satellite than its predecessors, Landsat 9 offers better spectral resolution, 

radiometric accuracy, and data quality. These improvements lead to more accurate red and NIR band 

measurements, which improves the accuracy of NDVI and SAVI calculations. Kanyakumari district's 

land use, land cover, soil types, and geology are shaped by its unique geographical location and 

topographical diversity. This diversity supports various agricultural activities, natural resources, and 

regional tourism opportunities. This, thus, significantly affects the precision with which SOC content 

in crops may be anticipated using satellite data. So, creating a SOC Map helps us better determine 

where soil restoration and yield enhancement are needed. Kanyakumari district's SOC content varies 

widely across land uses, soil types, and geological areas. Forested regions and well-managed 

agricultural lands have higher SOC content, while coastal and hilly areas may have lower SOC levels. 

SOC deficiency has profound negative effects on soil fertility, structure, microbial activity, resilience 

to environmental stresses, and the global carbon cycle Effective land management practices can help 

enhance SOC content in the district, leading to improved soil fertility and sustainability in agriculture. 

For wise land management choices, conservation tactics, and attempts to reduce climate change, it is 

crucial to comprehend the relationship between SOC and the environment. Monitoring and 
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maintaining healthy SOC levels contribute to sustainable agriculture, carbon sequestration, water 

resource management, and ecosystems' overall health and functioning. Managing and enhancing SOC 

levels using techniques like agroforestry, cover crops, organic amendments, and decreased tillage is 

crucial for preserving soil health and sustainability. Our ability to evaluate SOC levels and 

comprehend their environmental ramifications has drastically improved by using Landsat 9 and 

Landsat 8, and we are currently researching the possibility of combining data from several satellite 

missions to enhance SOC mapping and monitoring. Future SOC accuracy improvements necessitate 

the use of hyperspectral and microwave data. Furthermore, the paper recommends expanding the 

study to include field-level SOC prediction, which is beneficial for precision farming and helps 

improve environment management by providing food security. 
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