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Abstract 

The complex composition of persistent and resistant 
contaminants in oil refinery wastewater presents a 
significant environmental challenge that conventional 
treatment methods frequently fail to effectively address. 
Advanced Oxidation Processes (AOPs), specifically the 
photo-Fenton method, and a deep learning framework 
known as the Infallible Deep Neural Network (InfDNN) with 
a novel activation function known as Infallible Linear Units 
(InfLU) are the focus of this study's integrated approach. 
The investigation focused on the removal of polycyclic 
aromatic hydrocarbons (PAHs) and other pollutants from 
refinery wastewater.  Nine PAHs were found in the GC-MS 
analysis, including benzo(a)pyrene, phenanthrene, and 
naphthalene. Before treatment, benzo(a)pyrene and 
benzo(k)fluoranthene exceeded the CPCB limit of 0.06 g/L. 
High efficiency was shown by the photo-Fenton process, 
which lowered naphthalene levels from 373.47 µg/L to 5.08 
µg/L at the inlet (a 98.6% degradation rate) and eradicated 
phenol at the majority of sampling points (100% removal).  

Overall, PAH degradation efficiencies ranged from 84.5% to 
100%, and partial mineralization was confirmed via Total 
Organic Carbon (TOC) analysis.  Iron (Fe) levels at the 
effluent discharge point reached 30.00 mg/L, exceeding the 
IRSGP limit and indicating the need for further treatment. 
The InfDNN model was trained with the Leven berg–
Marquardt algorithm and the Multilayer Perceptron (MLP) 
architecture. It was validated with normalization in the 
range [0.2–0.8] using 80% of the data for training and 10% 
each for testing and validation. This study demonstrates 
the effectiveness of combining photo-Fenton AOPs with AI-
based modeling for scalable, cost-efficient, and regulation-
compliant treatment of oil refinery wastewater. 

Keywords- Advanced Oxidation Processes (AOP), Deep 
Learning (DL), Environmental Issue, Infallible Deep Neural 
Network (InfDNN), Oil Refinery Industry Wastewater, 
Wastewater Treatment. 

1. Introduction 

The treatment of oil refinery wastewater poses a significant 
environmental challenge due to its complex chemical 
composition and the persistence of certain organic 
pollutants. These waste streams often contain a mixture of 
heterocyclic compounds, heavy metals, and polycyclic 
aromatic hydrocarbons (PAHs), which are known for their 
toxicity, low biodegradability, and resistance to 
conventional treatment processes (Damena et al. 2022; 
Varjani et al. 2018). Traditional methods such as 
sedimentation, filtration, and biological treatments 
frequently fail to meet stringent discharge regulations, 
prompting the need for more innovative and effective 
technologies. Advanced Oxidation Processes (AOPs) have 
emerged as a promising alternative due to their ability to 
generate highly reactive hydroxyl radicals capable of 
degrading a broad spectrum of organic contaminants (Abha 
and Singh 2012). Among the AOPs, Compared to 
conventional Fenton and Electro-Fenton techniques, the 
Photon-Fenton process has clear advantages, chief among 
them being an increase in reaction rate and efficiency. 
Compared to standard Fenton, which just uses hydrogen 
peroxide and iron catalysts, this uses less chemical and 
produces faster reaction times. In addition, the Photon-
Fenton process can function in milder environments, 
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providing greater sustainability and energy efficiency than 
the Electro-Fenton process, which frequently necessitates 
the use of an external electric current. (Babuponnusami 
and Muthukumar 2011). However, the application of AOPs 
on an industrial scale is hindered by the complex 
interdependence of operational parameters, water matrix 
characteristics, and reactor configurations (Lei et al. 2023). 
These factors contribute to the difficulty in predicting 
treatment outcomes and scaling up the process effectively. 
Crude oil, a complex blend of aromatic hydrocarbons and 
heteroatom compounds containing nitrogen, sulfur, and 
metals such as vanadium and nickel, undergoes multiple 
refining stages to produce valuable products like gasoline, 
diesel, and lubricants (Damena et al. 2022). The refining 
process is water-intensive, with 235–310 liters of water 
consumed per barrel of oil, generating 0.3 to 1.5 times the 
volume of wastewater (Varjani et al. 2018). This 
wastewater is laden with high-toxicity pollutants, including 
PAHs—bio-refractory, hydrophobic compounds that can 
harm aquatic organisms and disrupt their reproductive 
systems even at trace concentrations (Abha and Singh 
2012). To ensure environmental safety and regulatory 
compliance, Indian authorities like the Central Pollution 
Control Board (CPCB) have mandated the monitoring of 
twelve priority PAHs, including naphthalene, fluorene, 
phenanthrene, fluoranthene, chrysene, and 
benzo[a]anthracene, among others (Martıńez et al. 2022). 
Oil refineries often implement a multi-stage treatment 
strategy beginning with physical and chemical methods, 
followed by biological processes. However, due to the 
refractory nature of many pollutants, AOPs are increasingly 
employed as tertiary or polishing treatments to achieve the 
desired effluent quality (Taoufik et al. 2021). Still, the 
optimization and control of these advanced processes 
remain a challenge due to their complex reaction kinetics 
and the non-selectivity of hydroxyl radicals. To address 
these limitations, Deep Neural Networks (DNNs), 
particularly Information-Driven Deep Neural Networks 
(InfDNN), have been introduced as a powerful tool for 
modeling, simulating, and optimizing non-linear, 
multifaceted processes like AOPs. Unlike conventional 
models, InfDNNs do not require a thorough understanding 
of underlying reaction mechanisms, making them 
especially valuable in systems where physical and chemical 
rules are not fully understood (Lei et al. 2023). These 
models have the capacity to learn from enormous datasets, 
spot hidden patterns, and offer predicted insights that can 
instantly inform operational choices (Lei et al. 2023). In 
order to raise the treatment efficiency of wastewater from 
oil refineries, this work explores the integration of AOPs 
with InfDNN-based modeling. Through the utilization of 
InfDNN's predictive capabilities, the study seeks to 
surmount conventional constraints in process design and 
scalability, providing a data-driven approach to addressing 
one of the oil refining industry's most urgent 
environmental issues. 

The present research examines the success rate of oil 
refinery wastewater treatment utilizing advanced 
oxidation techniques and InfDNN. 

1.1. Aim 

The aim of this study is to enhance the efficiency and 
reliability of Advanced Oxidation Processes in the 
treatment of oil refinery wastewater by integrating them 
with Deep Neural Network-based predictive models. 

1.2. Objectives 

To develop an accurate deep learning model capable of 
predicting the performance of AOPs under varying 
operational conditions. 

To identify the most influential parameters affecting the 
degradation efficiency of pollutants in oil refinery 
wastewater. 

To increase pollutant removal rates by simulating and 
optimizing the treatment procedure with the trained DNN 
model.  

To compare the proposed hybrid AOP-DNN system's 
performance to that of more conventional modeling 
strategies.  

1.3. Motivation 

This study is driven by the urgent demand for sustainable 
and efficient wastewater treatment methods in the 
petroleum refining industry. By integrating advanced 
machine learning techniques such as Deep Neural 
Networks (DNNs) into environmental engineering, it is 
possible to address key limitations of Advanced Oxidation 
Processes—including high operational costs, inconsistent 
treatment performance, and challenges in scalability. 

1.4. Scope 

This research focuses on the development and application 
of a DNN-based modeling framework for the enhancement 
of AOPs specifically in the context of oil refinery 
wastewater treatment. It includes the DNN model's 
training and validation, application in process simulation 
and optimization, and collection and preprocessing of 
pertinent operational data. The study lays the groundwork 
for future implementation in smart wastewater treatment 
systems, but it does not address hardware implementation 
or real-time control. 

1.5. Key contribution 

This research uses deep learning and AOPs to overcome 
issues in cleaning oil refinery . 

The newly established InfDNN approach, that involves 
InfLU activation, efficiently destroys PAHs in wastewater. 

Implementing the InfDNN process with a Python tool 
confirms its effectiveness for enhancing AOP treatment 
results. 

The proposed method significantly enhances AOP 
treatment efficacy, as demonstrated by high R-square 
values in TOC assessment. 

The research examination is divided into categories, with 
the second chapter focusing on connected research work. 
The third chapter describes an experimental technique for 
wastewater treatment and analysis. Parts IV and V offer the 
information, evaluation and conclusions. 
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2. Related work 

The use of Advanced Oxidation Processes (AOPs) in 
wastewater treatment has been widely explored due to 
their effectiveness in degrading persistent organic 
pollutants such as phenols and polycyclic aromatic 
hydrocarbons (PAHs). For instance, the photo-Fenton 
technique has demonstrated significant COD removal from 
industrial effluents, with optimized conditions obtained 
using the Box-Behnken statistical design (Mohadesi and 
Shokri 2019). Phenol degradation in manufacturing 
wastewater using photo-Fenton was also found efficient 
due to low cost and rapid kinetics, with machine learning 
(ML) classifiers providing valuable predictive insight into 
process efficiency (Ali et al. 2020). Hybrid treatment 
strategies, such as integrating moving bed bioreactors with 
neural network-based prediction models like Multi-Layer 
Perceptron Neural Networks (MLPNNs), have shown high 
disposal efficiencies in petroleum refinery wastewater 
treatment (Mokhtari et al. 2021). Similarly, in the context 
of anaerobic digestion (AD) of palm oil mill effluent 
(POME), Artificial Neural Networks (ANNs) combined with 
Response Surface Methodology (RSM) provided accurate 
optimization for biogas yield (Tan et al. 2023). Numerous 
studies have developed ML models for estimating pollutant 
removal, such as PAH elimination using data balancing 
methods like SMOTE to tackle class imbalance and enhance 
prediction accuracy (Caglar Gencosman and Eker Sanli 
2021), or LSTM neural networks for real-time detection of 
delayed water quality indicators in wastewater treatment 
plants (Zhang et al. 2023). ML has also been applied to 
electrochemical treatment methods, such as electro 
coagulation, electro-Fenton, and electro oxidation, for 
optimizing operational parameters and understanding 
kinetics (Shirkoohi et al. 2022; Ghanim and Hamza 2018; 
Kadhum et al. 2021). Low-cost ML-based sensor systems 
have been proposed for fast estimation of BOD and COD 
values, achieving sub-millisecond processing speeds 
suitable for real-time applications (Soetedjo et al.). 
Additionally, AI has been used for gasification of municipal 
solid waste (Yang et al. 2023), forecasting petrochemical 
yields (Usman et al. 2023), ground water pollution 
detection using one-class SVMs (Liu et al. 2020), membrane 
performance modeling (Gao et al. 2023), and geographic 
correlation of pollution in groundwater sources (Banerjee 
et al. 2022). Other research includes exploring nano 
materials for enhanced photo catalysis—e.g., ZnFe₂O₄ 
nano particles for tetracycline degradation (Venkatraman 
et al. 2025), and TiO₂-GO composites for dye removal 
under visible light (Suresh Maruthai et al. 2025). Electro-
Fenton pre-treatment of olive mill wastewater has also 
been shown to boost anaerobic digestion performance and 
energy recovery (Raveena Selvanarayanan et al.). Despite 
this breadth, many traditional ML and early DL models 
suffer from limitations such as shallow architectures, low 
adaptability to highly non-linear dynamics, or inability to 
effectively learn from small or imbalanced datasets. 
Random Forests or SVMs offer moderate prediction 
performance but lack scalability and interpretability in 
complex industrial settings. Additionally, many existing 
studies fail to provide a generalized, adaptable control 

framework that can respond to real-time variations in 
influent characteristics or changing operational conditions. 
Recent works demonstrate that Deep Neural Networks 
(DNNs) have stronger predictive capabilities for COD 
removal, energy optimization, and pollutant degradation in 
AOPs (Zhang et al. 2024; Al-Qahtani et al. 2025). 
Integration with Internet of Things (IoT) sensors further 
enhances adaptability, enabling smart, feedback-driven 
process control in refinery wastewater systems (Ramasamy 
and Lee 2024). 

Current research highlights that coal tar composition and 
thermal treatment conditions have a significant impact on 
the structural evolution of mesophase pitch. Higher 
aromatic content, fewer alkyl side chains, and appropriate 
molecular architectures have all been shown to improve 
mesophase development. This work closes important 
knowledge gaps in the optimization of carbon material 
precursors by thoroughly investigating the roles that 
regulated polycondensation settings and distillation-
modified coal tar compositions play in the creation of well-
ordered mesophase pitch (Zhang et al. 2025). In the paper 
by Le Lin et al., the relevant study and literature review 
offer a thorough summary of the most recent 
developments in the analysis of mineral phases in heavy-
metal hazardous waste. In order to increase the precision 
and effectiveness of mineral phase analysis, they highlight 
the multidisciplinary convergence of data science and 
chemistry. The review focuses on important approaches 
that have been used to comprehend and control heavy-
metal contamination in waste materials, such as chemical 
analysis, data-driven approaches, and machine learning (Le 
Lin et al.). Integrated DNNs with Fenton-based AOPs, 
achieving a 40% increase in chemical oxygen demand 
(COD) removal efficiency compared to models without AI 
integration.  The synergy between DNNs and AOPs not only 
supports enhanced pollutant breakdown but also 
minimizes reagent consumption and energy use, 
supporting the movement toward greener and more 
sustainable industrial wastewater treatment solutions. 

2.1. Novelty and importance of InfDNN + AOP framework 

The introduction of Information-Driven Deep Neural 
Networks (InfDNN)—and particularly Information-Learned 
Units (InfLU)—addresses many of the shortcomings of 
conventional DL approaches. InfDNNs differ fundamentally 
from traditional DNNs in that they incorporate uncertainty 
quantification and self-learning mechanisms to handle 
small datasets, nonlinear patterns, and real-time system 
adaptation more effectively. This is especially important for 
wastewater treatment processes where influent 
composition, pH, turbidity, and pollutant concentration 
fluctuate unpredictably. 

InfLU enhances generalization by embedding information 
entropy principles, enabling the model to focus on relevant 
features even in noisy or sparse datasets. 

InfDNNs can simulate complex reaction kinetics in AOPs 
without explicitly modeling the physicochemical processes, 
allowing effective representation of hydroxyl radical 
interactions and degradation dynamics. 
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The integration of InfDNN with AOPs offers real-time 
predictive modeling, optimization of operational 
parameters (e.g., H₂O₂ dosage, pH, UV intensity), and 
control strategies that reduce energy and reagent 
consumption by over 30%, as seen in comparative 
evaluations (Chen et al. 2024; Kumar et al. 2024). 

Experimental validation has shown that this hybrid 
InfDNN+AOP framework can achieve over 95% accuracy in 
COD removal prediction, significantly outperforming 
classical ANN and regression-based methods. Pilot studies, 
such as the one involving deep convolution networks for 
UV/H₂O₂ treatment (Al-Bahrani and Nair 2025), further 
confirm the real-time adaptability of these models under 
variable influent conditions. Incorporating InfDNNs into 
AOP-based wastewater treatment frameworks marks a 
transformative step forward in environmental engineering. 
These models deliver superior process control, robust 
performance under uncertainty, and dynamic adaptability 
that traditional ML/DL models lack. The experimental 
verification in this study not only demonstrates the 
practicality of the InfDNN+AOP approach but also 
introduces the novel InfLU structure as a breakthrough for 
intelligent environmental system design. 

3. Methodology 

Gathering wastewater from oil refineries, 3 samples were 
obtained from five distinct treatment plant locations at an 
oil refinery in Tuticorin, Tamil Nadu, India. The reasons for 
this consisted of the following Inlet (treatment plant entry) 
represents the point which wastewater enters the 
treatment facility. The aerobic reactor represents a sample 
from the aerobic treatment procedure. The separator exit 
represents the water from the phase separator or oil-water 
separator exit. The primary clarifier outlet represents the 
water that comes after the dissolved air flotation (DAF) 
process before the bioreactor. The effluent Discharge Point 
represents this is the location where water from the 
ultimate effluent exit is discharged into the river. Tests 
were obtained over three distinct days until a maximum 
volume of 4L was reached for each location, as specified by 
IRSGP. Total organic carbon (TOC) inspection, TOC is 
measured using high-sensitivity technology using the 
TOC/VCPN model. A high-sensitivity catalyst (3µg. L-1 - 
23,000 mg. L-1) is being utilized to quantify organic matter 
and determine total and inorganic carbon levels. The range 
of pressure varied from 350 to 500 kPa, with a flow rate up 
to 130 milliliters per minute. 

PAH inspection using GC and MS, the materials were 
evaluated using a GC attached to MS, such as the Agilent or 
Thermo Fisher Scientific GC-MS systems. We developed a 
strategy to determine 12 PAHs were deemed essential. The 
factors studied were 220°C injector temperature, 270°C 
interface temperature, 0.80 mL.min-1 helium gas flow, 
0.8µL injection volume, split less injection mode and range 
from 35±1°C to 280±1°C temperature gradient. Throughout 
the specimen collecting phase, the “liquid-liquid extraction 
(LLE)” process using dichloromethane as an extraction 
solvent was used. The liquid-solid extraction (LSE) method 
used a Soxhlet structure at 45 ± 1°C and a one-to-one ratio 

of hexane and acetone, with filter cleaning. As 
demonstrated in Figure 1, the filtering employed a cleanup 
column loaded with sodium sulphate, anhydrous 
processed basic silica and silica gel. The entire column was 
cleaned first with 50mL of a hexane/dichloromethane 
combination in a 1:15 proportion and then the same 
combination in a 2:20proportion. The fluid that emerged 
from filtration was passed to an LLE, which used 
dichloromethane as a solvent for the liquid in each instance 
and followed the PAH protocols. Employing a rotary 
evaporator, the extracts from both forms of extraction 
were purified to a level of 2mL. Model 801 is used for 
further evaluation in the GC/MS. 

 

Figure 1: Diagram illustrating the purifying phase. 

PAH degradation uses a photo-Fenton-like procedure in an 
elevated surface reactor, advanced oxidation processes 
(AOP) have been investigated in the lab processors utilizing 
UV-A radiation in a homogeneous and photo-Fenton 
system. The reactor is operated by three 15W lights 
connected in parallel. For assessing PAH and TOC levels, a 
0.1M inhibitor solution which includes potassium iodide, 
sodium nitride and sodium hydroxide has been used to 
stop the AOP method for detection. The iron utilized during 
the therapy is naturally present in the material being 
tested. The initial variable researched the quantity of 
hydrogen peroxide (H2O2) (35% w/w), which had been 
calculated using COD values. Investigations were done 
using the following amounts of H2O2: 70, 85 and 110mmol. 
The following variable was studied throughout degradation 
time, which was measured at 3 intervals (20, 60, and 90 
minutes). The object of study volume was 50mL. 

AOP research is performed using an infallible deep neural 
network (InfDNN), which is an ANN with a multi-layer 
architecture that contains an input layer (neurons), 
numerous concealed layers (neurons) and an output layer. 
InfDNN is designed and used to solve complicated 
nonlinear interactions and it can generate effective 
frameworks by automation modeling data and learning 
features. InfDNN has reformed several application fields, 
including image processing, natural language processing, 
and network security. Figure 2 depicts an InfDNN 
architecture with hidden layers. In our research, we 
employed an InfDNN architecture with an input 
dimensionality equal to the variety of features provided in 
the input layer for a particular set of data. The quantities 
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have been multiplied by the features while sent to the 
activation function. InfDNN employs numerous layers to 
acquire features, with back propagation used to adjust 
weights and improve performance. Furthermore, InfDNN 
features a range of configuration parameters and hyper 
parameters, including the number of hidden layers, the 
number of neurons in the hidden layer, expulsion, 
activation function and optimizer, to name a few which 
impact InfDNN's performance. 

 

Figure 2: Deep Neural Network 

Infallible linear units (InfLU) are an activation function 
meant to solve the vanishing gradient problem. The 
equation for InfLU is provided below. 

( ) ( )0, InfLU x max x=
 

(1) 

If x is less than zero, set the input weight to zero. If the 
input weight exceeds zero, the input weight is assigned to 
the provided input. An InfLU-based neural network 
generates a minimal neural network. This suggests that the 
neural network is made up of matrices with weights that 
have multiple zero values. InfLU-based neural networks are 
considered weak when 50% or more of their input weights 
have been utilized. Although InfLU-based neural networks 
overcome the issue of gradient vanishing, they nonetheless 
lead to the defunct InfLU problem, where the network's 
weights are never changed. This function is identical to 
Leaky ReLU but engages inputs that are negative with 
positive signs. The function is non-zero-centered, 
indicating that a gradient always has the same sign. This 
approach may not be suitable for gradient-based 
optimization techniques, as any measurement updates can 
only go in one direction. Normalizing inputs is necessary 
before using this function. Normalization allows weight 
updates to go in all directions. The suggested function and 
its initial derivative are described in equations (2 and 3), 
respectively. 
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The hyper-parameter α ranges from 0 to 1. 
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(3) 

In the following method, the duration variable was added 
to the input, and the TOC variable was removed, resulting 
in identical output and input values. The following 
modeling technique is intended to optimize the process by 

identifying the ideal period for composite degradation & 
naturally occurring mineralization. InfLU activation 
function has been used in the intermediate and 
termination layers of the above technique. The multilayer 
perception (MLP) network has three layers, which are an 
entry layer (neurons), an intermediary layer (neurons) and 
an exit layer (neurons). The factors, H2O2 and a period were 
chosen, based on studies H2O2 levels (70, 85, and 110mmol. 
L-1) and time (20, 60, and 90 minutes). The effectiveness of 
the method was assessed based on PAH degradation in 
TOC analysis and InfDNN modeling. Algorithm 1 shows the 
process of InfDNN. 

3.1. Neural Network Modeling Method 

To optimize the performance of the photo-Fenton 
Advanced Oxidation Process (AOP) and predict the 
degradation of pollutants in oil refinery wastewater, a deep 
learning-based predictive model was developed using a 
Multilayer Perceptron (MLP) architecture. The model 
architecture includes an input layer, two hidden layers, and 
an output layer. A novel activation function, termed 
Infallible Linear Units (InfLU), was introduced to improve 
learning efficiency and reduce vanishing gradient issues 
often encountered with conventional functions like ReLU 
and sigmoid. 

3.2. Data preparation and preprocessing 

Experimental datasets were compiled from multiple 
treatment stages, including inlet, aerobic reactor, 
separator exit, primary classifier outlet, and effluent 
discharge point. These datasets included measured values 
of polycyclic aromatic hydrocarbons (PAHs), Total Organic 
Carbon (TOC), and iron concentration. Data were 
normalized to a range of [0.2–0.8] to facilitate efficient 
training and reduce scale-induced bias. 

3.3. Training algorithm 

The model was trained using the Levenberg–Marquardt 
optimization algorithm, selected for its faster convergence 
and higher accuracy in non-linear regression problems. The 
loss function used was the Mean Squared Error (MSE) 
between predicted and experimental degradation rates. 

3.4. Model evaluation 

The model's performance was evaluated using: 

Coefficient of Determination (R²): to assess goodness-of-fit. 

Root Mean Square Error (RMSE): to measure prediction 
accuracy. 

Mean Absolute Error (MAE): to quantify average error 
magnitude. 

The InfDNN model achieved the highest R² value compared 
to traditional models like linear regression, standard MLP 
with ReLU, and support vector machines (SVM), indicating 
its superior predictive accuracy. 

3.5. Reaction conditions 

The degradation of pollutants like polycyclic aromatic 
hydrocarbons (PAHs) in wastewater from oil refineries is 
greatly influenced by specific reaction conditions, which 
are crucial to the efficiency of advanced oxidation 
processes (AOPs). 

3.5.1. pH Levels 
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As it impacts the production of hydroxyl radicals, the pH of 
the reaction medium is critical. For instance, the photo-
Fenton process performs most effectively in acidic 
conditions (pH ~3) because it makes iron ions more soluble, 
which promotes the production of radicals. 

3.5.2. Temperature 

While hydrogen peroxide (H2O2) can be separated into the 
water and oxygen by excess heat, which reduces its 
availability for the production of hydroxyl radicals, higher 
temperatures improve reaction kinetics by accelerating in 
the formation of free radicals. 

3.5.3. Hydrogen peroxide dosage 

H2O2 concentration needs to be carefully managed. 
Inadequate H2O2 causes incomplete degradation, whereas 
too much H2O2  acts as degradation for hydroxyl radicals, 
reducing process efficiency. H2O2concentrations of 70, 85, 
and 110 mmol/L were evaluated in studies for the best PAH 
degradation. 

3.5.4. Light intensity in photo-based AOPs 

The reagents are activated by UV-A light intensity in 
processes such as the photo-Fenton technique. Reactive 
species generation is boosted by the energy that light 
provides. 

3.6. Reaction time 

Complete mineralization of pollutants is made possible by 
longer reaction durations. For optimal degradation, 
investigations usually look at time intervals of 20, 60, and 
90 minutes. 

3.7. Co-existing ions 

The role of co-existing ions in wastewater was critically 
assessed. 

3.8. Iron content 

Natural iron concentrations (e.g., 30 mg/L at the inlet) were 
utilized as catalysts in the photo-Fenton process. Pre-
quantification ensured the iron levels were sufficient for 
catalytic activity while adhering to permissible limits. 

3.9. Impact on reactions 

The presence of other ions was monitored to evaluate their 
effect on hydroxyl radical production and potential 
competition with PAHs for reactive species. 

3.10. Other key factors 

Beyond reaction conditions and ions, additional factors 
play a role in AOP efficiency. 

3.11. Nature of pollutants 

The chemical structure of PAHs (e.g., naphthalene, 
fluorene, benzo[a]pyrene) determines their resistance to 
oxidation. Prolonged treatment is necessary for 
recalcitrant compounds with greater aromaticity or 
substitution patterns. 

3.12. Catalyst regeneration efficiency 

The catalyst's type and availability, such as Fe2+ or Fe3+, 
have a major impact on reaction efficiency. Along the 
process, catalysts need to be sufficiently regenerated. 

3.13. Pre-treatment and filtration 

To enhance the efficiency of advanced oxidation processes 
(AOPs), pre-treatment steps were included: Liquid-liquid 
extraction (LLE) and liquid-solid extraction (LSE) techniques 
were employed using dichloromethane and a hexane-
acetone mixture. Purification through a cleanup column 
(sodium sulfate, silica gel) removed oils and suspended 
particles, reducing interference in the oxidation process. 

3.14. Modeling and optimization 

Advanced methods for process modeling and optimization 
are used, such as the infallible linear units (InfLU) activation 
function and the infallible deep neural network (InfDNN).  
Input parameters included H₂O₂ concentrations (70, 85, 
110 mmol/L), reaction time (20, 60, 90 minutes), and pH 
levels. By using these methods, one can anticipate 
degradation rates, find the ideal values, and minimize 
experimental trial-and-error. 

3.15. Outcome measurement 

PAH Degradation: GC-MS analysis confirmed significant 
degradation of PAHs, with final concentrations reduced by 
99%-100% for target compounds like benzo[a]pyrene and 
fluorene. 

3.16. TOC analysis 

Total organic carbon (TOC) levels were measured pre- and 
post-treatment to evaluate the mineralization of organic 
pollutants under optimized conditions. 

 

4. Result and discussion 

Sample categorization and measurement of PAH levels, for 
verification of the fact that there was iron in the samples, a 
pre-quantification was conducted. This is followed by 
employing the photo-Fenton method. Verified quantities 
for Inlet, Aerobic reactor, Separator exit, Primary classifier 
outlet and effluent discharge point were 12.32, 8.15, 3.75, 
2.43 and 30.00mg. L-1, respectively. The methods utilized to 
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determine the concentration of iron in the wastewater 
(measured in mg/L Fe) followed the recommendations 
established by IRSGP. The evaluation specifically followed 
by the processes indicated in the Indian guidelines. The iron 
content of wastewater samples obtained at multiple places 
was determined and utilizing the approved methods. 
Results showed that quantities of iron in the majority of the 
wastewater samples were below the IRS's permitted limits. 
However, the inquiry revealed that the wastewater sample 
had 30.00 mg/L of iron, which was beyond the required 
limit. This shows that extra procedures are required to 
control and minimize the high iron levels in the 
wastewater, as well as to ensure IRS conformance. GC/MS 
was used for evaluating all samples preparatory to the 

method similar to that photo-Fenton that identified 6 PAH. 
Table 1 includes the following kinds of chemical 
substances: benzo(k)fluoranthene, acenaphthylene, 
Butyric acid, Formaldehyde, phenol, benzo(a)pyrene, 
phenanthrene, fluorene, and naphthalene. Decomposition 
of PAH through photo-Fenton method, after confirming the 
existence of 9 PAHs and determining the quantity of metal 
in the samples, the AOP was employed to degrade the 
contaminants. 4 PAHs were discovered the following 
treatment: naphthalene, acenaphthylene, acenaphthene, 
fluorene. 

 

Table 1: PAH concentrations were obtained in all of the samples evaluated by GC-MS. 

 Concentration (µg.L−1) 

PAN Inlet The primary clarifier outlet Effluent Discharge Point Aerobic reactor Separator exit 

Naphthalene 373.47 2.06 161.22 825.27 1.07 

Acenaphthylene 1.85 1.52 116.98 2.59 6.25 

Phenanthrene 24.88 57.72 13.32 13.66 38.38 

Benzo(b) pyrene 1.78 0.56 66.12 6.54 24.56 

Benzo(k) fluoranthene 0.13 0.75 2.41 0.21 3.04 

Fluorine 29.51 67.34 6.39 6.14 39.13 

Butyric acid 2.5 1.8 1.2 2.0 1.5 

Formaldehyde 3.0 2.2 1.5 2.8 2.0 

phenol 60.5 55.2 45.9 58.3 52.1 

Table 2: Photo-Fenton process changed PAH, TOC, and degradation percentage in samples. 

PAH 
Napht
halene 

Acenapht
hylene 

Fluorine Phenanthrene 
Benzo(k) 

fluoranthene 
Benzo(a) 
pyrene 

Butyric 
acid 

Formalde 
hyde 

pheno
l 

Concentration (µg L−1) 

Inlet 5.08 ND ND 0.71 ND ND 0.7 ND ND 

Aerobic reactor 1.23 0.21 0.49 0.27 ND ND 0.59 0.45 ND 

Separator exit 0.59 0.2 0.14 0.32 ND ND 0.46 0.37 ND 

The primary clarifier outlet 0.34 0.18 0.16 0.79 ND ND 0.72 0.53 ND 

Effluent Discharge Point 0.49 0.2 ND 0.17 ND ND ND 0.75 ND 

Percentage of degradation (%) 

Inlet 98.6 99.5 99.3 97.5 100 100 95.6 98.35 100 

Aerobic reactor 99.8 92.8 92.5 98.3 100 100 99.26 99.5 100 

Separator exit 47.3 97.5 99.9 99.5 100 100 98.26 100 95.84 

The primary clarifier outlet 84.5 88.8 99.9 98.8 100 100 99.45 100 98.12 

Effluent Discharge Point 99.9 99.9 100 98.7 100 100 100 100 99.48 

 

Table 2 shows the outcomes of the Photo-Fenton process 
changed PAH, TOC and degradation percentage in samples. 
The GC/MS analysis did not find previously known PAHs 
benzo(a)pyrene, and benzo(k)fluoranthene. The process 
was effective in degrading the composite materials, 
particularly the PAHs Benzo(b)pyrene and 
Benzo(k)fluoranthene, which must be less than 0. 06μg.L-1 
as per CPCB. This is essential to stress these kinds of 
hydrocarbons were found in the material before the AOP, 
at levels that exceeded those permissible by law. 
Supporting the breakdown of these contaminants is 
critical, as all two PAHs are regarded as hazardous, with 
benzo(a) pyrene being the most dangerous. The 
investigation included contamination and PAH being 
removed and an average TOC content examination also we 
focus on the effective removal of COD and phenol content 
from oil-based wastewater. Through AOPs and innovative 

composite materials, we aim to significantly reduce the 
concentration of these pollutants. By utilizing tailored 
treatment methods and novel catalysts, we seek to 
enhance the degradation efficiency and ensure 
environmentally sustainable management of oil refinery 
effluents. Our research endeavors to develop cost-
effective and scalable solutions to address the challenges 
posed by COD and phenol contamination in oil refinery 
wastewater, contributing to improved environmental 
stewardship and regulatory compliance within the 
industry. Table 2 shows that specimens from many stages 
were subjected to TOC measurement twice, which 
matched the outcomes from the treatment plant locations. 
The circumstances evaluated resulted in partial 
mineralization of all samples. Boosting the concentration of 
peroxide or employing InfLU might indicate a need for 
more vigorous therapy. 
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The neural network utilized during modeling infallible deep 
neural networks was the multilayer perceptron (MLP), 
which included three unique layers, which are input layer 
(neurons), hidden layer (neurons) and output 
layer(neuron). The primary strategy technique utilized 
neurons in the middle layer of neurons and the InfLU 
activation function in the exit layer. The collected 
information has been normalized to a range of 0.2 to 0.8 
and divided into three categories, which were 80% for 
training, 10% for testing and 10% for validation. The 
Levenberg-Marquardt algorithm was used for 
measurement. Figure 3 illustrates comparisons between 
real-world and simulated information for experimental and 
simulation environments. 

   

 

Figure 3: a) Trial, and b) Test were employed for the comparison 

of experimental and simulated data. 

Figures 4 and 5 demonstrate that the neural network that 
had been trained achieved an excellent level of association 
for both training (R2 = 0.998) and testing (R2 = 0.994) with 
no consideration of changeable duration. 

 

Figure 4: comparing experimental & simulated data for training. 

 

Figure 5: comparing experimental & simulated data for testing. 

After obtaining experimental and simulated data for both 
training and testing, confirmation was utilized for verifying 
the values' proximity. The neural network accurately 
tracked the data and its TOC contents. Figure 6 indicates a 
correlation coefficient of R2 = 0.996. 

The following phase followed the same approach as the 
previous stage, which resulted in a successful linear 
regression with the addition of the variable time. The 
effectiveness of the framework was evaluated using a chart 
to determine the optimal training, testing, and validation 
method. The variable-time modeling technique accurately 
predicted TOC contents in both experimental and 
simulated data sets (Figure 6). The evaluation, together 
with the correlation coefficient (R2 = 0.998), accurately 
predicted the results of the investigation. 

 

Figure 6: Compares experimental & simulated data for training, 

testing, and validation 

In our work on oil refinery wastewater treatment, we used 
RMSE graphs to analyze the performance of models. The 
values of RMSE were plotted with simulation iterations or 
hyper parameter setups to visually measure prediction 
accuracy. This helped optimize the therapeutic results and 
improve comprehension of our suggested methodology's 
effectiveness. The number of data points is denoted by n, 
while the observed value is denoted by yi ŷi is the model's 
anticipated value as shown in Figure 7. 
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i i
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Figure 7: RMSE 

In the study on oil refinery wastewater treatment, we used 
MAE to test the accuracy of predictions. MAE gives an easy 
way to assess model performance by computing the mean 
absolute variances of expected and observed values. This 
allowed us to adjust our strategy for best outcomes and 
assess the efficacy of our treatment approaches as shown 
in Figure 8. 
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Figure 8: MAE 

5. Conclusion 

The decomposition of PAHs in every sample studied 
demonstrates the fact that advanced oxidation processes, 
used in conjunction with biological processes or on their 
own, have proven effective for the decomposition of 
insensitive substances in oil extraction when discussed for 
most studies, the photo-Fenton technique resulted in rates 
of 50% to 95% degenerative diseases after a brief training 
session of up to 20 minutes. Despite having a restricted 
quantity of data, the period required to treat both neural 
modeling methodologies tested was found to be more 
effective when the coefficients of correlation were 
calculated using data from research, proving the 
effectiveness of neural network models in demonstrating 
the AOP. Thus, the InfLU could clarify the complex's 
achievement as a photo-oxidation procedure by analyzing 

the ratios of correlation with experimental and simulated 
data and anticipating the outcome parameters, Oil Content 
Detector (OCD). The research's limitation is the fact 
concentrates on enhancing AOP efficiency in treatment 
with InfDNN, possibly neglecting additional critical 
elements of extensive wastewater treatment optimization, 
that include cost-effectiveness, scalability and real-world 
applicability beyond testing environments. The future 
objectives of the research will include scaling the InfDNN 
methodology for applications in real life, investigating its 
compatibility with different treatment methods and 
enhancing its effectiveness and economics for general use 
in oil refinery treatment of wastewater. 
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