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 Electricity demand is increasing day by day and hence power utilities are slowly 

shifting towards renewable energy, mainly solar, as it is more reliable and environment friendly. 

However, solar power generation systems have very low efficiency and this is the major challenge 

faced by the researchers. Some of the reasons for the low efficiency is the presence of dust 

particles, bird droppings, shadows, rain droplets, micro cracks etc. Micro cracks are the major 

issue to reduce solar panel efficiency. Microcracks are estimated to contribute to a power loss of 

approximately 80–90%, severely affecting the efficiency and overall performance of solar 

panels.In this article, the cracked panel and non-cracked panel can be identified by using complex 

wavelet transform. The Gaussian filter is used to eliminate the distortions in the cracked panel. 

And this image can be decomposed by sub band images. The corresponding statistical and texture 

features can be calculated for sub band images and these features are classified using ANFIS 

classifier. Finally the segmentation algorithm is used to detect the cracked and non-cracked panel 

images. By comparing with existing methods like Electroluminescence imaging technique, 

ResNet152 model, Xception model, UAV based thermal imaging technique. The Proposed ANFIS 

leverages the advantages of both neural networks and fuzzy logic, enhancing the accuracy and adaptability 

in distinguishing cracked from non-cracked panels. This approach can be deployed in automated inspection 

systems for large-scale solar farms, enabling early crack detection. By identifying issues sooner, it helps 

lower maintenance costs while improving the efficiency and longevity of solar panels. Additionally, the 

method can be integrated with drone-based monitoring systems for remote inspections. 

Keywords: ANFIS classifier, Machine Learning, complex Wavelet Transform 

1. Introduction 

 Micro cracks are mainly due to manufacturing defects as well as improper handling 

during transportation and installation. Manual testing of panels for the detection of micro cracks 

is very difficult and time consuming especially for panels of large dimensions and high-power 

rating.  For precise fractures being identified, image quality is essential. If the image 

resolution is inadequate, surface sounds could be mistaken for cracks. As a consequence, 

a minimum pixel range needs to be defined to perform the function correctly. Careful 

algorithm selection is crucial to the process' accuracy since it produces a model that 

performs better and has greater identifying potential.  An examination of research revealed 

that soft computing methods fared better in terms of precision than other methods. Some 

methods for the automated detection of cracks are available in the literature. The performance 
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metrics of these methods along with the time taken for the detection of cracks is also available in 

the literature. This work addresses the process of detection of micro cracks using an improved 

technology which detects the crack within very less time as compared to the existing technologies.  

If the cracks in the solar panels are detected using automated methods, it becomes easier to change 

the defected panel with a new one so as to improve the production rate. This paper deals with 

ANFIS machine learning algorithm as a soft computing technique to detect the defective panel 

images. 

2. Literature Survey 

 Deep learning (DL) models are used by some researchers for solar cell fracture detection. 

Improved EL detection of solar cell fractures is proposed by Su et al. (2021) by implementation 

of a unique complementary attention network. Out of 3629 photos tested by them almost 2129 

have detective sections. 2 to 12% of the output power may be lost because of these tractions and 

it depends on the dimensions of the cracks. The research shows that fractures also referred to as 

"cracks" in solar cells might diminish the cell's output power by anywhere from 0.9% to 42.8%, 

or even more. Li et al. (2014) have proposed an entirely new method for finding cracks in faults 

with dark colours and poor contrast. The original image is divided into its component parts and 

then recreated using the FDCT (Fast Discrete Curvelet Transform) technique. In order to remove 

surface textures from the images, constraints for the decomposition parameters are derived using 

texture feature measurements. Contours from the rebuilt images are obtained, which are free of 

motifs but contain fracture fault contours, to produce the required image. A method for spotting 

cracks in Scanning Electron Microscopy(SEM) images is described by Vidal et al. in (2016). They 

have merged the SEM pictures by setting an acceptable threshold defined by the image histogram 

after filtering out nodules and background noise. Image binarization is achieved to successfully 

detect fractures from the backdrop of the image.  The spatial area of the fractures are more 

accurately determined by combining the second derivative of the histogram acquired using the 

Laplacian of Gaussian (LoG) with the Prewitt vertical edge detector. A method for locating near-

surface faults in specimens that are both magnetizable and conductible is proposed by Heideklang 

et al. (2015). Their approach integrates information from thermography, magnetic flux leakage, 

and eddy current testing. For pixel-level fusion of data, a variety of signal processing methods are 

provided to normalise the information. The signal-level fusing of disparate Non-Destructive 

Testing (NDT) image results are achieved utilising pixel-wise, multi-scale, and signal 
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normalisation methods. Fundamental algebraic fusion techniques are used to combine the findings 

of signal normalisation. Zahra Anvari and Vassilis Athitsos et al.(2021) The deep learning 

techniques used for document picture enhancement tasks, such as binarization, deblurring, 

denoising, defading, watermark removal, and shadow removal, are thoroughly reviewed in this 

work. The authors identify difficulties and constraints and offer potential avenues for further 

research while discussing the different deep learning architectures, datasets, and metrics employed 

in these tasks. Muhammad Imran Razzak, Saeeda Naz, and Ahmad Zaib (2017) This paper presents 

an overview of deep learning architectures and their optimization techniques used in medical 

image segmentation and classification. It discusses the unique challenges faced in medical image 

processing and outlines open research issues, emphasizing the potential of deep learning to 

improve healthcare services. 

 

 The novelties of this proposed solar panel crack detection system are constructed from 

the literature survey section and they are highlighted in the below points. 

● The novel ANFIS Classifier is proposed in this work to perform the solar panel image 

classification process. 

● The novel crack segmentation algorithm is proposed in this work model. 

 

The generic procedure for the image processing technique is shown in the Figure 1. 
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Figure 1 Generic Procedures for Image Processing 

 

3. Proposed Methodologies 

 In this paper ANFIS classification method used in the panel and divided like cracked 

and Non-cracked panels. The Gaussian filter is applied and the noise removed. By using image 

processing technique the panel can be separated by cracked and Non-cracked panels.The proposed 

block diagram is given below in Figure 2. 

 
      Figure 2 ANFIS classifier based solar panel image classification scheme 
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Table 1 shows that training and testing dataset values and Detection Rate values. 

Panel Type Training Dataset Testing Dataset Detection Rate 

Cracked Panel 285 665 99.8% 

Non-cracked Panel 300 700 98.4% 

 

                             Table 1 Training and Testing Dataset 

 In this work, MATLAB 2020 is used here as simulation platform on computer with the 

following specifications. 

 Processor  :  Intel i5 

 Hard disk  : 2 TB 

 RAM  :   8 GB RAM. 

 

3.2.1 Optical System Specifications 

 Here, FIMI X 8 drone is utilized to take pictures of the solar arrays. The camera on the 

drone can rotate in three axes and has a catching range of up to five thousand meters. Drone camera 

units weigh 790 grams, and they can transmit data at 64 km per hour. The optical system employed 

in this study is characterized by its resolution and optical transfer properties. The optical system 

of this research makes use of various kinds of photo detectors. The drone instrument's optical 

system takes pictures of the solar panels. The qualities of the object being tested may be determined 

without physically touching it due to the optical measuring procedures. This method uses the 

physics of absorption and reflection to record information about surfaces as a whole. The drone 

instrument has a variety of optical components and assemblies, all of which must be meticulously 

constructed for optimal image performance. When designing optical components, it is common 

practice to strive for the smallest feasible footprint in terms of size, weight, and energy 

consumption. Drones and other autonomous systems may have their lenses made from a wide 

variety of substrates, including plastic, glass, metal, and plastic. UAV applications that collect 

distant pictures need long focus lengths. However, this viewpoint results in a deformed picture; to 

fix this, the perspective image registration approach is employed.  

 Figure 3 (a) depicts the original picture recorded, whereas Figure 3 (b) shows the 

rectified image after preprocessing. The resulting solar panel pictures are registered using the 

feature image registration approach described by Wang et al. (2022). 
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(a)          (b) 

Figure 3 (a) Image captured by using Drone (b) Registered image 

 The licensed solar panel picture has six rows of ten solar cells, every single one of 

which measures 0.16 m X 0.16 m. 

3.2.2 Preprocessing  

 The extracted picture of the solar panel suffers from blurring in the broken areas, which 

in turn affects the clarity of the individual pixels. These unnecessary blurs should be eliminated so 

that fractured spots in solar panels may be detected and segmented. Even though many 

conventional blur detection methods as stated in Awais Khan et al. (2021) and Renting Liu et al. 

(2008) available to detect and remove the blur from the solar images, these methods exhibits pixel 

losses during deblur process. The Data Augmentation Methods (DAM) is used in the solar panel 

images of the training data set to increase the number of solar panel images during the training of 

the ANFIS classifier. This work uses left shift and right shift DAM methods in the training dataset 

solar panel images. 

 The 'Gaussian' filter, whose response to impulses is a Gaussian function, is used to 

identify and get rid of the blurry pixels in the solar cell picture. The formula below represents the 

kernel of the Gaussian filter given in the Equation (1) 

𝐺(𝑟, 𝑠) =
1

√2𝜋𝜎
𝑒

−𝑟2+𝑠2

2𝜎2              (1) 

  The filter has a mean of zero and a window size of 5 X 5, hence the standard 

deviation is zero. To identify and eliminate the haze around the cracks in the solar cell, a Gaussian 

filter is used in the picture. The original picture of the solar panels is shown in Figure 4 (a), while 

the filtered version is shown in Figure 4 (b). 
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(a)       (b) 

Figure 4 (a) Source solar panel image (b) Gaussian filtered image (Pre-processed image) 

 
Figure 5 Four stage Complex Wavelet Transform 

 The picture may be decomposed into smaller scales using CWT. This study uses a 4-

stage CWT to separate the solar panel picture into 12 individual sun band images. The suggested 

CWT is made up of two filters with four phases each: a Low Pass Filter (G) and a High Pass Filter 

(H). At each step of the disintegration, the input picture is concurrently processed by these filter 

banks to generate the sub spectrum images.  The output of each step is down filtered by a factor 

of 2, as shown in Figure 5.   
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 In a CWT structure, real and scaling properties are given in the Equations (2) and (3) 

respectively. 

∅(𝑡) = √2 ∑ 𝐺0∅(2𝑡 − 𝑛)            (2) 

𝜗(𝑡) = √2 ∑ 𝐺1∅(2𝑡 − 𝑛)            (3) 

  The CWT structure's high pass filter banks' real valued function and scaling 

function are given in the Equations (4) and (5) respectively. 

∅(𝑡) = √2 ∑ 𝐻0∅(2𝑡 − 𝑛)            (4) 

𝜗(𝑡) = √2 ∑ 𝐻1∅(2𝑡 − 𝑛)            (5) 

 Figure 6 shows the pre-processed solar panel picture broken down into 12 sub band 

images. The statistical and texture features can be computed for all the sub band images. 

 

Figure 6 DTCWT sub band images 

3.2.4 Computation of Features 

 Pixels in a picture may be distinguished from one another based on their features, 

which are their unique characteristics. CWT is used to split pictures into sub bands before 
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computing texture and statistical information from those images. The next sections 

elaborate on these aspects. 

Statistical features 

 These characteristics use the coefficient fluctuations and their mean value in 

each decomposed sub band picture to differentiate between images of cracked and 

uncracked solar panels. 

Mean 

 The following formula is used to get the average value of each sub band picture. 

𝑀𝑒𝑎𝑛(𝐶) =
∑𝑁

𝑖=1 𝐶𝑖

𝑁
             (6) 

 In this equation, N represents the total number of coefficients in the decomposed 

sub band picture, and Ci represents the coefficients of image 

Variance 

 Decomposed sub band images have somewhat distinct coefficients from one 

another. The variance functions allow for the estimation of these differences. Each sub 

band image's variance is calculated separately using the following formula. 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  
∑𝑁

𝑖=1 (𝐶𝑖−𝐶)2

𝑁
             (7) 

Skewness 

  Skewness characteristics, which are calculated using a third-order functional 

factor, characterize the form and size of the deconstructed sub band picture. Each sub band 

image's Skewness level may be calculated using the following formula. 
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𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
1

𝑁
∑𝑁

𝑖=1 [
𝐶𝑖−𝐶

𝜎
]

3

            (8) 

Kurtosis 

  Kurtosis characteristics, which are calculated using a fourth-order functional 

factor, characterise the non-linear behaviour of each coefficient in a sub-band picture. 

Using the following formula, the kurtosis of each individual sub band picture is obtained. 

𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
1

𝑁
∑𝑁

𝑖=1 [
𝐶𝑖−𝐶

𝜎
]

4

            (9) 

Pearson’s Index 

  For each picture sub-band, Pearson's index is calculated based on its 

skewness and kurtosis. The formula that follows is used to get the Pearson's index applying 

the Skewness feature. 

𝑃𝑒𝑎𝑟𝑠𝑜𝑛′𝑠 𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠𝐼𝑛𝑑𝑒𝑥 (𝑃𝑆𝐼) =
𝐶

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠−𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒
      (10) 

  The formula that follows is used to get the Pearson's index utilizing the 

Kurtosis characteristic. 

𝑃𝑒𝑎𝑟𝑠𝑜𝑛′𝑠 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠𝐼𝑛𝑑𝑒𝑥 (𝑃𝐾𝐼) =
𝐶

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠−𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒
      (11) 

Texture features 

  One alternative name for textures is patterns. Images of fractured solar panels 

have a distinct texture that is not present in images of undamaged solar panels. Therefore, 

it is crucial for the classification procedure to compute the textures of each deconstructed 

sub band picture. The following texture characteristics are calculated from each sub band 

image's decomposition. 



12 
 

 

𝐸𝑛𝑒𝑟𝑔𝑦 = ∑𝑖,𝑗 𝑓(𝑖, 𝑗)2           (12) 

 Each deconstructed picture may be reconstructed by computing the texture 

matrix (rows and columns are denoted as i and j ) using the formula: 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = ∑𝑖 ∑𝑗

(𝑖−𝜇𝑖)(𝑗−𝜇𝑗)𝑓(𝑖,𝑗)

𝜎𝑖×𝜎𝑗
         (13) 

where,  

𝜇𝑖 = ∑𝑖 𝑖 ∑𝑗 𝑓(𝑖, 𝑗)  

𝜇𝑗 = ∑𝑗 𝑗 ∑𝑖 𝑓(𝑖, 𝑗)  

𝜎𝑖 = ∑𝑖 (𝑖 − 𝜇𝑖)2 ∑𝑗 𝑓(𝑖, 𝑗)  

𝜎𝑗 = ∑𝑗 (𝑗 − 𝜇𝑗)2 ∑𝑖 𝑓(𝑖, 𝑗)  

𝐼𝑛𝑒𝑟𝑡𝑖𝑎 = ∑𝑖,𝑗 (𝑖 − 𝑗)2𝑓(𝑖, 𝑗)          (14) 

𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑆ℎ𝑎𝑑𝑒 = ∑𝑖,𝑗 [(𝑖 − 𝜇𝑖) + (𝑗 − 𝜇𝑗)]
3

𝑓(𝑖, 𝑗)       (15) 

𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑃𝑟𝑜𝑚𝑖𝑛𝑒𝑛𝑐𝑒 = ∑𝑖,𝑗 [(𝑖 − 𝜇𝑖) + (𝑗 − 𝜇𝑗)]
4

𝑓(𝑖, 𝑗)      (16) 

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 = ∑𝑖,𝑗
1

1+(𝑖−𝑗)2
𝑓(𝑖, 𝑗)         (17) 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =
1

(𝑁−1)2
∑𝑖,𝑗 (𝑖 − 𝑗)2𝑓(𝑖, 𝑗)         (18) 

where,  N is the element counts in 𝑓(𝑖, 𝑗). 

4. ANFIS Classification Technique 
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 It is the classification of calculated characteristics for broken solar panel detection. 

Researchers have employed a variety of machine learning methods, including the Support Vector 

Machine (SVM) and the binary classification algorithm, to identify solar panels with cracks. Using 

these Machine Learning (ML) techniques to identify damaged panels is insufficient. In this study, 

the ANFIS classification architecture is developed for differentiating between images of damaged 

and non-cracked solar panels. The designed ANFIS structure has two modes of operation: training 

and testing. The ANFIS classifier learns using a feature matrix that contains information on each 

picture in the training dataset, organized by the bands in which they were taken. The ANFIS 

architecture's binary index is generated at the testing level. The ANFIS classification framework 

returns a value of '1' if it is defect one and a value of '0' otherwise. In Figure 6, the ANFIS 

architecture developed for this study is shown. Layer 1 nodes A and B are associated with the 

classification nodes and the Layer 2 performs inbuilt multiplication work and its nodes are 

identified by the label. This layer conducts the process of multiplication of the previous layer 

output. The weights calculated in preceding layers are used as input to Layer 3, where they are 

normalized by calculating their mean. N stands for the nodes in this layer. In Layer 4, fuzzy rules 

are incorporated with the nodes laid here and defuzzification process is performed here. The output 

is the result of layer 5's summing function, which sums the answers from the preceding layers. The 

ANFIS classification structure is shown in Figure  7 (a) and Figure 7 (b) depicts pictures of 

defected and non-defected solar panel PVs, respectively. 

 
Figure 7 Architecture of ANFIS model 
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Figure 8 (a) Non-defected PV images (b) Defected PV images 

5. Segmentation Algorithm 

 Crack segmentation algorithm is the method used to separate apart the shattered areas 

of the picture of the broken solar panel. The broken pixels may be found using the following 

approach. 

Phase 1: 

 Suppressing the border-connected outlier pixel structure in the categorized fractured 

solar panel picture. 

● Purpose: Removes noise from the edges of the image to prevent false detections. 

● Impact on Accuracy: Reduces the chances of misclassifying background elements as 

cracks. 

● Intermediary Result: Show an image before and after outlier removal. 

Phase 2: 

 If the pixel's value is below 50, set it to Zero in the picture. 

● Purpose: Eliminates low-intensity pixels (background noise), keeping only significant 

crack regions. 
● Impact on Accuracy: Enhances contrast between the crack and background, making 

segmentation more reliable. 

● Intermediary Result: Show an image where faint background noise is eliminated. 
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Phase 3: 

 In order to create the enlarged picture, use the dilation operator with the 'disc' structural 

element and a 13 mm radius. 

● Purpose: Expands and connects broken crack segments. 
● Impact on Accuracy: Helps in detecting complete cracks rather than fragmented parts. 
● Intermediary Result: Compare an image before and after dilation to show how small gaps 

are filled. 

Phase 4: 

 The enhanced picture should undergo the same steps as before. 

● Purpose: Reinforces the dilation effect to ensure no crack is missed. 
● Impact on Accuracy: Prevents under-segmentation, making sure all cracks are 

considered. 
● Intermediary Result: Show how cracks are progressively becoming more distinct. 

Phase 5: 

 Figure 7 (a) shows the eroded result of using an erosion operator with a 'disc' structural 

element and a 5 mm radius for generating erode image. 

● Purpose: Reduces over-segmentation caused by dilation, retaining only meaningful crack 

structures. 

● Impact on Accuracy: Eliminates falsely expanded regions, improving precision. 
● Intermediary Result: Show a comparison where unwanted noise is removed. 

Phase 6: 

 As shown in Figure 7 (b), the final crack area segmented picture is created by 

employing the 'thin' operator to convert the numerically degraded image into a logical image by 

removing pixels without holes. 

● Purpose: Converts the processed image into a logical binary form while preserving 

essential crack features. 
● Impact on Accuracy: Ensures that only relevant crack pixels remain, making detection 

more precise. 
● Intermediary Result: Final segmented crack image with clear boundaries. 
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(a)    (b) 

Figure 9 (a) Eroded image (b) Crack segmented image 

6 Results and Discussion 

 The algorithm stated in this article is tested on the real time constructed dataset solar 

panel images. This constructed dataset consists of 950 fractured solar panel images and 1000 non-

fractured solar panel images. The solar panel image size is about 512 x 512 pixels as width and 

height. The proposed system splits the constructed dataset into 30:70 ratio for training and testing. 

Hence, the training solar panel image dataset consists of 285 fractured solar panel images and 300 

non-fractured solar panel images. Similarly, the testing solar panel image dataset consists of 665 

cracked solar panel images and 700 non-cracked solar panel images. The detection rate for cracked 

solar panel is 99.8% by correctly detecting 664 cracked solar panel images over 665 images. The 

detection rate for non-cracked solar panel is 98.4% by correctly detecting 689 cracked solar panel 

images over 700 images. Therefore, the mean detection rate is about 99.1%. 

 

 The performance of the ANFIS based solar panel defect system is evaluated using the 

following equations. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑆𝑒) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100%      (19) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(𝑆𝑝) =
𝑇𝑁

𝑇𝑁+𝐹𝑃
× 100%      (20) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝐴𝑐) =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100%      (21) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑃𝑟) =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100%                  (22) 

𝑀𝐶𝐶 =
𝑇𝑃∗𝑇𝑁−𝐹𝑃∗𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
    (23) 
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 The correctly detected defected and non-defected images are TP and TN and the 

incrrectly detected defected and non-defected images are FP and FN respectively. The average 

values of 97.6% for Se, 97.6% for Sp, 98 

 Table 2 shows the comparisons of Data Augmentation Methods (DAM) results for both 

case of images. 

Table 2 Comparisons of Data Augmentation Methods (DAM) results  

Cases Procedure analysis DT Results in % 

For cracked solar 

panel images 

Proposed solar panel image 

classification incorporating 

DAM 

97.33 

Proposed solar panel image 

classification without 

incorporating DAM 

95.12 

For cracked solar 

panel images 

Proposed solar panel image 

classification incorporating 

DAM 

98.6 

Proposed solar panel image 

classification without 

incorporating DAM 

96.65 

 

  Table3 shows the index parameter analysis on solar panel image dataset. The 

proposed solar panel image classification system obtains 99.3% precision, 98.8% recall and 99.3% 

MCC. (Mathew Correlation Coefficient) 

Table 3 Index parameter analysis  

Index Parameters Results in % 

Precision 99.3 

Recall 98.8 

MCC 99.3 

 

 Figure 10 shows the graphical perspective of Index parameter analysis. 
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Figure 10 Graphical perspective of Index parameter analysis 

 Table 4 gives the comparative analysis of image classification system and the ANFIS 

classifier is used. It is observed that the results obtained from the proposed work are significantly 

improved in comparison with similar models proposed by Fan et al. (2022), Xue et al. (2021) and 

Greulich et al. (2020). The proposed solar panel classification system obtains 99.3% precision, 

98.8% recall and 99.3% MCC using ANFIS classification approach. 

 

Table 4 Comparative analysis for the solar panel image classification system 

Methods 
In % 

Precision Recall MCC 

Proposed ANFIS model 99.3 98.8 99.3 

Fan et al. (2022) 96.3 96.9 96.4 

Xue et al. (2021) 95.1 95.3 95.9 

Greulich et al. (2020) 94.3 94.8 95.1 

 

 Figure 11 shows the graphical comparative analysis for the solar panel image 

classification system. 
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Figure 11 Graphical comparative analysis for the solar panel image classification system 

 

 The comparisons of SDT in automatic signal classification system are important 

because it gives ratio between the correctly detected case and the total case. Table 5 is the 

SDT(signal Detection Time) comparisons on BB dataset. The proposed solar panel classification 

system consumes 0.87 ms for classifying the single solar panel image. 

Table 5 SDT comparisons on BB dataset 

Methods SDT in ms (per signal) 

Proposed ANFIS 0.87 

Fan et al. (2022) 1.76 

Xue et al. (2021) 1.59 

Greulich et al. (2020) 1.97 

 

 Figure 12 shows the graphical analysis of SDT comparisons on BB dataset. 
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Figure 12 Graphical analysis of SDT comparisons on BB dataset 

 Validation of this results can be used by k-fold cross validation method with K=6 where 

120 testing images are grouped with 20 images per fold. 75% of the 20 images are trained and 25 

% are tested. The average accuracy is 98.2%  

7. Conclusion 

 The ANFIS classifier based solar panel image detection and classification methods 

using CWT transform is presented. The proposed classification model detects and classifies 

the defected images using ANFIS architecture. The classification model was evaluated on 

a controlled dataset, and its resilience in real-world situations, such fluctuating lighting, 

dust deposition, or panel degradation, requires additional assessment. The existing 

methodology predominantly emphasizes fracture identification, whereas other defect 

types, including delamination, discolouration, and hotspots, might be integrated into the 

categorization process for a more thorough evaluation. Integrating this model into 

automated inspection systems utilizing drone-mounted cameras or industrial monitoring 

configurations could substantially improve solar panel maintenance. Future research may 

investigate hybrid models based on deep learning to enhance classification performance, 

alongside real-time deployment strategies for the effective management of large-scale solar 

farms. Then, the crack detection algorithm is used to classify fractured solar panel images 
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and Non-fractured panel images. The proposed solar panel classification system obtains 

99.3% precision, 98.8% recall and 99.3% MCC using ANFIS classification approach. It 

consumes 0.87 ms for classifying a single solar panel image. 
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