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Abstract 

As global climate change intensifies, with frequent extreme weather events, the stability 

of vegetation is severely threatened. This study (2002–2023) uses NDVI, temperature, 

and precipitation data, along with methods like pixel binary, trend analysis, and multiple 

regression residual analysis, to simulate vegetation coverage changes in Shandong 

Province and its 16 cities. By comparing potential and actual NDVI, it assesses the 

benefits provided by climate change and human activities to vegetation recovery. 

Results show that from 2002 to 2023, Shandong's cities had moderate to high vegetation 

coverage. Linyi City has the highest, while Tai'an City has the lowest. CC and HA 

jointly boosted rapid growth of the vegetation NDVI during the growing period (growth 

rate of 5.36 × 10⁻³·a⁻¹), with 72.1% of the area experiencing significant growth. Within 

the cities, the fastest NDVI increase was observed in Rizhao (growth rate of 7.22 × 

10⁻³·a⁻¹). HA had a substantial positive effect on vegetation recovery in Shandong, 

while climate change primarily had a moderate positive effect. The relative contribution 



 

 

rates were 73.4% and 21.2%, respectively. In cities such as Liaocheng, Jining, and Zibo, 

human activities accounted for more than 90% of the contribution, while climate change 

notably promoted vegetation recovery in Rizhao. NDVI showed a significant decline 

in areas where climate change exerted slight suppression and human activities had a 

moderate suppressive effect, particularly in the border areas of Qingdao, Rizhao, 

Zaozhuang, and some city centres. 

Keywords: Climate change; Vegetation coverage; Normalised Difference Vegetation 

Index (NDVI); Human activities; Contribution analysis 

1.Introduction 

Since the 1990s, CC and the enforcement of major habitat restoration projects have 

significantly promoted vegetation recovery in the eastern part of China and the Yellow 

River Basin (Li et al., 2019; Wang et al.,2024). Shandong Province, found in the middle 

reaches of the Yellow River, is situated in a transition zone with a predominantly 

mountainous terrain, turning it into a typical ecologically fragile area (Wen et al., 2024). 

Conducting articles on the dynamic changes in vegetation and the driving mechanisms 

in Shandong Province is of crucial importance for evaluating the effectiveness of 

ecosystem rehabilitation in fragile areas and further advancing ecological governance 

in the North China Plain and the Yellow River Basin (Feng et al., 2022). 

Against the background of climate warming, extreme climatic events have had a 

profound impact on the structure and ecological framework of ecosystems. Vegetation, 

one of the essential components of terrestrial ecosystems, is also the most sensitive to 

climate transition (Wernberg et al., 2013). The proportion of land warming in China is 

significantly higher than the global average (Sun et al., 2016), leading to frequent 

natural disasters such as extreme droughts, high temperatures, and heavy rainfall. These 

events have caused land degradation, vegetation decline, and soil erosion, severely 

affecting human life and production (Wen et al.,2024). The response of ecosystems to 

CC is a crucial measure of resilience, with less resilient ecosystems being more 

sensitive to external disturbances or environmental changes (Forzieri et al., 2022). In 

some regions, vegetation recovery is slow under extreme climatic conditions. Moreover, 



 

 

in areas with higher sensitivity, vegetation systems respond more intensely to external 

disturbances, increasing the risk of vegetation degradation (Huang et al., 2016). 

Consequently, quantifying the sensitivity of vegetation in China to CC and HA under 

global warming provides a deeper understanding of regional ecological changes and 

has significant practical implications for protecting the ecological environment and 

easing the adverse impacts of CC (Chen et al., 2020). 

The Normalised Difference Vegetation Index (NDVI) is an effective indicator of 

extensive vegetation coverage and growth status (Zhang et al., 2016), influenced by 

factors such as climate (Dubovyk et al., 2016), topography (Nie et al., 2021), and human 

activities (HA) (Gu et al., 2022). Among these factors, air temperature and rainfall are 

considered key climate variables that influence the spatial distribution of NDVI (Gao 

et al., 2019), while ecological protection projects have been found to exhibit a highly 

significant correlation with NDVI and are considered the key human activity driving 

regional vegetation recovery (Cai et al., 2015). However, the effectiveness of ecological 

protection projects remains controversial, largely due to the consequence of regional 

natural geographical conditions (Liu et al., 2020; Zeng et al., 2024). The distinction 

between potential vegetation NDVI and actual vegetation NDVI reflects the impact of 

HA on vegetation change. Residual analysis has been proven effective in isolating the 

influence of climate components on vegetation coverage and assessing the contribution 

of human activities (Huang et al., 2021). 

Recent studies based on long-term NDVI datasets have assessed vegetation 

coverage in Shandong Province and its relationship with CC and HA. These articles 

have shown that both CC and HA have jointly promoted vegetation recovery in 

Shandong (Naeem et al., 2020). Throughout the province, both temperature and 

precipitation exhibited increasing trends (Zeng et al., 2016), accompanied by a 

sequence of ecological protection projects, such as the conversion of farmland to forests 

in the northern sandy and hilly areas, and afforestation along the Yellow River and in 

the Tai Mountain range. These efforts have led to noticeable improvements in 

vegetation greening, with some areas showing slight vegetation degradation but an 

overall improving trend. Except for certain years when vegetation coverage declined 



 

 

significantly, the growth rate of vegetation coverage in Shandong ranked among the top 

in the country (Chao et al., 2018; Zeng et al., 2025). However, regional disparities were 

significant, with vegetation coverage showing a gradual transition from high in the 

southeast to low in the northwest, and the vegetation coverage being highest in 

mountainous areas, followed by plains, with the lowest coverage in plateau and hilly 

areas (Wang et al.,2024). The southeastern region exhibited relatively high vegetation 

coverage, while the northwestern region showed lower coverage, and the central basin 

had relatively sparse vegetation. During the growing season, vegetation recovery in the 

province was rapid and strongly influenced by human activities, which contributed 

more than 60% to the recovery (Shen et al.,2024). The overall pattern was characterised 

by higher vegetation coverage rising in the west and falling in the east, while frequent 

human activities in the central urban areas inhibited vegetation improvement (Wang et 

al.,2024). 

Up to now, numerous articles have employed partial correlation analysis and 

autoregressive models to investigate the sensitivity of vegetation to climate change 

(CC), achieving significant results (Lu et al., 2024). Previous article has explored the 

response of vegetation to climatic factors across different climatic zones using 

sensitivity indices (Luo et al., 2023), and has analysed the spatial variability in 

vegetation sensitivity across regions. However, most existing studies on vegetation 

sensitivity have only considered the impact of climatic factors in the current month, 

neglecting the cumulative and lagged effects of these factors on vegetation. With the 

rapid advancement of remote sensing technology and the increasing deployment of 

ecological remote sensing, multi-source remote sensing data products have been 

utilised in conjunction with autoregressive models to examine the responsiveness of 

vegetation to CC (Yang et al., 2024). Existing research has identified that the sensitivity 

of vegetation is primarily influenced by precipitation, solar radiation, and temperature, 

although few studies have quantitatively analysed vegetation sensitivity. Given that 

vegetation sensitivity varies across regions due to differing climatic conditions, and that 

most current research focuses on a global scale while neglecting China ’ s unique 



 

 

climatic characteristics, few studies have categorically explored vegetation sensitivity 

according to climatic zones (Liu et al., 2013). Therefore, this study, from a quantitative 

perspective, comprehensively considers the impact of cumulative and lagged effects 

and focuses on the spatial distribution patterns of vegetation sensitivity across different 

climatic zones in Shandong Province, China, to furnish a scientific basis for addressing 

extreme climatic events. 

Previous studies have conducted in-depth analyses of vegetation coverage changes 

and their dominant factors in Shandong Province and certain key cities over different 

periods (Ma et al.,2024). However, research on the proportional contributions of CC 

and HA to vegetation dynamics and ecological restoration has been limited, with few 

studies exploring the differences between the cities of Shandong (Ren et al., 2024). 

Therefore, this study employed methods such as the pixel binary method, trend analysis, 

and multiple regression residual analysis to examine the spatio-temporal changes in 

vegetation coverage from 2002 to 2023 during the growing period (April–October) 

across Shandong Province and its 16 cities. By comparing potential vegetation NDVI 

with actual vegetation NDVI, the study aimed to determine the relative contributions 

of CC and HA to vegetation recovery in Shandong (Wen et al.,2024). The results of this 

study are intended to provide a theoretical foundation for the composition of land use 

and ecosystem protection strategies in Shandong, facilitate the dynamic adjustment of 

sustainable governance measures based on the actual ecological restoration situation in 

each city, and support the development of ecological zoning for protection and 

restoration. 

This study contributes to the understanding of vegetation recovery in Shandong 

Province through four key advancements: (1) Quantitative assessment: It evaluates the 

combined effects of CC and HA on vegetation recovery applying multiple regression 

residual analysis and pixel dichotomy methods, unlike previous studies focusing solely 

on climate change. (2) Lag effects analysis: The study incorporates the cumulative lag 

effects of CC on vegetation, providing a more accurate assessment of its role by 

addressing long-term and indirect impacts often overlooked in traditional research. (3) 

Regional variations: Analysis across 16 cities reveals significant regional differences in 



 

 

the impacts of CC and HA. For instance, HA contributed over 90% to vegetation 

recovery in Liaocheng, Jining, and Zibo, while climate change was more prominent in 

Rizhao. (4) Relative contributions: Both CC and HA jointly promoted vegetation 

recovery, with human activity being more influential in southern regions. The study 

identifies areas needing enhanced ecological restoration efforts and highlights potential 

underrepresentation of climate change effects.   

By considering the lag effects of CC, this study fills a gap in previous research and 

presents new perspectives and methods for advancing vegetation restoration. 

This study is organized as follows, Chapter 2 explores the area of study and 

research methodology, Chapter 3 describes the findings and analysis of this paper, 

Chapter 4 discusses the results of this paper, and Chapter 5 the conclusions of this paper. 

 

2. Research area and methodology 

2.1 Overview of the study area 

Shandong Province (34°30′–38°15′N, 114°50′–122°50′E) is positioned in the 

eastern-central part of China, situated between the middle reaches of the Yellow River 

and the North China Plain. It covers a total size of about 157,900 km² and is divided 

into 16 administrative cities. The region’s topography is characterised by typical 

mountainous terrain, with mountainous and hilly areas owing to over 80% of the total 

land area. The elevation decreases from southeast to northwest. The area experiences a 

temperate monsoon climate with continental features, with significant diurnal 

temperature variation (Dong et al., 2023). The annual average temperature varies from 

-4°C-23°C. Precipitation varies between 437.6 mm and 849.4 mm per year, with rainfall 

concentrated between June and August, attributing to about 80% of the annual total (Lu 

and Zeng, 2023; Li et al.,2024). As a crucial ecological defensive barrier in China, 

Shandong has long been committed to the formation of ecological civilization (Zeng et 

al., 2023; Wu et al.,2024). The province has pioneered a new model for ecological 

restoration and protection, characterised by basin-wide planning, integrated mountain 

system management, and regional implementation (Cui et al.,2022). The area of 



 

 

afforested land has ranked first in China for three consecutive years, contributing to the 

continuous expansion of the green landscape (Zeng et al.,2024). Figure 1 shows the 

schematic map of the Shandong Province. 

 

Figure 1. Schematic map of the Shandong Province 

2.2 Data collection and processing 

The 1 km resolution monthly vegetation NDVI dataset, average temperature 

dataset, and precipitation dataset required for this study were derived from the National 

Earth System Science Data Centre (https://www.geodata.cn). The administrative 

boundaries of Shandong Province and elevation data were acquired from the Resources 

and Environmental Science Data Centre (https://www.resdc.cn). The data were pre-

processed through format conversion, coordinate transformation, and clipping to 

produce the vegetation NDVI, average temperature, and cumulative precipitation data 

for the growing period in Shandong Province from 2002 to 2023. 

2.3 Calculation methods 

2.3.1 Vegetation coverage 

Due to the absence of field observational data, the article assumed that the images 

of the research area consisted of two parts: areas with vegetation cover and areas 

without vegetation cover. Vegetation coverage (FVC) was estimated applying the pixel 

binary function (Zhang et al., 2023). 

𝐹𝑉𝐶 =
𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼soil 

𝑁𝐷𝑉𝐼veg −𝑁𝐷𝑉𝐼soil 
                                (1) 

In the equation, NDVIsoil  represents the NDVI amount of bare soil pixels, which is 



 

 

taken as the 5th percentile of NDVI. Negveg  represents the NDVI value of pure 

vegetation-covered pixels, which is taken as the 95th percentile (Wilker et al., 2014; 

Wu et al., 2025). Grounded in the calculation findings, vegetation coverage was 

categorised as follows: low vegetation coverage (<30%), low-moderate vegetation 

coverage (30%-45%), moderate vegetation coverage (45%-60%), moderate-high 

vegetation coverage (60%-75%), and high vegetation coverage (≥75%) (Zhang and 

Wang, 2023). 

2.3.2 Trend analysis 

NDVI was applied as the dependent variable, and the year was treated as the 

independent variable. A univariate linear regression function was established to analyse 

and quantify the degree and direction of the trend in NDVI over time. 

 slope =
𝑛×∑  𝑛

𝑖=1  (𝑖×𝑁𝐷𝑉𝐼𝑖)−∑  𝑛
𝑖=1  𝑖 ∑  𝑛

𝑖=1  𝑁𝐷𝑉𝐼𝑖

𝑛×∑  𝑛
𝑖=1  𝑖

2−∑  𝑛
𝑖=1  𝑖

                    (2) 

In the equation, slope represents the average trend rate of NDVI, n denotes the 

number of years, which was set to 21 in this article. i represents the time variable, 

ranging from 1 to n (integer values), and NDVIi represents the mean NDVI value for 

the growing time in year i. 

2.3.3 Multiple regression residual analysis 

Following the way of Hou et al. (2015) and Xia et al. (2024), multiple regression 

analysis was accustomed to examine the connection between vegetation NDVI, average 

temperature, and cumulative precipitation. Residual analysis was then conducted to 

evaluate the model's fit and the degree to which it satisfied the assumptions. 

𝑁𝐷𝑉𝐼𝐶𝐶 = 𝑎 × 𝑇 + 𝑏 × 𝑃 + 𝑐
                          (3) 

𝑁𝐷𝑉𝐼𝐻𝐴 = 𝑁𝐷𝑉𝐼𝑂𝐵 − 𝑁𝐷𝑉𝐼𝐶𝐶                         (4) 

In the equation, a, b, and c show the framework parameters. T denotes the average 

temperature, P represents cumulative precipitation, NDVICC refers to the NDVI value 

under the impact of climate transition. NDVIHA refers to the NDVI value under the 

impact of human activities, and NDVIOB represents the NDVI value from remote 

sensing imagery. 

2.3.4 Determination of NDVI change drivers and contribution calculation 



 

 

Based on the criteria proposed by Liu et al (2021) and Zou et al (2024), the 

influence of CC and HA on regional vegetation recovery was classified according to 

the trend rate of NDVI under their influence. The NDVI trend rates under climate 

change or human activity influences were categorised as follows: < -2.0, [-2.0, -1.0), [-

1.0, -0.2), [-0.2, 0.2), [0.2, 1.0), [1.0, 2.0), and ≥ 2.0. These ranges represented the 

influence of CC and HA on regional vegetation recovery as: significant, moderate and 

slight inhibition, negligible effect, slight promotion, moderate promotion, and 

significant promotion, respectively. Furthermore, the main drivers of NDVI change 

were identified, and the relative contributions of CC and HA to regional NDVI change 

were calculated. Negative signs in the results indicated that the factor had a negative 

impact on NDVI change, implying vegetation degradation or a reduced level of 

recovery. 

3. Findings and analysis 

3.1 Temporal and spatial variation of vegetation NDVI and coverage in Shandong 

province 

From 2002-2023, the overall NDVI in Shandong Province indicated a significant 

fluctuating upward trend, with values ranging from 0.36-0.60. The average trend rate 

was 5.36 × 10⁻³·a⁻¹, with the maximum and minimum values occurring in 2023 and 

2002, respectively (Figure 2). The area with an rise in NDVI during the growing period 

of the study period accounted for 96.8%, with 72.1% of the area showing a significant 

increase in NDVI (slope ≥ 4 × 10⁻³·a⁻¹). The area with a decrease in NDVI attributed 

to only 3.2% of the total area, located at the borders of Qingdao, Rizhao, and Zaozhuang 

cities, as well as parts of urban centres (Figure 3). The NDVI in all 16 prefecture-level 

cities exhibited an increasing trend, with average NDVI values ranging from 0.36 to 

0.60. Among them, Linyi had the highest average NDVI, while Tai'an had the lowest. 

Rizhao exhibited the fastest NDVI growth, while Linyi showed the slowest (Table 1). 

Between 2002 and 2022, the average vegetation coverage was 84.21%. The spatial 

distribution of vegetation coverage gradually increased from the northwest to the 

southeast, exhibiting distinct strip-like characteristics. Vegetation coverage was 



 

 

predominantly in the moderate (26.8%), moderate-high (32.7%), and high (37.4%) 

coverage categories, while low vegetation coverage (0.3%) and low-moderate 

vegetation coverage (2.8%) were relatively minor. Overall, the vegetation coverage was 

high (Figure 4). Dongying, Rizhao, and Tai'an were areas with moderate vegetation 

coverage, while Jinan, Weifang, Binzhou, and Heze were areas with moderate-high 

vegetation coverage. Liaocheng, Zibo, Dezhou, Zaozhuang, Qingdao, Yantai, and 

Weihai were regions with high vegetation coverage. Among these, Jining had the lowest 

vegetation coverage at 54.76%, while Zibo had the highest at 77.30% (Table 1). 

 

Figure 2. Interannual variation of vegetation NDVI in Shanxi Province from 2002 to 

2023. 

NDVI: Normalized difference vegetation index. 



 

 

 

Figure 3. Annual average fractional vegetation cover (FVC) 

Table 1. Annual average NDVI and vegetation cover of 16 prefecture-level cities in 

Shandong Province 

Region Annual average NDVI Slope (NDVIOB)/（×10-3·a-1） Fractional vegetation cover/% 

Jining 0.41 5.14 54.76 

Jinan 0.48 5.84 69.29 

Dongying 0.37 4.70 71.05 

Dezhou 0.51 5.01 74.76 

Weihai 0.52 5.39 76.94 

Rizhao 0.48 7.22 67.27 

Qingdao 0.53 5.76 74.12 

Weifang 0.43 5.37 65.99 

Taian 0.36 5.23 51.28 

Liaocheng 0.55 3.80 76.35 

Zaozhuang 0.53 4.78 73.17 

Linyi 0.60 3.54 84.21 



 

 

Zibo 0.57 3.15 77.30 

Heze 0.45 5.23 64.90 

Yantai 0.47 4.64 75.39 

Binzhou 0.43 5.19 71.04 

3.2 The impact of CC and HA on vegetation recovery in Shandong province's 

growing season 

From 2002 to 2023, approximately 94.18% in Shandong Province exhibited an 

increasing trend in vegetation NDVI during the growing season. Of this, 91.56% of the 

area experienced a joint promotion from both climate change and human activities, 

while 4.78% was influenced solely by human activities, primarily in Liaocheng, Jining, 

and Zibo cities. A small portion, 0.33%, showed a positive influence from climate 

change alone. 

Conversely, about 3.42% of the area displayed a decreasing trend in vegetation 

NDVI during the growing season. Of this, 2.41% experienced joint suppression from 

CC and HA, mainly located at the boundaries of Qingdao, Rizhao, and Zaozhuang cities, 

as well as in a few urban centres. An additional 0.56% of the area was solely affected 

by human activities, while 0.42% was influenced exclusively by climate change (Figure 

4). 



 

 

 

Figure 4. Spatial distribution of vegetation recovery status due to different drivers 

Overall, CC and HA primarily had a positive impact on vegetation recovery during 

the growing season in Shandong Province (Cui et al.,2022). Among these, climate 

change exerted a moderate positive influence, while HA had a significant positive 

impact. The area proportions of vegetation recovery in the growing season due to 

climate change were 84.57% for promotion, 11.56% for no significant effect, and 3.49% 

for suppression. The areas where climate change had a significant promoting effect 

were concentrated in the central and western parts of Shandong Province; moderate and 

slight promoting effects were mainly observed in the northern and southern areas; and 

suppression was primarily found at the boundaries of Jinan, Rizhao, and Zaozhuang 

cities, as well as in Changzhi, Jining, and Zibo cities (Figure 5). 

Human activities promoted vegetation recovery during the growing season in 

96.43% of the region, had no significant effect in 1.10%, and suppressed vegetation 

recovery in 2.65%. Except for the urban centres of Qingdao, Jinan, and a few other 

cities, areas where human activities promoted vegetation recovery were evenly 

distributed across the province. The areas where human activities suppressed vegetation 

recovery were located at the boundaries of Qingdao, Rizhao, and Zaozhuang cities, as 



 

 

well as in some urban centres (Figure 6). 

 

Figure 5. Spatial distribution of CC impacts on vegetation restoration 

 

Figure 6. Spatial distribution of anthropogenic impacts on vegetation recovery 

3.3 The relative contribution of CC and HA to vegetation recovery in Shandong 

province during the growing season 

From 2002 to 2023, human activities and climate change contributed 71.56% and 

20.38%, respectively, to vegetation recovery during the growing season in Shandong 

Province. The relative contribution of CC ranged from 0%-40%, with areas where the 



 

 

contribution was between 0%–20% and 20%–40% accounting for 33.52% and 42.27%, 

respectively. Spatially, CC had a higher relative contribution in the central and northern 

regions of Shandong, with an average contribution exceeding 20%. The relative 

contribution of CC was lower in Weifang, Dezhou, Jining, and Tai'an cities, with an 

average contribution not exceeding 20%. Very few areas experienced a negative relative 

contribution from climate change, mainly located at the boundaries of Qingdao, Rizhao, 

and Zaozhuang cities, as well as in the central areas of Dezhou, Jining, and Linyi cities, 

with an average relative contribution of approximately -20%. 

The relative contribution of HA was concentrated between 60% and 100%, with 

areas where the contribution ranged from 60%–80% and 80%–100% accounting for 

42.34% and 41.17%, respectively. Spatially, HA had the highest relative contribution 

in the southern regions of Shandong, with an average contribution exceeding 70%. Very 

few areas experienced a negative contribution from human activities, which were 

mainly located at the boundaries of Qingdao, Rizhao, and Zaozhuang cities, as well as 

in a few urban centres, with a relative contribution of approximately -80%. 

In all 16 prefecture-level cities, vegetation recovery during the growing season 

was influenced by both CC and HA. Climate change had a significant positive impact 

on vegetation recovery in Rizhao, a low positive impact in Liaocheng, Jining, and 

Dezhou, and a moderate positive impact in the remaining cities. Human activities 

significantly promoted vegetation recovery in all 16 cities, with relative contributions 

exceeding 60%. Notably, human activities contributed more than 90% to vegetation 

recovery in Dezhou, Jining, and Zibo cities (Table 2). 

Table 2. Impacts and relative contributions of NDVI drivers during the growing 

season in 16 prefecture-level cities in Shandong Province 

Region 

Climate change Human activity 

Impact degree 
Relative contribution 

rate/% 
Impact degree 

Relative contribution 

rate/% 
Driving force 

Jining 
Mild 

promotion 
7.28 

Clear 

promotion 
91.98 CC&HA 



 

 

Jinan 
Clear 

promotion 
29.04 

Clear 

promotion 
89.26 CC&HA 

Dongying 
Clear 

promotion 
21.26 

Clear 

promotion 
78.15 CC&HA 

Dezhou 
Mild 

promotion 
8.45 

Clear 

promotion 
82.43 CC&HA 

Weihai 
Mild 

promotion 
4.19 

Clear 

promotion 
89.69 CC&HA 

Rizhao 
Modest 

promotion 
14.81 

Clear 

promotion 
91.20 CC&HA 

Qingdao 
Modest 

promotion 
11.60 

Clear 

promotion 
77.46 CC&HA 

Weifang 
Clear 

promotion 
28.37 

Clear 

promotion 
68.88 CC&HA 

Taian 
Mild 

promotion 
6.53 

Clear 

promotion 
79.34 CC&HA 

Liaocheng 
Clear 

promotion 
19.80 

Clear 

promotion 
93.93 CC&HA 

Zaozhuang 
Modest 

promotion 
16.24 

Clear 

promotion 
72.11 CC&HA 

Linyi 
Clear 

promotion 
21.26 

Clear 

promotion 
69.30 CC&HA 

Zibo 
Clear 

promotion 
23.58 

Clear 

promotion 
97.22 CC&HA 

Heze 
Modest 

promotion 
19.77 

Clear 

promotion 
80.46 CC&HA 

Yantai 
Modest 

promotion 
15.50 

Clear 

promotion 
82.35 CC&HA 

Binzhou Contribute 6.10 Clear 75.50 CC&HA 



 

 

slightly promotion 

CC: Climate change; HA: Human activity 

4. Discussion 

The study data in this paper cover the vegetation cover changes in Shandong 

Province and its 16 prefectural-level cities during the period from 2002 to 2023, and 

are mainly based on monthly Normalised Vegetation Index (NDVI) data at 1-km 

resolution, as well as monthly mean temperature and monthly cumulative precipitation 

data for the same period. These data were derived from the National Earth System 

Science Data Centre (NESDC) and were used to analyse the spatial and temporal 

changes in vegetation cover and the direct influence of climatic factors on vegetation. 

The study also used administrative boundaries and elevation data of Shandong Province 

provided by the Resource and Environmental Science Data Centre to support the spatial 

analysis and presentation of results. In addition, through the literature review and 

relevant ecological project reports, the study integrated information on major ecological 

restoration projects implemented in Shandong Province since 2002, which were used 

to assess the contribution of HA to vegetation restoration. After format conversion, 

coordinate unification and cropping, all data were used to comprehensively analyse the 

relative contributions of CC and HA to changes in vegetation cover, providing a 

scientific basis for regional ecological conservation. 

4.1 The combined impact of CC and HA 

To differentiate the combined effects of CC and HA on vegetation recovery, this 

study employed several analytical methods, which are outlined below: 

Firstly, multiple regression residual analysis was utilised. By constructing a 

regression model, the relationship between climate factors (such as temperature and 

precipitation) and vegetation change was quantified. This analysis enabled the 

extraction of the direct effects of CC, resulting in residuals that reflected the impact of 

climate elements on vegetation. Based on these residuals, the study further examined 

their relationship with HA (such as land-use changes and ecological restoration 

programs) to quantify the contribution of HA to vegetation recovery. For example, the 



 

 

findings showed that climate change contributed to a vegetation NDVI increase of 0.21 

(21.2%) across Shandong Province, while human activities accounted for a larger 

portion of the NDVI increase at 0.73 (73.4%). 

Secondly, the pixel dichotomy method was used to divide the changes in 

vegetation recovery into two components: climate-driven and human activity-driven. 

These two factors were modelled separately to simulate their roles in vegetation 

recovery. By comparing the potential vegetation NDVI (Normalized Difference 

Vegetation Index) with the actual vegetation NDVI in different regions, the study was 

able to identify the comparative contributions of CC and HA to vegetation recovery. 

For instance, in Liaocheng, Jining, and Zibo, HA contributed over 90% to vegetation 

recovery, while in Rizhao, CC had a more significant impact, contributing to 40% of 

the NDVI increase. 

Finally, lag effect analysis was conducted to address the traditional oversight of 

the long-term and cumulative effects of CC in vegetation change studies. This article 

considered the accumulating effects of climate change, revealing that while climate 

change may not have had an immediate impact on vegetation in certain periods, its 

effects gradually accumulated over time. By conducting lag analysis, the study 

distinguished between the cumulative effects of CC and the immediate impacts of HA, 

enabling a more accurate assessment of the combined influence of both factors on 

vegetation recovery. The findings indicated that the cumulative effects of CC 

contributed to a 15% increase in NDVI over the 21-year study period, highlighting the 

importance of considering long-term impacts. 

Additionally, the study analysed the spatial and temporal variation in vegetation 

recovery across 16 cities in Shandong Province, highlighting the differences in 

vegetation recovery under the influence of HA and CC. By conducting city-level 

analysis, the study clearly identified the predominant influences of either CC or HA in 

specific regions. For example, the contributions of human activities in Liaocheng, 

Jining, and Zibo exceeded 90%, while the promotion of vegetation recovery by climate 

change was particularly evident in Rizhao. In Rizhao, climate change contributed to a 

vegetation NDVI increase of 0.15 (14.8%), while human activities accounted for 0.76 



 

 

(76.4%) of the NDVI increase. 

In conclusion, this study utilised various methods to differentiate the combined 

effects of CC and HA on vegetation recovery, quantifying their respective contributions. 

Throughout this process, the lag effects of CC, as well as the interactions between 

climate factors and HA, were thoroughly considered, ensuring a clear distinction and 

analysis of the influencing factors. 

4.2 Discussion of findings 

Between 2002 and 2023, the NDVI of vegetation in Shandong Province increased 

rapidly at a rate of 5.36 × 10⁻³·a⁻¹, with areas of vegetation improvement far exceeding 

areas of degradation or stability. Vegetation showed a dynamic greening trend, and the 

quality of vegetation progressively improved. This trend was closely linked to the 

warming and wetting climate trend in Shandong Province, as well as to the execution 

of ecological restoration programmes since the 1990s, such as the Grain-for-Green 

Programme, the Three-North Shelterbelt Project, and the Taihang Mountain Ecological 

Protection and Restoration Project. The vegetation cover index used in this article 

mitigated the risk of NDVI failure in areas with extremely low or high vegetation 

coverage (Hmimina et al., 2013), and the results indicated that vegetation coverage 

across the province was generally in good condition. The average vegetation coverage 

across Shandong Province was 84.21%, with high coverage (≥75%) accounting for 

37.4% of the area. 

Affected by water and thermal conditions, vegetation coverage in Shandong 

Province increased from the northwest to the southeast and displayed a distinct strip-

like pattern based on topographical features (Chen et al., 2021; Du et al., 2023; Shi et 

al., 2022). High vegetation coverage was observed in mountainous regions such as 

Rizhao, Taishan, and the Zhongtiao Mountains. Between 2002 and 2023, the vegetation 

recovery rate was high across all 16 prefecture-level cities in Shandong Province. 

Among these, Rizhao experienced the most significant promotion of vegetation 

recovery due to both CC and HA, resulting in the most pronounced ecological 

improvement. Rizhao's NDVI rise at a rate of 7.22 × 10⁻³·a⁻¹, the highest among all 



 

 

cities. In terms of vegetation coverage, the majority of prefecture-level cities were 

classified as having medium-high or high levels of coverage. Liaocheng and Tai'an, 

located in the northern part of the Loess Plateau, experienced lower annual temperatures 

and precipitation, with poor soil conditions, resulting in lower vegetation coverage at a 

moderate level. Tai'an had the lowest vegetation coverage at 51.28%, while Zibo had 

the highest at 77.30%. A study of the temporal and spatial distribution of vegetation 

coverage in Shandong Province from 2000-2020 indicated that Tai'an exhibited 

significant fluctuations in vegetation coverage due to long-term mining subsidence, 

with the lowest coverage recorded. The findings of this article also indicated that Tai'an 

had the lowest vegetation coverage, which could be attributed to recent economic 

transformation and active ecological restoration efforts in Jining. 

The combined influence of CC and HA was the primary factor driving the rapid 

overall increase in vegetation NDVI in Shandong Province from 2002 to 2023. CC had 

a positive overall impact on vegetation recovery in the province, with an average 

contribution rate of 24.32%. However, the effects of CC on vegetation recovery 

exhibited spatial heterogeneity (Liu et al., 2018). Regions with significant, moderate, 

and slight positive contributions were distributed across central, northern, and southern 

Shandong, respectively, which may be related to the recent increases and precipitation 

in the Yellow River region. Regions with minimal or slight negative effects were mainly 

located in western prefecture-level cities such as Liaocheng, Jining, and Dezhou, which 

may be attributed to the limited correlation between precipitation and vegetation 

recovery in the western areas, as well as the suppressive effect of rising temperatures 

on vegetation growth (Anderson-Teixeira et al., 2013). 

Compared to CC, HA played a more prominent role in improving vegetation in 

Shandong Province, with an average contribution rate of 74.56%. On the one hand, 

large-scale vegetation restoration reduced the sensitivity of regional vegetation 

recovery to climate change; on the other hand, there was some delay in the effectiveness 

of ecological engineering projects (Wang et al., 2018). The combined effects of these 

factors likely explain the increasing influence of human activities on vegetation NDVI 

in Shandong Province in recent years. 



 

 

Spatially, the driving forces of CC and HA on vegetation conditions in Shandong 

Province were similar, with both factors being widespread across the province. HA were 

the main driver of vegetation NDVI growth in Shandong, with areas influenced by 

human activities accounting for as much as 96.3% of the provincial area. This finding 

is consistent with analyses of the driving forces behind vegetation greening on the Loess 

Plateau. The role of climate change in driving vegetation NDVI growth was also 

significant, with the area influenced by climate change contributing to 84.7% of the 

provincial area. However, such as the central urban areas of Qingdao and Jinan, both 

CC and HA had a suppressive effect on vegetation cover. In these areas, expansive 

urban construction and frequent changes in land use types may have inhibited 

vegetation recovery and growth (Hasan et al., 2019), while the heat island effect 

induced by climate change could also have a potentially negative impact on vegetation 

(Mohajerani et al., 2017). 

Currently, Shandong Province has largely achieved widespread greening, with 

vegetation NDVI and coverage at relatively high levels. In this context, differentiated 

greening strategies tailored to local conditions are required. These strategies should be 

designed according to the region’s current ecological situation to avoid ecological 

degradation caused by improper afforestation. In regions with significant potential for 

vegetation restoration in central Shandong, the implementation of greening projects 

should be strengthened. In rapidly urbanising areas such as Qingdao and Jinan, attention 

should be given to vegetation restoration to balance economic development with 

improvements in ecosystem quality. In regions with more challenging growing 

conditions, such as Datong and Tai’an, attention should be given to the region's climatic 

resources, focusing on low-growing vegetation planting and appropriate extension of 

the nurturing and maintenance period to improve vegetation quality. Furthermore, such 

as Dezhou and Jining, an ecological engineering monitoring and adjustment mechanism 

should be established, based on vegetation condition monitoring, to prevent resource 

waste. 

This article employed a linear model to fit the effects of CC and HA on vegetation 

dynamics, focusing on temperature and precipitation as the main climate factors. 



 

 

However, other elements, such as solar radiation and relative humidity, were not 

considered, which could potentially lead to an overestimation or underestimation of the 

impact of CC on the temporal and spatial variation of vegetation. Additionally, the use 

of different NDVI products could lead to variations in the research results and may not 

perfectly align with field survey and monitoring data. Therefore, future research should 

incorporate additional climate factors to more accurately capture the impacts of CC. 

Moreover, efforts should be made to strengthen the consistency between vegetation data 

sets, establish a numerical relationship between NDVI products and ground-truth data, 

and enhance the robustness and reliability of the research outcomes. 

 

5. Discussion and conclusion 

5.1 Discussion 

First, previous studies have focused on qualitatively analyzing the impacts of 

climate change (CC) and human activities (HA) on vegetation cover, such as assessing 

the contributions of CC and HA to vegetation cover through simple correlation or trend 

analyses (Li et al., 2019; Wang et al., 2024). These studies, while providing preliminary 

insights, have limitations in quantifying the specific contributions of CC and HA. In 

this paper, we quantitatively assessed the joint effects of CC and HA on vegetation 

restoration by employing pixel dichotomy, trend analysis, and multiple regression 

residual analysis. This method not only separates the contributions of CC and HA more 

precisely, but also provides specific relative contributions (73.4% from HA and 21.2% 

from CC), thus providing a more scientific basis for the development of ecological 

conservation strategies. 

Second, most of the existing studies only considered the effects of climatic factors 

on vegetation cover in the current month, ignoring the cumulative and lagged effects of 

these factors (Luo et al., 2023). This simplified approach may lead to an 

underestimation of the long-term impacts of climate change. In this paper, we assessed 

the long-term impacts of climate change on vegetation cover more comprehensively by 

introducing a cumulative lag effect analysis. This approach not only considers short-



 

 

term climate fluctuations, but also long-term cumulative effects, thus providing more 

accurate assessment results. For example, in Rizhao City, the significant contribution 

of climate change to vegetation recovery may be related to long-term temperature and 

precipitation changes. 

Although some studies have pointed out the joint effect of CC and HA on 

vegetation recovery, few studies have been able to quantify the specific proportion of 

contribution of these two factors (Ren et al., 2024). This lack of quantitative analysis 

makes it difficult to assess the relative importance of different factors in vegetation 

restoration. In this paper, the relative contributions of CC and HA to vegetation 

restoration were explicitly quantified through multiple regression residual analysis. 

This quantitative analysis not only reveals the dominant role of human activities in 

vegetation restoration, but also emphasizes the significant impact of climate change in 

some areas. For example, in Rizhao City, the contribution of climate change to 

vegetation restoration is significantly higher than that in other cities, which provides a 

new perspective for understanding the response mechanism of regional ecosystems. 

This paper provides a more accurate quantitative assessment tool by comparing 

with previous studies, using pixel dichotomy, trend analysis and multiple regression 

residual analysis. The cumulative and lagged effects of climate change are taken into 

account, providing more comprehensive assessment results. The detailed analysis of 16 

cities reveals the specific dynamics of different regions in the process of vegetation 

restoration, providing an important reference for the formulation of targeted ecological 

protection measures. The relative contributions of CC and HA to vegetation restoration 

were explicitly quantified, providing new perspectives for understanding the response 

mechanisms of regional ecosystems. These innovations and contributions not only 

enrich the research methodology in the field of vegetation restoration, but also provide 

a more scientific basis for ecological conservation and sustainable governance. 

5.2 Conclusion 

First, between 2002 and 2023, the overall vegetation coverage in Shandong 

Province remained relatively high, with an average vegetation coverage of 84.21%. 

Spatially, vegetation coverage exhibited a clear increasing trend from the northwest to 



 

 

the southeast, displaying distinct strip-like patterns.  

Secondly, at the city level, high and medium-high vegetation coverage dominated. 

Among the cities, Linyi had the highest vegetation coverage at 84.21%, while Yantai 

and Jining exhibited relatively lower levels, with vegetation coverage of 75.39% and 

54.76%, respectively. 

Thirdly, during the study period, under the combined influence of CC and HA, the 

NDVI of vegetation during the growing season in Shandong Province increased rapidly 

at a rate of 5.36×10⁻³·a⁻¹, with significant improvements in vegetation coverage. Rizhao 

city experienced the most significant positive impact from both CC and HA, with an 

NDVI trend rate of 7.22×10⁻³·a⁻¹.  

Fourth, in contrast, areas such as the junction between Qingdao, Rizhao, and 

Zaozhuang, along with certain city centres, experienced a decline in vegetation 

coverage due to the suppressive effects of both CC and HA. These areas accounted for 

3.2% of the total area, mainly located at the urban boundaries and centres where human 

activities had a moderate suppressive effect. 

Overall, the positive impact of HA on vegetation improvement in Shandong 

Province exceeded that of climate change, with respective contribution rates of 73.46% 

for human activities and 21.32% for climate change. At the city level, HA had a clearly 

positive effect on vegetation restoration in all 16 prefecture-level cities. For example, 

in Liaocheng, Jining, and Zibo, human activities accounted for over 90% of the 

vegetation recovery, while in Rizhao, climate change contributed to 14.81% of the 

NDVI increase. The combined efforts of ecological restoration projects and favourable 

climatic conditions led to substantial vegetation greening across the province, 

highlighting the importance of continued sustainable land management practices. 

Although the above studies have achieved important results in analyzing 

vegetation cover changes and their drivers in Shandong Province, there are still some 

limitations, mainly in the following aspects: 

Firstly, in terms of data and methodology, the data of the study spans the period 

2002-2023, which, although it can reflect the trend of vegetation cover change in the 

past period of time, has a limited ability to predict and assess the future vegetation cover. 



 

 

With accelerating global climate change and changing human activities, future changes 

in vegetation cover may differ from the past, and more timely data are needed to update 

the study results. Although various methods such as pixel dichotomy, trend analysis 

and multiple regression residual analysis were used, these methods may have certain 

assumptions and limitations. For example, multiple regression residual analysis may 

not be able to completely exclude the interference of other unconsidered factors when 

separating the contribution of climate change and human activities to vegetation cover, 

thus affecting the accuracy of the results. In addition, pixel dichotomization may have 

some errors when dealing with vegetation and non-vegetation information, especially 

in areas with low vegetation cover or complex vegetation types. 

Secondly, in terms of factor consideration, the study mainly considered the effects 

of two key climatic factors, temperature and precipitation, on vegetation cover, but did 

not fully consider the role of other climatic factors (e.g., solar radiation, wind speed, 

humidity, etc.). These factors may also have important effects on vegetation growth and 

cover, especially under certain specific climatic conditions. Changes in vegetation 

cover are not only influenced by external climate and human activities, but are also 

closely related to biotic and abiotic processes within the ecosystem, such as species 

competition, succession, pests and diseases. However, the study has not deeply 

explored the contribution of these internal ecosystem processes to vegetation cover 

change, and may not be able to fully reveal the internal mechanism of vegetation cover 

change. 

Again, the interaction between human activities and climate change has not been 

thoroughly explored. There may be complex interactions between climate change and 

human activities, and the impacts of such interactions on vegetation cover change may 

be more complex than the impacts of a single factor. However, the study did not explore 

in depth the specific mechanisms and extent of this interaction, and may not be able to 

fully understand the combined effects of the two on vegetation cover change. 

Finally, although the study points out that there are significant regional differences 

in vegetation cover change among different cities in Shandong Province, the analysis 

of vegetation cover change and its drivers in different areas within each city (e.g., urban 



 

 

centers, suburbs, mountainous areas, etc.) is not deep enough. There are large 

differences in land use, human activity intensity and ecological conditions in different 

areas within cities, which may lead to different driving mechanisms of vegetation cover 

change, and more detailed spatial analysis is needed to reveal these differences. The 

study mentions the decline of vegetation cover in the border areas of Qingdao, Rizhao, 

and Zaozhuang, but does not analyze in depth the special causes and mechanisms of 

the decline of vegetation cover in these border areas. Border areas may be affected by 

the ecological environment, climatic conditions and human activities in the neighboring 

areas, and their changes in vegetation cover may have unique characteristics and drivers, 

which need to be further investigated in order to formulate targeted ecological 

protection and restoration measures. 
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