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Abstract 

In this study, a spatial attention iterative multi-layer perceptron model (SAi-MLP) is designed based 

on the temporal variation characterization of the pixels based on the Spatial-Spectra data. By 

extracting the spatial and temporal features of the data to predict the output, the output is used as a 

new feature channel input to iteratively predict the value of the next time node for ensuring the 

temporal continuity of the time series prediction. This study was carried out using the 

multi-temporal vegetation content of the Yellow River Basin as the base spatial-spectral dataset. 

The experimental results are as follows. (1) The performance metrics of SAi-MLP compared to 

other models are improved by about 2% in R2 and reduced by about 0.16%, 1.16%, and 1.35% in 

MSE, MAE, and RMSE, respectively. (2) SAi-MLP can spatially maintain spatial nearest neighbor 

information compared to MLP. (3) From 2000 to 2020, the vegetation cover of the Yellow River 

Basin showed an increasing trend. The highest average value of vegetation cover in 2018 and 2020 

is 0.78, and the average value of vegetation cover in 2030 is 0.82, an increase of 0.22 compared 

with 2000. 
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1 Introduction 

Spatial-spectral data have the characteristics of synchronous observation over a large area, 

strong timeliness, and the ability to objectively reflect the changes of terrain and surface features, 

which have become the main data source in environmental computing (Zheng et al., 2023). A large 

number of prediction models have been proposed to realize high-precision time series prediction 

with spatial-spectral data (Alhnaity et al., 2021). The prediction models include traditional 

statistical models, machine learning models, deep learning models and hybrid models 

(Sundarapandi et al., 2024). Statistical models have limited prediction performance for abrupt 

changes in time series, while the application of machine learning and deep learning techniques 

address the problem of mutation prediction performance better. So far researchers have further 

utilized the use of combined prediction models to combine the advantages of each single prediction 

model (Yu et al., 2021). In this study, a self-iterative cascade prediction model is proposed, 

SAi-MLP, to predict the temporal changes of vegetation content as a feature of the spatial-spectral 

data. 

Vegetation as a hub in terrestrial ecosystems is closely linked to ecological elements such as 

atmosphere, soil and hydrology, which plays a key role in maintaining and optimizing ecosystem 

services (Chen et al., 2021). Vegetation is the material basis for human survival and development 

(Luo et al., 2023), it also plays a pioneering role in energy flow and material cycling in ecosystems 

(Piao et al., 2011).Exploring vegetation changes by monitoring vegetation cover and growth 

conditions can reveal both the ecological environment evolution and its response mechanism. At the 

same time, it is of great significance for the in-depth understanding of the information transfer 

process of the ecosystem (Ding et al., 2016). In turn, it can provide theoretical basis for the 



 

 

governance and management of regional ecological environment (Wang et al., 2023c).Vegetation is 

generally calculated using both field observation and remote sensing image estimation (Gao et al., 

2020). The maturity of remote sensing technology has enabled large-scale, high-precision remote 

sensing satellites to quickly and accurately reflect vegetation cover (Xiao et al., 2017). 

 Geographic Information System (GIS) has powerful spatial analysis and processing 

capabilities, so currently the method of combining remote sensing and GIS is mainly adopted (Song 

et al., 2015). Remote sensing image observation becomes the mainstream way to calculate FVC, 

which acquires effective vegetation cover data through the combination between remote sensing 

data bands. Normalized vegetation index (NDVI) is characterized by the elimination of instrumental 

calibration and radiometric errors, as well as long time series and easy arithmetic (Wang et al., 

2023b). The sensitivity of biological characteristics that change during vegetation growth largely 

attenuates the effects of atmosphere, soil background and vegetation type, so NDVI is widely used 

in the calculation of vegetation cover dynamics monitoring (Xie et al., 2023). The use of pixel 

dichotomous modeling to estimate FVC from NDVI content at different surface locations has been 

proposed for application (Liu et al., 2023). 

Statistical analysis using available time-series data to infer trends in vegetation evolution is 

important for ecological monitoring. Studies have been conducted to discuss the characteristics of 

spatial and temporal changes in vegetation through multi-temporal vegetation trend analyses at 

large scales (Sun et al., 2021), but fewer methods have been used for prediction of long time series. 

The development of computer disciplines provides new methods for predicting the spatial 

evolutionary distribution of vegetation (Nelson et al., 2024), such as differential autoregressive 

moving average model (ARIMA) and Hurst index (Kang et al., 2021) applied in ecological time 

series prediction. This shift in disciplinary research perspectives reflects the transition from 



 

 

traditional geoscientific sample analysis to multidisciplinary fusion analysis. Machine learning 

theories have provided additional perspectives for environmental prediction meanwhile the use of 

LSTM and RNN to compute ecological factors to drive spatial evolution prediction techniques is 

relatively mature (Wang et al., 2023a).  

However, how to parse the vegetation cover data can be better applied to the training of 

machine learning models must be further introduced to explore the interpretability. Vegetation cover 

has a large uncertainty in its estimation due to its spatial heterogeneity at horizontal and vertical 

scales, as well as differences in parameter factors and modeling methods (Xu et al., 2018). 

Quantitative assessment of spatial and temporal patterns of vegetation cover through gridded can 

more effectively explore the distribution of vegetation in spatial areas. Researchers used the grid 

scale for remote sensing data processing to sample the large-scale study area into small-scale grid 

cells. Each grid cell was used as data input for a machine learning model to fit the spatial and 

temporal evolution of ecological features (Zhang et al., 2020). There is information loss when 

resampling remotely sensed data into small-scale grid cells. At the same time, due to the use of grid 

cells as data drivers for machine learning methods, each grid cell is treated as independent of each 

other. Thereby, the geospatial interaction of information is severed and spatial proximity is ignored 

(Tobler et al., 1970). Images are essentially multi-channel matrices consisting of a number of pixels. 

Computer vision image processing algorithms were employed to transform 2D or 3D images into 

matrices for computation to establish connections between pixels (Li et al., 2023a). Therefore, in 

this study, the pixels of remote sensing images are used as the data driver of the machine learning 

method to avoid the information loss caused by scale transformation. In terms of maintaining the 

nearest neighbor effect in the image space, the latitude and longitude are considered to represent the 

distribution of each image in the space. The latitude and longitude are calculated for each pixel to 



 

 

extract its spatial domain information. In terms of analyzing the variation of vegetation content over 

multiple time periods, the self-attention mechanism is introduced to extract feature domain 

information. The self-attention mechanism is a special kind of attention mechanism that allows the 

model to process a sequence taking into account the relationship of each element of the sequence 

with all other elements. This mechanism can help the model to better interpret the contextual 

information in the sequence and to further process the sequence data more accurately (Li et al., 

2023b). 

Multi-Layer Perceptron (MLP) is generalized from Perceptron (PLA). Due to its multiple 

neuron layers, it is also called Deep Neural Network (DNN). MLP is a type of deep learning 

algorithm which consists of input, hidden and output layers (Murtagh., 1991). MLP uses back 

propagation to train the algorithm, which implements linear transformations through multiple 

hidden layers, thus being able to align the null-domain information with the feature-domain 

information output dimensions. It is widely used in ecological computing (Nunno et al., 2023). 

Previous researchers have used machine learning methods to predict future moment changes by 

targeting temporal data. Discrete temporal nodes are characterized by time domain discontinuity 

due to independent prediction tasks between inputs and outputs. For this reason in this study, the 

output sequence data is considered as a new sequence input to the model for iterative prediction to 

ensure the continuity of the time domain. 

Therefore this study proposes a timing prediction self-iterative cascade model SAi-MLP based 

on the working mechanism of MLP. This model unites the spatial and temporal feature domains of 

the pixels,and predicts the future evolutionary distribution of changes in vegetation temporal 

sequence through multivariate feature fusion. Finally, the trend analysis is used to study the regional 

change trend. The overall design first uses pixels to quantitatively calculate the spatial variation of 



 

 

vegetation. Then the spatial module is constructed to extract the spatial near-neighbor information 

index of the pixels by latitude and longitude. Meanwhile, the data module based on self-attention 

mechanism is constructed to analyze the relationship between time series data. The features of the 

two modules are further spliced and fused into the prediction module for prediction. The results 

obtained from the prediction are iteratively incorporated into the model prediction as new features 

for a new round of evolutionary prediction. The Yellow River Basin was selected as the study area. 

The model performance was evaluated by using multi-temporal FVC spatial-spectral data to 

validate the analysis and iteratively predicting the future vegetation change characteristics in the 

Yellow River Basin. The Theil-Sen Median (Sen) trend analysis and Mann-Kendall (MK) test were 

combined in the validation session to analyze the evolutionary trends. 

Based on the work of previous researchers, this study predicts the future evolutionary 

distribution of vegetation temporal changes through multidisciplinary integration, and also 

investigates regional change trends through trend analysis. The purpose of this study is to analyze 

the evolutionary trend of vegetation in the temporal sequence. This study has the following 

significance: (1) The self-iterative cascade model SAi-MLP model is proposed for the temporal 

prediction of spatial-spectral data, which can extract the spatial information features of 

spatial-spectral data pixels, and at the same time extract the temporal features of the data based on 

the mechanism of self-attention. The model is able to achieve an iterative prediction function based 

on full consideration of spatio-temporal data characteristics. (2) The modeling approach proposed in 

this study analyzes the vegetation evolution trend from the beginning to the end of the period in a 

spatial region by means of self-iterative trends, which provides support for regional environmental 

monitoring in the medium and long term. 



 

 

2 Methods 

2.1 Spatial Attention iterative Multi-Layer Perceptron Model 

The SAi-MLP model consists of a cascade of three Multi-Layer Perceptron (MLP) modules 

(Fig.1). The data module learns the weight parameters on the temporal order of the pixels through a 

self-attentive mechanism. The spatial module converts sparse one-hot vectors into dense embedding 

vectors by splicing longitude features and latitude features of pixels. The embedding vectors and 

weighting parameters are then concatenated in the prediction module to obtain the predicted 

vegetation content values for the next time node.

 

Fig.1 Architecture of SAi-MLP 

(1) Spatial Module 

Longitude and latitude denote where each pixel is located in geographic space. We divide the 

study area into L and L' spatial segments according to longitude and latitude, respectively, and for a 

given LatS  and LngS , take their indexes and convert them into solo heat vectors 
L

LatV  1
, 

L

LngV
 1
, which are used to denote the indexes of the pixels in terms of longitude and latitude. 

LatE  and LngE  are obtained by dimensionality reduction of LatV  and LngV  through Embedding 

layer, and the two layers are fused by one-dimensional stretching. The pixel latitude and longitude 

features are connected, then the connected data input into the MLP layer. The input data dimensions 



 

 

are changed by the MLP hidden layer. Finally the output is the matrix SM  of ),( MR . 

(2) Data Module 

In 2017 Vaswani et al. proposed Multi-head Self-Attention Mechanism (Vaswani et al., 2017). 

It reflects the relationship between features through trainable Q, K, V parameters. The multi-head 

self-attention mechanism uses multiple heads employing the same computational approach given 

different parameters, which results in feature representation from multiple subspaces and is able to 

capture richer feature information (Li et al., 2023c). With the computation of Eq. (1), each head will 

get an output result of the correlation between features. 

)1()(),,(      V
d

QK
 softmaxVKQ Attention

k

T

=  

Where Q, K, V are the parameter matrices and kd  is the latitude of the input sample set. 

The data feature weights are computed into the MLP through the multi-head self-attention 

mechanism, the input data dimensions are changed through the hidden layer. As the result, the 

output is the matrix AM  of ),( MS . 

(3) Prediction Module 

Two matrices sM  and AM  of the same dimension obtained from Spatial Module and Data 

Module are connected to obtain the matrix G: 

)2(]1dim),,[(      MM concatG AS ==  

The information matrix obtained by concatenating the spatial information matrix with the 

feature matrix is fed into the MLP and finally fed into the fully connected layer to predict the output 

through dimensional changes. The output is a new one-dimensional array of temporal features, 

populated into the original feature matrix, changing the original kd  in the Data Module to 1+kd . 

The number of self-attentive channels increases the number of channels with the increase of 

features, and the output through the MLP is the matrix AM   of ),( MS , which is connected to the 

Spatial Module to start the next round of prediction. 



 

 

Algorithm: SAi-MLP algorithm 

Input: dataN

nyearnnn yearFLngLat 1

period  theof end

period  theofbegin )})(,,{( == , dataset of spatial-spectral Data Elements 

Output: dataN

nnnn FLngLat 1))}time(,,{( =  

1 repeat 

2  if E < time do 

3     E = end of the period 

4     for do Ni chsepo  

5         for do Ni data  

6            EM = Embedding )),(( nn LngLat  

7            SM  = MLP(EM) 

8            MH = Multi-Head-Attention ))(( period ofbegin 

E

yearn yearF = ,Updating the feature field 

9            AM  = MLP(MH) 

10            G = Combine )],[( AS MM  

11           )1( +EFn  = MLP(G) 

12           end of the period   end of the period + 1 

13        end 

14    end 

15  else return dataN

nn EF 1)}1({ =+  

16 end 

2.2 Sen-MK Trend Analysis 

The Theil-Sen Median (Sen) trend analysis is a robust nonparametric statistical method for 

trend calculation that reduces the effect of data outliers (Yu et al., 2023). Mann-Kendall (MK) is a 

nonparametric statistical test that has the advantage that it does not require the measurements to 

follow a normal distribution, nor does it require that the trend be linear, and is not affected by 

missing values and outliers, it has been very widely used in trend significance test for long time 

series data (Yuan et al., 2013). Usually Sen is combined with MK test for trend analysis of long 

time series data (Feng et al., 2022). The Sen slope is calculated as: 
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Where () Median  indicates that the median value is taken. If   is greater than 0, it indicates an 

increasing trend in vegetation cover and vice versa for a decreasing trend. 

The Mann-Kendall statistical test formula is as follows. Define the standardized test statistic Z 

as: 
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where n is the number of data in the sequence, jX  and iX  are the jth and i-th time series data, 

respectively. 

2.3 Metrics of Evaluation  

The study used the FVC data of the Yellow River Basin from 2000 to 2020 as the input 

20 S  for the training and test sets, and the model predicted output as 20 S . The FVC data 

of 2021 was used as the true value 1 S . The model performance was evaluated using MAE, 

MSE, RMSE and R2. The expressions are given below. 
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where S denotes the sample size. 

2.3 Experimental environment 

The hardware and software devices used in this study are shown in Table1 

Table1 Experimental platform configuration 

Title Versions 

CPU Intel i5-12450HX 

GPU NVIDIA GeForce RTX 4060Ti 

Operating system Windows11 64bit 

CUDA 11.2 

Programming language Python 3.7 

Experimental platforms Pycharm, Matlab 

3 Materials 

The study used vegetation cover (FVC) as a time series predictive spatial-spectral data feature. 

Vegetation is often used as an important characterization factor in ecological restoration (Gong et al., 

2021), ecological driver studies (Pan et al., 2023), and ecological change analyses (Yu et al., 2023) 

due to its unique ecological significance in spatial regions. The spatial area of the Yellow River 

Basin was selected for the study. In this study, the FVC air spectrum data were selected to evaluate 

and validate the model. After calculating the evolution pattern, the trend of vegetation evolution in 

the Yellow River Basin was analyzed to provide research value for environmental management. 

3.1 Study Area 

The Yellow River is the second largest river in China and the fifth largest river in the world. 

The river basin covers 102°02'~103°12'E longitude and 34°52'~35°48'N latitude(Fig.2). The Yellow 

River originates from the northern foot of Ba Yan Ka La Mountain on the Qinghai-Tibet Plateau, 



 

 

and flows through nine provinces (autonomous regions), namely Qinghai Province, Sichuan 

Province, Gansu Province, Ningxia Hui Autonomous Region, Inner Mongolia Autonomous Region, 

Shanxi Province, Shaanxi Province, Henan Province and Shandong Province. The total length of the 

basin is 5,464 km, with an area of 795,000 km2 . The Yellow River basin spans from west to east, 

connecting the Tibetan Plateau, the Loess Plateau, and the North China Plain, and eventually joins 

the Bohai Sea. The climate of the basin is continental, with semi-humid in the southeast, semi-arid 

in the center, and arid in the northwest, with large climatic differences, diverse landforms, and 

complex habitats (Wang et al., 2023d). With its large elevation drop and fragile ecosystem, it is both 

an important link covering and radiating the economic and social development of the eastern, 

central, and western provinces and regions, and one of the regions with the most intense human 

activities in the world. Maintaining the ecological health of the Yellow River plays a very important 

role in both national economic, social development and ecological security (Fan et al., 2020).

 

Fig.2 Study area 

3.2 Materials sources 

The remote sensing data acquired for the study were Landsat8 remote sensing images of the 



 

 

Yellow River Basin from 2000 to 2022. The dataset was obtained from USGS Earth Explorer by 

selecting the data of August when the vegetation cover grows luxuriantly. Firstly, Landsat8 

multi-temporal remote sensing images were extracted by masking using the vector boundaries of 

the study area as the basic data source. Then the remote sensing data were processed by 

atmospheric correction, image stitching and image decoding. Finally, the hyperspectral data were 

filtered and smoothed by Savitzky-Golay method to reduce the interference of noise. The data 

sources are shown in Table2.

Table 2 Data description 

Data Spatial resolution Collection time Data sources 

Landsat 8 1km 2000-2023 USUG 

DEM 1km 2022 RESDC 

3.3 Research Description 

The flow of this study is shown in Fig.3. firstly, the remote sensing data collected from the 

study area from 2000 to 2022 were banded to calculate the vegetation cover (FVC). Secondly, the 

SAi-MLP spatio-temporal prediction model was designed based on the time series FVC data of 

pixels, and the performance indexes of different learning models and the SAi-MLP spatio-temporal 

prediction model were compared and verified to predict the future vegetation changes. Ablation 

experiments are designed to observe the performance and effect. Then the predicted results are used 

to analyze the trend of vegetation evolution in the Yellow River Basin in 2030 and construct the 

spatial pattern of vegetation evolution. Use Sen-MK to analyze the trend of vegetation change from 

2000 to 2030.



 

 

 

Fig.3 Research method 

3.4 Calculation of feature 

Vegetation cover was calculated by pixel dichotomous modeling. The principle of 

image-element dichotomous modeling allows the NDVI value of an pixel to be expressed in the 

form of a surface composition with a vegetated portion versus a non-vegetated portion (Ma et al., 

2023). The formula is as follows: 
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Where FVC is the vegetation cover value and NDVI is the actual Normalized Difference Vegetation 

Index value. soilNDVI  and vegNDVI
 represent NDVI values for bare soil and pure vegetation, 

respectively. In calculating the FVC, it is critical to determine the soilNDVI  and vegNDVI
 values. 

Thresholds are typically determined using a confidence level based on the distribution of all NDVI 

values over the entire image. In this study, soilNDVI  is the NDVI value of (0.05) for a cumulative 

frequency of 1% and vegNDVI
 is the NDVI value of (0.9) for a cumulative frequency of 99%. 

NDVI is calculated using the formula: 
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Where NIR denotes the near-infrared band, Red denotes the red light band. 

The FVC content of each pixel from 2000 to 2022 was counted. Use it as a sample of time 

series data and divide the training set and test set for predictive model training in the ratio of 7:3. 

4 Result 

4.1 Characteristics of spatial variation 

The spatial variation of vegetation cover in the Yellow River Basin from 2000 to 2022 was 

calculated using the pixel dichotomy method as shown in Fig.4. In 2000, the vegetation cover in the 

upstream and downstream areas of the Yellow River Basin is high. The middle reaches of the basin, 

including Gansu, Ningxia, and Inner Mongolia, have a low content of vegetation cover. In 2020, the 

vegetation cover in the upper and lower reaches of the Yellow River Basin remain stable, and it 

present a rich vegetation area in the whole basin. The vegetation cover in the middle reaches 

gradually improves. The direction of vegetation change shows an increasing trend from 34°N to 

35°N, with the highest increasing content of 0.5.

 
Fig.4 Changes in FVC content in the Yellow River Basin over a 20-year period (2000-2020) 

The FVC content of each pixel was counted from 2000 to 2022, and the data statistics are 

shown in Table3. Among them, the mean value of FVC in 2018 and 2020 is the highest in the same 



 

 

period, reaching 0.78. The variance is the smallest in 2018, which indicate that the differences in the 

content of each region of the Yellow River Basin in the period of vegetation abundance in 2018 are 

smaller than that in the other 21 years, and the overall performance present relatively stable. 

Table 3 FVC Data Statistics 2000-2022 

Year Mean SD V Year Mean SD V 

2000 0.606 0.288 0.083 2012 0.756 0.244 0.06 

2001 0.595 0.296 0.088 2013 0.744 0.26 0.068 

2002 0.64 0.262 0.069 2014 0.711 0.26 0.067 

2003 0.66 0.271 0.073 2015 0.678 0.286 0.082 

2004 0.668 0.275 0.076 2016 0.727 0.254 0.064 

2005 0.66 0.289 0.083 2017 0.72 0.263 0.069 

2006 0.66 0.29 0.084 2018 0.78 0.23 0.053 

2007 0.692 0.267 0.071 2019 0.75 0.245 0.06 

2008 0.683 0.272 0.074 2020 0.78 0.249 0.062 

2009 0.695 0.269 0.072 2021 0.605 0.288 0.083 

2010 0.694 0.276 0.076 2022 0.595 0.296 0.088 

2011 0.682 0.276 0.076 2012 0.756 0.244 0.06 

4.2 Performance Comparison 

4.2.1 Model Comparison 

RNN, LSTM, and MLP are traditional models for processing time series data. RNN can 

process time series data of any length by using neurons with feedback (Zhang et al., 2023). RNN 

takes the hidden nodes of the t - 1 time slice as inputs to the current time slice at time slice t and 

thus has excellent performance on time series data. LSTM is a unique recurrent neural network 

(RNN) designed to learn long-term dependencies in sequence data. Compared to other RNN 

including GRU, LSTM achieves better performance by adding a gating mechanism to control the 

flow of information as well as state and cell updates (Hládek et al., 2019). MLP is a class of 



 

 

feed-forward artificial neural networks (Voukantsis et al., 2011), consisting of at least three layers of 

nodes, i.e., input layer, hidden layer, and output layer (Jamei et al., 2020). RNN, LSTM and MLP 

have a wide range of applications in environmental monitoring (Zhang et al., 2021). 

The FVC pixel statistics data of the Yellow River Basin from 2000 to 2020 were divided into 

training and test sets according to 7:3, and the data of 2021 was taken as the real value. We use 

RNN, LSTM, MLP prediction model and SAi-MLP model to compare the performance of each 

index as shown in Table4. 

Table 4 Model Performance Evaluation 

Model MSE MAE R2 RMSE 

LSTM 0.0031 0.0396 0.945 0.0559 

RNN 0.004 0.0454 0.9445 0.0641 

MLP 0.0058 0.058 0.9247 0.0762 

SAi-MLP 0.0027 0.0367 0.964 0.0519 

Comparing the results of various time series models on the test set, the SAi-MLP model 

improves about 2% on R2, reduces about 0.16% on MSE, 1.16% on MAE and 1.35% on RMSE as 

compared to RNN, LSTM and MLP models. 



 

 

 

Fig.5 Model Loss Curve 

Fig.5 shows the loss decreasing process of MSE for each type of model. The degree of 

convergence of all types of models is more satisfactory, and the loss of SAi-MLP model is smaller. 

Through several tests on the SAi-MLP model on time series data, the loss error is within 0.04%. 

SAi-MLP model shows better robustness. 

4.2.2 Ablation experiments 

The SAi-MLP model consists of three modules: the Spatial Module, the Data Module and the 

Predict Module. We analyze and further explore the performance impact of different parts on the 

baseline model by designing ablation experiments of different modules on the dataset. Table5 shows 

the S-MLP prediction model with the addition of Spatial Module, the Ai-MLP prediction model 

with the addition of Data Module, and the SAi-MLP prediction model with the fusion of the two 

Modules. Overall, the Ai-MLP, S-MLP and SAi-MLP outperform the basic temporal model in every 

performance. In addition, SAi-MLP also has an improvement over Ai-MLP and S-MLP, with an 

improvement of about 0.85% in R2, a reduction of about 0.1% in MSE, a reduction of about 0.38% 



 

 

in MAE, and a reduction of about 0.53% in RMSE. Therefore, SAi-MLP was selected as a 

predictive model for vegetation time series in the study area. 

Table 5 Model Performance Evaluation 
Model MSE MAE R2 RMSE 

Ai-MLP 0.0041 0.0454 0.9447 0.064 

S-MLP 0.0031 0.0405 0.9576 0.0558 

SAi-MLP 0.0027 0.0367 0.964 0.0519 

4.2.3 Model validation 

By comparing SAi-MLP with the models in terms of performance metrics, SAi-MLP 

outperforms the other models in all the metrics. Since deep learning focuses more on the data itself 

by analyzing the features between the data to reduce the loss of fit and thus predict the output. To 

explore the generalization ability of the model, data from 2000 to 2021 were used to predict the 

evolution of vegetation distribution in 2022, in parallel with the validation of the model using the 

actual spatial distribution of vegetation in the 2022 dataset. The model generalization results are 

shown in Fig.6. 

 
Fig.6 Validation Comparison 

The 2022 vegetation cover data were used to validate the generalization performance of 

SAi-MLP against the base time series prediction model. The experimental results show that 

SAi-MLP outperforms the base model MLP in geospatial time series prediction, and the prediction 



 

 

results can better fit the real vegetation distribution. MLP can fit the vegetation cover in the 

northern and southern parts of the study area, but its prediction results in the central part of the 

study area are not satisfactory. MLP predicts the evolutionary trend of the vegetation through the 

information of the pixels, which focuses on the pixels themselves and is more inclined to discrete 

prediction. The predicted results show a discontinuous distribution of spatial patches, therefore the 

central zone where north meets south is not predicted to show a significant effect. The SAi-MLP 

model utilizes the latitude and longitude of the pixels with the surrounding pixels to maintain the 

continuity of spatial information, which can better show the continuity of spatial evolution than the 

MLP model. SAi-MLP adds the connection between the spatial patches on the discrete prediction of 

the MLP, so the prediction effect in the central part of the study area is significantly improved 

compared with the MLP. The prediction results obtained from the SAi-MLP model can better reflect 

the real vegetation distribution situation.  

By comparing ASMLP with other models on the test set and validation set, ASMLP's 

prediction effect is better than other models. Therefore, the vegetation cover data from 2000 to 2022 

were used as inputs, and the obtained outputs were used as inputs to the ASMLP model for new 

feature iterations to predict the spatial distribution of vegetation cover in the Yellow River Basin in 

2030. The vegetation evolution characteristics of the Yellow River Basin in the period from 2020 to 

2030 were further analyzed. 

4.3 Forecasting and analysis 

The SAi-MLP model was used to predict the vegetation distribution in the Yellow River Basin 

in 2023 through the vegetation content data from 2000 to 2022 in the Yellow River Basin, and the 

output was iteratively predicted as a new characterization channel for the vegetation distribution in 



 

 

2030 as shown in Fig.7. The 2030 vegetation abundance in the Yellow River Basin is still 

concentrated within the upstream and downstream segments, with Inner Mongolia, Ningxia and 

Gansu as vegetation fragile areas. The formation of this distribution pattern is related to regional 

characteristics. Ningxia and Inner Mongolia are located in Northwest China, as the more 

ecologically fragile regions in China (Zhao et al., 2017), dominated by wind-eroded landscapes with 

serious drought threats. Therefore, the early 21st century manifested as the main vegetation-poor 

area in the Yellow River Basin. After that, the government organized and implemented major 

national forestry projects such as the Three North Protective Forest, natural forest protection, and 

returning farmland to forest. By carrying out measures to protect vegetation such as mountain 

grazing ban, sand control, wetland protection, ecological restoration, and other related measures, the 

vegetation coverage has been continuously improved, thus enhancing the ecological environment of 

the watershed as a whole (Wu et al., 2021). Compared to 2023, the upper and lower reaches of the 

watershed remain solidly vegetated in 2030, with a decreasing area of low-vegetation in the middle 

reaches of the watershed. The overall upward trend in the vegetation content of the watershed in 

2030 has a mean value of 0.72 . Improvement of vulnerable vegetation areas shows an east to west 

path in the Inner Mongolia section and a south to north path in the Ningxia and Gansu sections. For 

the future ecological protection of the Yellow River Basin, Inner Mongolia, Ningxia and Gansu 

should be the main management areas. It is recommended to take advantage of the overall increase 

in vegetation content in the basin to reduce the inhibition caused by external factors such as 

man-made. At the same time, the implementation of green projects should continue to be promoted, 

and positive measures should be taken against wind erosion landforms, so that the ecology of the 

Yellow River Basin can be protected steadily in the end.



 

 

 

Fig.7 Vegetation evolution in the Yellow River Basin 

Trend analysis of vegetation changes in the Yellow River Basin from 2000 to 2030 yield the 

following results (Fig.8), where positive values indicate improvement and negative values indicate 

degradation. The middle reaches of the Yellow River, as shown in the figure, have been 

significantly improved and are closely related to the green projects implemented. From 2000 to 

2030, the vegetation changes in the basin show an upward trend, major upward areas in Ningxia, 

Inner Mongolia and Shanxi section. The direction trend of the vegetation gradually improves from 

south to north and from west to east. During the two decadal periods from 2000 to 2020, the 

vegetation content within the Gansu, Ningxia and Inner Mongolia sections showed an increasing 

and accelerating trend. In 2030, the vegetation vulnerability of the Yellow River Basin is still further 

improved, but the vegetation growth shows an increasing slow growth compared to the previous 

two decadal stages. The vegetation abundance in the study area has remained relatively stable in 

general, but there has been some degradation with the core areas of degradation being in the 

Shaanxi and Henan regions. The main areas of degradation are the developing cities of Xi'an and 

Zhengzhou, where urban expansion has caused major vegetation degradation. 



 

 

 

Fig.8 Trend analysis of vegetation Sen-MK from 2000 to 2030 

5 Conclusion 

In this paper, a spatial attention iterative multi-layer perceptron model (SAi-MLP) is 

constructed for temporal features to predict the evolution of spatial-spectral data. Spatial spectral 

data of vegetation content in the Yellow River Basin are used as the sample dataset for the model. 

The features are extracted by pixel fusion using the modeling method for multi-temporal spatial 

distribution of vegetation factors. 

SAi-MLP implements spatio-temporal information extraction on sample data in the temporal 

and spatial domains. The spatial aspect embeds the geographic coordinates (latitude and longitude) 

of the pixels thus maintaining the proximity of the spatial data. The time domain aspect mines the 

temporal variations of features through the self-attention mechanism. The spatio-temporal 

information is then fused to predict the vegetation content at the next time node. In addition, the 

SAi-MLP model ensures temporal continuity in time-series prediction by adding the output value as 

an added channel to the model to iteratively predict the output. In this paper, the Yellow River Basin 

is taken as the study area, and then the main conclusions are as follows: 

(1) By comparing SAi-MLP with other time series models, all performance indicators are 

improved. The SAi-MLP model has an improvement of about 2% in R2, a decrease of about 0.16% 

in MSE, a decrease of about 1.16% in MAE, and a decrease of about 1.35% in RMSE. 



 

 

(2) Between 2000 and 2020, the vegetation in the Yellow River Basin shows a growing trend, 

with the highest growth content of 0.5. The mean value of vegetation cover in 2018 and 2020 is the 

highest in the same period, reaching 0.78. The variance is the smallest in 2018, and the overall 

performance is relatively stable. 

(3) The vegetation of the Yellow River Basin in 2030 is gradually reduced by the area of 

low-vegetation regions within the Ningxia and Inner Mongolia sections. The mean value of FVC 

has been increased by 0.22 between 2000 and 2030, and by 0.04 between 2020 and 2030. The 

differences between the vegetation of the regions of the Yellow River Basin have a tendency to 

reduce. 

(4) The trend of vegetation change from 2000 to 2030 is significantly improved in the middle 

reaches of the basin. There is obvious degradation of vegetation around the cities of Xi'an and 

Zhengzhou. 

6 Discussion 

In this paper, a self-iterative cascade model (SAi-MLP) is devised from the temporal variation 

of spatial-spectral features. The features of the next time node are predicted by extracting and fusing 

the spatial and temporal feature information of the data, followed by iterative prediction of the 

output as a new feature channel. The model ensures spatial near-neighbor information between the 

data in space and temporal continuity between the data in time by iteration, which has better 

applicability for spatial time-series prediction. By comparing and verifying with other time-series 

models, the proposed model performs well in terms of various performance indicators and 

prediction generalization ability. This can provide a better performance enhancement for the 

time-series prediction task. In future studies, we will also conduct follow-up research to explore the 



 

 

following two areas. (1) Explore the role of imaging factors in driving temporal changes in 

vegetation in anticipation of incorporating impact factor-driven principles into temporal prediction. 

(2) Further generalization capability enhancements to the self-iterative cascade model (SAi-MLP) 

allow it to be useful not only in spatial time-series prediction, but can be applied in more time-series 

iterative prediction scenarios. 
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