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Abstract 

Marine pollution introduces harmful substances into the 
ocean, affecting ecosystems, marine life, coastal 
communities, and the global economy. Classifying these 
pollutants is essential for identifying their sources and 
assessing their ecological impact. Computer vision 
techniques are used to automate analysis and enhance the 
accuracy of detecting and classifying marine pollutants as 
visual identification results in underreporting of pollutants. 
Sentinel-2 Multispectral images have very low visibility of 
pollutants. The proposed method uses (i)High quality 
Sentinel-2 multispectral thermal images generated by 
Stable Diffusion Thermal Image Generator highlights 
temperature variations for better classification (ii) 
Transverse Dyadic Wavelet Transform (TxDyWT) to pre-
process the thermal images as it retains structural details 
for classifying pollutants.(iii) Denoising Convolutional 
Neural Network (DnCNN) optimized with Hippopotamus 
Optimization Algorithm enhances images and Vision 
transformer (ViT) is employed to classify as microplastics, 
sediments and oil spills by identifying subtle patterns in 
pollutants. The proposed methodology identifies 

fragments of microplastics as small as 0.5 mm, large-scale 
oil spills, and hydrogenous sediments. The detection 
accuracy for microplastics, oil spills, and sediments is 
approximately 95%. 

Keywords: Marine pollution, water test, microplastics, oil 
spills, sediments 

1. Introduction 

Ocean pollution is an environmental issue and it is caused 
by the addition of harmful substances into the ocean. 
Ocean Pollution also known as marine pollution occurs in 
various forms like chemicals, plastic substances, organic 
waste. It affects the marine ecosystem and human health. 
Around 80% of ocean pollutants are land-based sources 
like sewage, industrial waste that enters the ocean through 
rivers and storm water 
(https://en.wikipedia.org/wiki/Marine_pollution). Plastics 
like bags and bottles dumped into ocean creates ocean 
pollution and chemicals like fertilizers, pesticides and 
heavy metals also cause ocean contamination. Oil spills 
from marine transportation and marine activities such as 
deep-sea mining and fishing also cause pollution and has a 
huge impact on marine ecosystem [Yulyanita et al. 2022]. 

Marine ecosystem is affected by various types of 
pollutions. Marine animals die and get injured because of 
the ingestion of plastic debris caused by Plastic pollution. It 
also leads to accumulation of toxins affecting the food web. 
Nutrient pollution causes toxic algal blooms affecting the 
growth and overall health of marine life. Coral reefs 
struggle to survive as they depend on clean water for 
reproduction, and this creates loss in biodiversity. Marine 
species are affected by diseases caused by pathogens and 
pollution changes the temperature, salinity and pH 
affecting the survival of marine species. [Datta 2023]. 
Pollution in the marine ecosystem also affects the human 
health. 
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Ocean pollution is a threat to the health and well-being of 
humans. Consumption of contaminated seafood causes the 
marine pollutants to enter to human food chain. Humans 
are exposed to harmful mercury pollution, microplastics 
and chemicals present in the seafood. The Pollutants like 
mercury causes autism, dementia. Chemical mixtures 
damage the nervous system, cardiovascular and metabolic 
disease and even cause death to human beings. Effect of 
microplastics on human health needs to be explored more 
and it can be done by improved monitoring of ocean 
pollution. Studies on the effect of ocean pollutants on 
human health is required [Landrigan et al. 2020] and the 
first step is to detect. 

Detection of ocean pollution is required to protect human 
health, maintain marine ecosystem and to manage the 
sustainable resources. Monitoring ocean pollution helps to 
identify and reduce exposure to contaminated seafood as 
the mercury and algal bloom contains toxins that affect the 
human health. Public health policies can be implemented 
by understanding the correlation between ocean pollution 
and occurrence of diseases. It can be done by monitoring 
the ocean pollution and it also helps in finding the sources 
and impacts caused by pollution. Sustainable development 
Goals to conserve marine resources can be achieved by 
tracking pollution levels. Overfishing can be avoided and 
detecting and taking preventive measures to reduce 
pollution provides clean water, enhancing tourism and 
supporting local economies [Vered and Shenkar 2021]. 

Smaller plastic particles are called as microplastics. 
Microplastics are formed due to the degradation of larger 
plastic items.  Microplastics disrupt the marine ecosystems. 
They are ingested by many organisms due to smaller size 
and it results in bioaccumulation and toxicity. Microplastics 
increase the effect of other pollutants and the toxicity in 
marine ecosystem intensifies. They resist to degrade and 
undergo transformation that enhances their toxicity 
[Behera and Das 2023]. Marine species needs to be 
protected from microplastics and other pollutant 

Marine life should be protected to support biodiversity and 
to maintain ecosystem. Healthy marine ecosystem is 
essential for human well-being, climate regulation and 
clean water supply. Protecting marine life also ensures 
sustainable fisheries and tourism creating source of income 
and employment. Overfishing and pollution can be reduced 
by establishing Marine Protected Areas (MPAs). 
Biodiversity hotspots are protected by restricting human 
activities in the particular zone. Sustainable fisheries 
management can be implemented to set catch limits and 
to promote fishing methods to reduce bycatch. Effective 
management strategies like restoration projects and global 
collaboration can improve ecosystem [Li 2023]. Marine life 
is linked with human health and it shows the need to 
protect ocean ecosystem.  

Humans are exposed to microplastics by ingestion, 
inhalation and through direct contact. Ingestion occurs 
through contaminated seafood, salt and water. Airborne 
microplastics enters the human body through inhalation 
and direct contact with products containing microplastics 
leads to exposure. Microplastics affect the human 

metabolism and immune system causing stress and DNA 
damage. Chronic pulmonary diseases and respiratory 
complications are caused by inhalation of microplastics and 
they also affect gastrointestinal tract leading to various 
digestive issues. Chemicals released from microplastics can 
cause cancer with their carcinogenic properties [Mahu et 
al. 2023]. Continuous monitoring and research can reduce 
their impact on human health. 

Sediments carry pollutants and affect the water quality and 
marine ecosystems. Sediments affect aquatic life, damages 
food webs and biodiversity. Run off from agricultural land, 
urban development, and natural erosion are the sources of 
sediments. Sediment impact can be reduced by the 
implementation of certain management practices. 
Pollutants can be filtered before entering the marine 
systems by establishing buffer zones. It reduces sediment 
run off. Wetlands can be created and restored to improve 
water quality. Conservation techniques can be used to 
reduce soil erosion and prevent their addition to water 
bodies [Geng et al. 2024]. 

Sediments contribute to the ecosystem through various 
ecological processes like nutrient cycling, water filtration 
and providing habitat to various organisms. Sediments help 
in food production through nutrient delivery and also helps 
in flood regulation. Accumulation of sediments determines 
the tree density and forest structure. Sediments deposited 
from storm surges recovers eroded areas and support 
ecosystem recovery. Regular sediment supply from rivers 
maintains healthy coastal areas. Health monitoring 
systems and policies can be developed to assess sediments 
[Solangi et al. 2019]. 

Oil spills affect marine ecosystem, disrupts habitats and 
endangers various species. International agreement called 
MARPOL (Marine Pollution) convention regulates ship 
operations to reduce spills. Improvement in ship design, 
increased surveillance and strict enforcement of 
regulations can minimize oil spills [Solangi et al. 2024]. 
Skimmers recover oil from water surface minimizing its 
impact on marine life. Wildlife rehabilitation centers can be 
established to treat animals affected by oil spills. 
Biodiversity recovery can be achieved by implementing 
projects to rehabilitate affected ecosystems like coral reefs 
and mangroves (https://www.aquaquick2000.com/oil-
spills/- Comprehensive Solutions to Mitigate the Impact of 
Oil Spill on Marine Life). 

Oil spills affect the aquatic life and coastal habitats with the 
consequences like contamination of water, soil. Better 
governance framework regarding oil extraction, 
environmental protection and community welfare needs to 
be implemented. Integrated Coastal Zone Management 
should be implemented to protect the coastal 
communities. Strict enforcement of regulation should be 
done to mitigate the impact of oil spills on coastal and 
marine ecosystems. Compensation and benefit -sharing is 
essential to address the social and economic impacts of oil 
activities on coastal communities [Andrews et al. 2021]. 

Detection of oil spills is essential for timely responsive 
measures. Recent developments in image processing 
techniques particularly in Computer Vision Approaches, 
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Synthetic Aperture Radar (SAR) and Machine Learning 
Techniques have improved the ability to detect oil spills.  
DeepLAb3+ is used to enhance accuracy in noisy SAR 
images. Deep learning method is used as it enhances 
detection accuracy and handles complex SAR images. It is 
suitable for small and large oil spills and it has efficient 
detection with no human intervention [Zhang et al. 2024].  

Unarmed Vehicle and IR camera are used to detect oil spills. 
Convolutional Neural Network is used as it automatically 
extracts features from Thermal infrared images and 
classifies. Machine learning technique is used as the 
process of oil spill detection is automated and it increases 
the detection rate and reduces cost to clean oil spill. It has 
higher accuracy and can process large infrared images in 
real-time, adapts to other data sources [De Kerf et al. 
2020]. 

Automated detection of oil spills and estimation of oil 
concentration from satellite images is done by using 
Machine Learning approach. Synthetic Aperture Radar 
(SAR) imagery is used as it can capture images in different 
weather conditions and lighting. Optical and multispectral 
imagery is used to obtain additional information about oil 
spell for estimating concentration. Various machine 
learning algorithms are used to classify and detect oil spills. 
Automated detection minimizes environmental damage, 
cost effective and can be used to monitor other pollutions 
[Trujillo-Acatitla et al. 2020]. The author has used Canny 
edge detection Algorithm to determine the size, shape and 
type of microplastics [Giardino et al. 2023]. In [De Kerf et 
al. 2020] Crude oil spills are detected by using 
Convolutional Neural Network (CNN) from the images 
obtained unmanned areal vehicles (UAV) and a thermal 
infrared (IR) camera images. 

 

Figure 1. Microplastics, Oil spills, Sediments in Ocean 

1.1. Research gap 

Microplastics presence in the surface and subsurface 
waters are detected using Polarised Light Microscopy, 
Ramn Spectrometry and Micro-Fourier Transform Infrared 
Spectrometry [Zhang et al. 2022]. Microplastics in other 
layers of ocean were not considered and the existing FTIR 
method analyses only larger particles of sample, visual 
identification leads to underreporting of pollutants 
present. Oil spills on the sea surface are detected by 
Bilateral Segmentation Network (BiSeNet), Convolutional 
Neural Network and Synthetic Data Generation [Chen et al. 
2022]. Complexity of the BiSeNet network affects the 
overall accuracy and the network’s performance is 
sensitive to variations in input leading to inconsistent 
detection. Oil spills on the shorelines and sediments need 
to be detected. Sediments are captured using UAV and are 
classified using U-Net Architecture [Kim et al. 2024]. 
Inaccuracy in boundaries are caused by over-lap strategy 

used in U-Net architecture and the sediment types maybe 
be classified accurately without trained datasets. Figure 1 
shows the presence of microplastics, oil spills and 
sediments on ocean. 

1.2. Contribution 

The study focuses on an advanced methodology for 
generating and processing thermal images to classify 
marine pollutants with high accuracy. Sentinel-2 
multispectral thermal images, highlighting temperature 
variations, are generated using a Stable Diffusion Thermal 
Image Generator. This model enhances contrast and 
emphasizes spatial and channel-wise features, ensuring 
precise pollutant representation for classification. Pre-
processing employs the Transverse Dyadic Wavelet 
Transform (TxDyWT), which utilizes multi-resolution 
decomposition to preserve structural details such as edges 
and corners. This enables the accurate identification of 
pollutants of varying sizes, shapes, and distributions. 

Noise removal and image quality enhancement are 
achieved using the DnCNN technique, optimized by the 
Hippopotamus Optimization Algorithm (DnCNN-HOA). The 
HOA fine-tunes DnCNN parameters to address diverse 
image noise conditions, producing cleaner images suitable 
for classification. The Vision Transformer (ViT) is employed 
for pollutant classification, leveraging its self-attention 
mechanism to identify subtle patterns and distinguish 
complex pollutant types. Section 2 of this paper provides a 
comprehensive literature survey. Section 3 outlines the 
detailed methodology, while Section 4 presents the results 
and discussion. This systematic approach ensures effective 
classification of marine pollutants and contributes to 
environmental monitoring advancements 

2. Literature survey 

Author has discussed the presence of microplastics in 
ocean [Uurasjärvi et al. 2021]. Fourier transform Infrared 
Microscopy is used to detect the microplastics present in 
the halo and thermoclines region of the ocean. It was 
observed that water column has more microplastics but 
there are limitations in sampling and uncertainty in 
measurements. In [Yang et al. 2022] author presents 
Statistical models with regression analysis to detect the oil 
spills and microplastics in the ocean surface. However 
varying environmental conditions, different sized 
microplastics are not considered. Microplastics in the 
subsurface water are detected using micro–Fourier 
Transform Infrared method [Li et al. 2022]. But, 
microplastics of smaller size are not studied and filtering 
process affects the nature of microplastics. In [Liang et al. 
2023] microplastics present in the surface, middle region, 
bottom of seawater column and sediments were detected. 
Fourier Transform Infrared Spectroscopy was used but the 
research has not included the variations in distribution of 
microplastics due to seasonal change and depth 
stratification. Author has detected the presence of 
microplastics in surface water, middle water, bottom 
water, sea bottom sediment and intertidal sediment [Gao 
et al. 2024]. FTIR and µ-FTIR methods are used. However, 
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the sampling sites are limited and microplastics of small 
size are not focused.  

Author has identified the contamination of sea food by 
sensory and chemical analysis caused by the oil spills in 
ocean [de Melo et al. 2022].  

 

Table 1. Comparison of Existing methods in detecting marine pollutants using image processing techniques 

Ref.No Pollutant Method Distribution of pollutants Drawback 

(Uurasjärvi et al. 

2021) 
Microplastics 

Fourier Transform 

Infrared (FTIR) 

1.Halo and thermoclines 
Limitations in sampling and uncertainty 

in measurements 
2.water column has more 

microplastics 

(Yang et al. 2022) 
Microplastics and 

oil spills (MOADs) 

Statistical models 

with regression 

analysis 

surface 

Oil spills in varying environmental 

conditions are not considered. Effect of 

different sized microplastics is not 

discussed. 

(Li et al. 2022) Microplastics µ-FT-IR Subsurface water 

Smaller size microplastics were not 

considered. Filtering can affect the 

microplastics. 

(Liang et al. 2023) Microplastics 

Fourier transform 

Infrared 

Spectroscopy 

Seawater column (surface, 

middle, bottom), sediment 

Variations in distribution of microplastics 

due to seasonal change and depth 

stratification is not considered. 

(Gao et al. 2024) Microplastics FTIR and µ-FTIR 

 surface water (SW), middle 

water (MW), bottom water 

(BW), sea bottom sediment 

(SS), and intertidal sediment 

(IS). 

Limited sampling sites. Smaller particles 

are not focused. 

(de Melo et al. 

2022) 
Oil Spills 

Sensory and 

Chemical analysis 
Seafood 

Limited regions are studied. Other effects 

of oil spill are not studied.  

(Zacharias et al. 

2024) 
Oil spills SisMOM Surface water, coast 

Study is done with short-term data, 

focuses on specific region not 

considering other areas with oil spills 

(Zacharias et al. 

2024) 
Oil spills Fingerprinting Shoreline Spill trajectory models use limited data. 

(Bastos et al. 2021) Oil spills 

Field collection, 

sampling, 

Taxonomic survey 

Surface water 
Limited region coverage and use of 

simple models 

(Bérgamo et al. 

2023) 
Oil spills 

Synthetic Aperture 

Radar, image 

processing 

techniques 

Coastal areas 

Detection accuracy is affected by 

environmental factors. Requires more 

processing time. 

(Ma et al. 2023) Oil spills Bubble curtain Surface water 

Cannot be used in environment with 

strong waves and can’t be used in large 

scale oil spills.  

(Feng et al. 2023) Microplastics 
Tidal tank setup, 

statistical analyses 
Water surface 

Various range of microplastics and 

varying tidal conditions were not 

considered. 

(Feng et al. 2023) Microplastics 

Microcosm setup, µ-

Raman and 

fluorescence 

microscopy 

Sea ice-floating, sinking 

Results may vary in real time as 

controlled environment is used to study. 

High concentration of microplastics is 

used than real sample. 

(Chubarenko et al. 

2023) 
Microplastics 

Deep learning 

methods R-CNN 
Beach sediment 

Results depend on the training dataset, 

differentiating microplastics is complex. 

(Akkajit et al. 2024) Microplastics 

Photoacoustic 

imaging and deep 

learning 

Surface water, sediments 
Implementation is complex. Models are 

not trained for different conditions. 

Proposed method 

Microplastics, Oil 

spills and 

sediments 

Thermal Images, 

DAGAN, TxDyWT, 

DNCNN-HOA, ViT 

Surface layer, midwater layer, 

deep-sea and deep sea 
 

 

Sea food contamination in particular area is alone 
considered and other effects of oil spills in the marine 

ecosystem are not studied. In [Zacharias et al. 2024] author 
identifies the oil spills in the surface water and coast using 
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advanced technique called SisMOM. Source of the oil spills 
are found in the surface of water and coastal areas is 
tracked. Short-term data is used for analysis and a 
particular region is focused. Effects of oil spills on other 
areas are not studied. Fingerprinting method is used by the 
author to identify oil spills in ocean [Zacharias et al. 2024]. 
Oil spills are found in the shoreline and research is done to 
find the source of it. Spill trajectory model used to track the 
source uses limited data and it affects the accuracy of 
detection. Field collection, sampling and taxonomic survey 
are done by the author to detect the oil spills in ocean 
[Bastos et al. 2022].  

Oil spills are found on the surface water and the research 
is done in limited region and is not applied in environment 
with different weather conditions. The methods used are 
simple and is not suitable for the complex original 
conditions. In [Bérgamo et al. 2023] author detects the oil 
spills in coastal areas by Synthetic aperture radar and 
image processing techniques. Detection accuracy is 
affected by the environmental factors and needs more 
processing time which is a drawback when used in real time 
applications. Bubble curtain method is used to detect the 
oil spills in surface water of ocean [Ma et al. 2023]. Bubble 
curtains prevent the spread of oil and its interaction with 
marine organisms. This method cannot be used in marine 
environment with strong waves and it not applicable to 
large scale oil spills. 

In [Feng and Zhang 2023] author detects the presence of 
microplastics in water surface by using a tidal tank setup 
and statistical analysis. Microplastics of different size and 
shape are not included in the study. Varying tidal 
conditions are not considered making it difficult to be 
applied in real time detection. Author detects the 
microplastics present in floating and sinking sea ice [Feng 
et al. 2023]. Microcosm setup, micro-Raman and 
fluorescence microscopy is used. Controlled environment 
is used in the research and results may vary in real time.  
Testing was done with the sample of high concentration 
than the real microplastic. In [Chubarenko et al. 2023] 
author uses deep learning methods to detect the 
microplastics present in beach sediment. The results 
depend on the training dataset which may vary in real time 
and differentiating the microplastics by this method is 
complex. Microplastics in the surface water and sediments 
are detected by the author in [Akkajit et al. 2024]. 
Photoacoustic imaging and deep learning methods are 
used. However, implementation is complex and models are 
not trained for different environmental conditions [Huang 
et al. 2024]. 

3. Methodology 

Here, Table 1 shows the existing methodology its 
drawbacks in detecting marine pollutants such as 
microplastics, oil spills and sediments in ocean. 

Overall architecture of the proposed methodology is 
shown in Figure 2. Microplastics, oil spills and sediments 
are present in the ocean because of various human 
activities and natural processes. Multispectral images of 
sediments, oil spills and microplastics present in the ocean 

layers are converted to thermal image with stable Diffusion 
Thermal image generator due to the low visibility of 
pollutants.  

Underwater images are colour distorted and are processed 
with Discrete Wavelet Transform (DWT) and Transverse 
Dyadic Wavelet Transform to differentiate from 
background. Thermal images of microplastics, oil spills, 
sediments are denoised using Deep Convolutional Neural 
Networks (DnCNN). Vision Transformer model is used to 
detect and identify the pollutants in ocean water. 
Microplastics, oil spills and sediments are classified based 
on the analysis of model. Process involved in the proposed 
methodology is explained in the flowchart given in Figure 
3. 

 

Figure 2. Block diagram of overall methodology 

 

Figure 3. Workflow of overall methodology 

3.1. Sentinel-2 multispectral image data 

Microplastics are present in the ocean because of domestic 
run off and improper waste disposal. Oil spills into the 
ocean by accidents in tankers, pipelines and storage 
facilities. Sediments are formed due to the deposit of 
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insoluble materials in the ocean. A sentinel-2 satellite with 
Multispectral Instrument (MSI) captures the sediments, oil 
spills and microplastics present in various ocean layers. The 
images are of high-resolution imagery across 13 spectral 
bands covering the visible, near-infrared and shortwave 
infrared regions. Spatial resolution of microplastics, oil 
spills, sediments images present in various layers of ocean 
varies from 10 to 60 meters allowing detailed analysis. 
Short wave Infrared (SWIR) and Near Infrared (NIR) 
effectively highlights the characteristics of pollutants. 
Visibility of smaller microplastics, thin oil slicks are low in 
sentinel-2 multispectral image and are converted to 
thermal image with Stable diffusion image generator. 

3.2. Stable diffusion image generator 

The stable diffusion generator model converts the sentinel-
2 multispectral color image into thermal image through 
guided text generation and sentinel-2 multispectral color 
image. The conversion of sentinel-2 multispectral color 
image to thermal image is shown in the equation (1). 

( )Predicted Thermal image y RGB image

predicted thermal image based on prompt
w

conditioning RGB image

=

 
+  

−   

(1) 

In equation (1), w is the guidance factor, which provides the 
balance between sentinel 2 multispectral colour images 
and generated thermal image. Therefore ‘w’ provides 
classifier free guidance for converting sentinel-2 
multispectral colour image into thermal image. Hence, the 
stable diffusion thermal image generator model generates 
the thermal image from the text and sentinel-2 
multispectral colour image. The classifier model acts as an 
image classifier and classifies the generated samples based 
on desired input text such as “High Resolution Thermal 
Image”. Figure 4 shows the generated images of 
microplastics, oil spills, sediments. 

 

Figure 4. Generated images of Microplastics, Oil spills and 

sediments using Stable Diffusion Image Generator model 

3.3. Perspective projection 

Thermal images of microplastics, oil-spills, sediments are 
pre-processed with DWT and TxDyWT techniques as the 
underwater images are low contrast, colour distorted and 
with noise due to the scattering and absorption of light. 

3.3.1. Discrete wavelet transform (DWT) 

DWT is used for the identification of smaller particles in 
complex backgrounds and it helps to distinguish 
microplastics from natural substances. Images are 
decomposed into various frequency bands for feature 
analysis in DWT, large oil spills and smaller microplastics 
are detected using this technique. DWT enhances edges 

and boundaries within the images which segments extent 
of oil spills and the boundaries of sediment layers. DWT 
extracts texture information from images, this helps to 
identify different types of sediments, texture variation in 
oil slicks and physical properties of materials present in 
sediments.  

Images of microplastics, oil spills, sediments obtained from 
ocean are processed through Continuous Wavelet 
Transform (CWT) using the formula 

( ) ( ) ( )
1

, |fW a b f t t b a dt
a





−

= −
 

(2) 

Where, 

Wf (a, b) are the wavelet coefficients, 

a is the scale parameter, 

b is the translation parameter, 

ψ(t) is the wavelet function. 

The wavelet coefficients Wf (a, b) identifies and isolates 
microplastics from background and other contaminants. 

The wavelet function 
b

t
a


 
− 

 
 highlights the boundaries 

and spreading patterns of oil slicks and it helps to assess 

the extent, behaviour oil spills. Normalization factor 
1

a
 

reduces noise in the processed images of microplastics, oil 
spills, sediments by maintaining consistent energy at 
different scales. 

Images are reconstructed from wavelet coefficients Wf (aj, 
bk) by inverse transform using the equation given below  

( ) ( ) ( ),,f j k j k

j k

f t W a b t=
 

(3) 

Where j, k(t) are the scaled and translated versions of 
wavelet function. Reconstruction is used for visualizing and 
assessing the level of contamination caused by 
microplastics, sediments, oil spills in ocean. Figure 5 shows 
the reconstructed image of microplastics, oil spills, 
sediments using DWT. 

 

Figure 5. Reconstructed images of pollutants using DWT. 

Underwater images of microplastics, sediments, oil spills 
with high noise cannot be processed with DWT. Energy 
from noise distorts and masks the features of pollutants 
leading to poor identification of smaller size, irregular 
shaped microplastics and variations in oil slicks. High noise 
in images creates loss of important information like 
texture, boundaries required for analysis. High noise levels 
decrease Signal-to-Noise Ratio (SNR), lowering the 
effectiveness of DWT. It leads to inaccurate reconstruction 
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of images. Transverse Dyadic Wavelet Transform (TxDyWT) 
technique is used in pre-processing of underwater images 
to overcome the drawbacks of DWT. 

3.3.2. Transverse dyadic wavelet transform (TxDyWT) 

Transverse Dyadic Wavelet Transform (TxDyWT) is used to 
pre-process thermal images of marine pollutants. Images 
of microplastics, oil spill, sediments are decomposed into 
different frequency components by TxDyWT improving the 
visibility and enabling the differentiation of pollutants from 
background noise and other sediment materials. TxDyWT 
extracts features like size, shape and distribution patterns 
of microplastics to determine the quantity of microplastics 
present in ocean sediments. TxDyWT analyses the texture 
of oil spills to differentiate oil spills and water surface to 
assess the extent of contamination. Thermal images of 
pollutants are analysed in multiple resolution to monitor 
changes over time. TxDyWT analyses the frequency 
components of sediment images and identifies different 
sediment types and their composition. TxDyWT estimates 
the abundance and distribution of pollutants by processing 
the sediment images. 

( )    ,, . f j k

n

W j k f n n=
 

(4) 

where: 

Wf (j, k) are the wavelet coefficients, 

f[n] is the input signal or image, 

ψj, k[n] are the wavelet basis functions at scale j and 
position k. 

Thermal images of marine pollutants are represented as 
signal by f[n] and the signal is decomposed into different 
frequency components by TxDyWT to isolate specific 
features of microplastics, oil spills, sediments. 

Wavelet coefficients Wf (j, k) identifies distinct patterns 
corresponding to pollutants to differentiate from natural 
sediment backgrounds. 

TxDyWT provides edge detection through multi-resolution 
analysis to highlight the boundaries of oil slicks in water 
surface. 

Formula for image pre-processing is given below 

( ),      H V Dx yI A D D D= + + +
 

(5) 

Where, 

A is the approximation, 

DH, DV, DD are the horizontal, vertical, and diagonal detail 
coefficients respectively Constant A corrects the 
background noise and light variations in thermal images of 
sediments. The directional derivatives DH, DV, DD enhances 
the edges and contours of microplastics in the sediment 
images. 

Images are reconstructed from wavelet coefficents with 
inverse TxDyWT, and the equation is given below 

( ) ( ) ,,

,

  [ ], .f j kx y

j k

I nW j k =
 

(6) 

Where, 

I(x, y) represents processed image intensity at pixel 
coordinates(x,y) 

Wf(j,k) are wavelet coefficients, 

Φj, k[n] are wavelet basis functions. 

The wavelet coefficients Wf (j, k) captures the essential 
features of microplastics, oil spills, sediments within the 
thermal images. The coefficients are summed and 
multiplied by their corresponding wavelet basis functions 
φj,k [n] and the images are reconstructed. Figure 6 shows 
the reconstructed images of microplastics, oil spills, 
sediments by using TxDyWT. Comparison of Pre-processing 
of images using CWT, MODWT, DWT and proposed 
TxDyWT is shown in Table 2. 

 

Figure 6. Reconstructed images of (a) microplastics, (b) oil spills, 

(c) sediments using TxDyWT. 

 

Table 2. Comparison of Pre-processing of images using CWT, MODWT, DWT and proposed TxDyWT 

Performance Metrics CWT MODWT DWT TxDyWT 

Mean 0.05 0.04 0.763 6.281 

Standard deviation 0.10 0.09 0.39 2.11 

Entropy 0.15 0.14 2.23 8.87 

Energy 0.02 0.01 6.778 2.926 

Contrast 0.03 0.02 0.152 4.462 

 

Comparison of Pre-processing of images using CWT, 
MODWT, DWT and proposed TxDyWT in Table 2 shows 
TxDyWT with a higher mean indicating brighter images, 
enhancing the differentiation between microplastics, 
sediments and oil spills. TxDyWT has higher standard 
deviation indicating more variability which enables the 
identification of regions with various pollutants, aiding 
accurate classification. DWT has lower value which 

indicates uniform area. Higher entropy in TxDyWT shows 
the presence of various types of contaminants enabling 
their classification. TxDyWT has higher contrast value 
which enables to identify boundaries for accurate 
classification of pollutants. Figure 7 Shows the comparison 
of DWT and TxDyWT based on performance metrics. Pre-
processed images are denoised using DnCNN techniques. 
DWT and TxDyWT are chosen to transform multicolour 



8  KAVIYA et al. 

pixel data of microplastics, oil spills and sediments into low 
pixel colour space to retain their essential characteristics. 
By applying DWT and TxDyWT microplastic distribution, 
behaviour of oil spill, sediments over time can be 
distinguished.  DWT and TxDyWT are used for 
preprocessing microplastics, oil spills, and sediments for 
the multi-resolution analysis, noise reduction, data 
compression, and enhanced feature extraction. 

 

Figure 7. Comparison of Pre-processing of images using CWT, 

MODWT, DWT and proposed TxDyWT 

3.4. Denoising 

Thermal images of microplastics, oil spills, sediments are 
noisy due to various factors like sample preparation and 
imaging conditions. It is important to denoise the images 
for accurate detection and segmentation of marine 
pollutants. 

3.4.1. Denoising convolutional neural network - DnCNN 

DnCNN uses deep learning techniques to denoise image. 
DnCNN enhances the quality of thermal images for better 
detection and classification of marine debris and 
pollutants. DnCNN preserves important features of marine 
pollutants when reducing noise.DnCNN enhances the 
visibility of small particles against complex backgrounds 
providing clear images as clear images are required to 
assess the type and concentration of pollutants in ocean. 
Denoised images of oil spills help to understand the 
distribution and behaviour of oil-mineral aggregates in 
marine environments. DnCNN is integrated with Pelican 
Optimization Algorithm to enhance its denoising 
capabilities by optimizing parameters. 

3.4.2. Pelican optimization algorithm (POA) 

Pelican Optimization Algorithm is a nature-inspired 
optimization algorithm that is based on the hunting 
behaviour of pelicans. POA operates through two main 
phases exploration and exploitation phase allowing the 
algorithm to explore potential solutions and to refine the 
search on solutions to find optimal outcome. 

Pelican Optimization Algorithm is used with DnCNN 
technique to minimize noise in the images of microplastics, 
oil spills, and sediments. POA optimizes hyper parameters 
of the DnCNN model to achieve optimal denoising. 
Exploration and exploitation phases of POA are used to 
optimize the Peak-Signal to Noise Ratio (PSNR) parameter, 
which is used as evaluation metric to assess the quality of 
denoised images. 

POA is used to optimize the parameters of DnCNN as it is 
essential to achieve better denoising improving the 
accuracy and efficiency of the model. Dynamic nature of 
POA adaptively adjust the learning rates resulting in faster 
convergence and improved denoising. Pelican optimization 
algorithm maintains a balance between exploration – 
searching new areas of solution space and exploitation -
refining good solutions finding new configurations for 
DnCNN and enhancing its ability to handle different types 
of noise in the images. POA as a meta-optimizer improves 
the denoising capabilities of DnCNN with extensive manual 
tuning. 

 

POA integrated with DnCNN results in increased 
computational demands leading to longer training times, 
making it difficult to be used in real-time applications. POA 
complicates and adds complexity to the training process of 
DnCNN. Managing two distinct algorithms introduces 
challenges in maintaining the system. Hippopotamus 
Optimization Algorithm is used to overcome the 
mentioned drawbacks. 

3.4.3. Hippopotamus optimization algorithm (HOA) 

Hippopotamus optimization algorithm is a trinary-phase 
model reflecting the natural behaviour of hippopotamuses, 
focusing on their aquatic movement and social 
interactions. HO balances exploration (searching new 
areas) and exploitation (refining known good solutions) to 
solve complex optimization problems. It incorporates 
mathematical formulation that simulate the behaviours to 
update positions of candidate solutions in optimization 
space. 
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HOA is integrated with DnCNN to optimize the parameters 
of model to improve denoising. HOA trains DnCNN on a 
dataset with the images of microplastics, oil spills and 
sediments with noise to enhance the convergence speed 
and accuracy of the model. HOA adjusts the 
hyperparameter Peak Signal-to-Noise Ratio (PSNR) during 
training and the performance of the integrated model is 
evaluated after training to access the effectiveness of 
denoising. The combined approach removes noise and 
preserves important details in the images. Integration 
adapts to different types of noise. 

Candidate solutions are updated through Gaussian filtering 
approach. In step 8, each candidate image is convolved 
with a Gaussian kernel to reduce noise. Each denoised 
image’s quality is evaluated after applying the filter 
enabling comparison and selection of best result. 
Comparison of DnCNN optimized by Pelican Optimization 

Algorithm and Hippopotamus optimization algorithm is 
given in Table 3. 

 

Figure 8. Comparison of performance metrics of DnCNN 

optimized with POA and HOA 

 

Table 3. Comparison of Denoising methods using DnCNN and Optimized DnCNN 

Metrics DnCNN DnCNN-POA DnCNN-HOA 

PSNR 25 31 35.2 

Convergence Time(s) 150 120 90 

Training epochs 60 50 40 

Robustness score 0.60 0.75 0.85 

No. of layers 30 20 17 

 

The Deep Denoised Convolutional Neural Network 
(DnCNN) has 20 convolutional layers that are used to 
remove thermal noise patterns from Sentinel-2 marine 
pollutant images and enhance the perspective projection 
of fragmented pixel regions of microplastics, sediments, 
and oil spills. However, the large number of convolutional 
layers reduces the convergence of DnCNN. To improve the 
convergence speed of DnCNN, the number of convolutional 
layers is optimized through the HOA and POA optimization 
algorithms. From Table 3, HOA optimization has a higher 
PSNR (Peak Signal-to-Noise Ratio) value, which indicates 
better image quality. The convergence rate of DnCNN-HOA 
is lower compared to DnCNN-POA due to the exploration 
and exploitation capabilities of the Hippopotamus 
Optimizer compared to the Pelican Optimizer. Thus, 
DnCNN-HOA reduces computational complexity with an 
optimum number of convolutional layers set at 17. Figure 
8 Shows the comparison of performance metrics of DnCNN 
optimized by HOA And POA and Convergence analysis of 
POA and HOA is shown in Figure 9. 

 

Figure 9. Convergence Analysis of DnCNN optimization 

techniques POA and HOA 

Convergence analysis of POA and HOA is shown in Figure 8. 
Hippopotamus Optimization Algorithm has higher values 
across all iterations. Both the algorithms show an 
increasing trend but POA converges to higher PSNR values 
more rapidly than HOA, indicating it is more efficient in 
optimizing solutions for pollutant detection. 

3.4.4. Vision Transformer Model (ViT) 

Vision Transformer Model is a neural network that applies 
principles from transformer model. ViT uses self-attention 
mechanism to differentiate various types of pollutants. 
Architecture of Vision Transformer Model is given in below 
in Figure 10. 

 

Figure 10. Architecture of Vison Transformer (reference: 

(https://theaisummer.com/static/642d24a420d4997d6df62c96d

33f5292/8c381/pyramid-vit-image-classification.png) 

Vit architecture alters the processing of images by treating 
them as sequence of patches. Processing involves input 
Images of microplastics, oil spills and sediments are divided 
into fixed-size patches in image patching. Each patch is 

https://theaisummer.com/static/642d24a420d4997d6df62c96d33f5292/8c381/pyramid-vit-image-classification.png
https://theaisummer.com/static/642d24a420d4997d6df62c96d33f5292/8c381/pyramid-vit-image-classification.png
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flattened into one -dimensional vector in flattening, 
enabling the model to process the pixel values linearly. 
Flattened patches are projected into a higher-dimensional 
space through a linear transformation, creating 
embeddings for each patch. The embeddings capture 
essential features of the patches. Positional encoding is 
added to each patch to retain spatial information lost 
during flattening and to understand the relative positions 
of patches in the original images of microplastics, 
sediments and oil spills. 

Sequence of patch embedding is fed into a standard 
transformer encoder. ViT base architecture has of 12 

transformer layers, each layer contains layer normalization 
stabilizes training before attention mechanism. Multi-Head 
Self-Attention weighs the importance of each patch and 
generates attention scores to focus on relevant areas 
within the image to identify the features of microplastics, 
sediments and oil spills. Feed-Forward Neural Network is a 
multi-layer perceptron (MLP) with two linear 
transformations and a non-linear activation function to 
process the output. 

 

Table 4. Comparison of performance metrics of Sentinel-2 Thermal image, DWT, DnCNN- POA and ViT 

Performance metrics Sensitivity Specificity Precision Accuracy F1 Score AUC 

Microplastics 0.10 0.15 0.12 0.13 0.11 0.20 

Oil spills 0.08 0.18 0.10 0.12 0.09 0.15 

Sediments 0.05 0.20 0.07 0.09 0.06 0.10 

Table 5. Comparison of performance metrics of Sentinel-2 Thermal image, DWT, DnCNN optimized with HOA and ViT 

Environmental Issue Sensitivity Specificity Precision Accuracy F1 Score AUC 

Microplastics 0.4 0.5 0.45 0.48 0.42 0.55 

Oil Spills 0.35 0.55 0.4 0.45 0.37 0.52 

Sediments 0.3 0.6 0.35 0.4 0.32 0.5 

 

Self-attention mechanism computes attention weights for 
each patch relating to other patches. It helps the model to 
differentiate subtle sediment types and dispersed 
microplastics. Classification head process the output 
corresponding to classification head after passing through 
all the transformer layers. It generates class predictions 
based on the based on the transformer encoder. SoftMax 
activation function converts the predictions into 
probabilities for each class microplastics, sediments and oil 
spills. ViT model is pre-trained with large datasets to learn 
general image features before being fine-tuned on specific 
datasets that include examples of microplastics, oil spills 
and sediments. Fine tuning adjusts the model’s weights to 
improve its accuracy in classifying microplastics, sediments 
and oil spills. Figure 11 shows the Loss and Accuracy curves 
of proposed ViT. 

 

Figure 11. (a) Loss Curve (b) Accuracy Curve of proposed vision 

transformer Model 

Accuracy and Loss curves of Vision Transformer used to 
classify the microplastics, sediments and oil spills is shown 
in Figure 11. The curves show the performance of Vision 
transformer in classifying the pollutants. Steady decrease 
in training and validation loss curve shows effective 
learning. Training and Validation Accuracy curve increases 
indicating ViT’s improved classification performance.  

4. Results and discussion 

4.1. MADOS dataset 

Sentinel-2 Multispectral Image Data forms the MADOS 
dataset [Kikaki et al. 2024]. The Remote sensing data 
focuses on marine litter and spills. Images from 174 scenes 
and 47 tiles each corresponding to a unique Sentinel-2(S2) 
scene are present in the dataset and the data are 
annotated. The images are of different spatial resolution 
10m,20m and 60m. 80% of the data is used for training and 
20% is used for testing. The study was conducted in 
Amazon River in South America, Arabian sea in Asia, 
Mediterranean Sea in Europe-Sentinel images. 

Thermal images of microplastics, oil spills and sediments 
pre-processed with Discrete Wavelet transform and 
denoised with DnCNN optimized using pelican optimization 
algorithm. Vision transformer is used to classify the images. 
Performance metrics the methods used are measured 
using the given formulas. 

True positives
Recall

True Positives False Negatives
=

+
 

(9) 

 
 

   

TrueNegatives
Specificity

TrueNegatives FalsePositives
=

+
 (10) 

   

   

TruePositives
Precision

TruePositives False positives
=

+
 (11) 

   

 

TruePositives TrueNegatives
Accuracy

Total Population

+
=  (12) 

1 2
*

  *
Precision Recall

F Score
Precision Recall

=
+

 
(13) 

Table 4 shows the comparison of performance metrics of 
Sentinel-2 thermal image, DWT pre-processing technique, 
DnCNN optimized with POA and Vision Transformer model 
in the classification of pollutants.  

Comparison of performance metrics of Sentinel-2 Thermal 
image, DWT, DnCNN- POA and ViT is shown in Table 4. Low 
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sensitivity affects the detection of microplastics, oil and 
sediments. Low specificity leads to the incorrect 
identification of clean areas as contaminated. Comparison 
of performance metrics of Sentinel-2 thermal image, DWT, 
DnCNN optimized with POA and Vision Transformer is 
shown in Figure 12.  

 

Figure 12. Comparison of Sentinel-2 Thermal image, DWT, 

DnCNN-POA, ViT performance metrics 

Training accuracy values ranging from 10-23 shows the low 
performance of the model in studying the underlying 
patterns of the data. Validation loss curve with high values 
indicates low prediction of the model. The model fails to 
capture the patterns required to classify pollutants. DnCNN 
optimized with Hippopotamus Optimization Algorithm is 
used to improve the performance of the model and the 
performance metrics are analysed. Table 5 Shows the 
comparison of metrics of Sentinel -2 thermal image, 
Discrete Wavelet Transform, DnCNN optimized using HOA 
and Vision Transformer Model. 

Comparison of performance metrics of Sentinel-2 Thermal 
image, DWT, DnCNN optimized with HOA and ViT is shown 
in Table 5. Values of specificity, precision, recall, accuracy 

and F1 Score are low indicating low performance in the 
classification of pollutants. Low precision shows that the 
prediction of system is incorrect and leads to poor decision 
making. Low accuracy reflects the combined effects of 
sensitivity and specificity issues. Low accuracy also 
indicates the poor performance of overall system in 
classifying microplastics, sediments and oil spills. Figure 13 
shows the comparison of performance metrics of Sentinel-
2 thermal image, DWT, DnCNN optimized by HOA, Vision 
Transformer. 

 

Figure 13. Comparison of performance metrics of Sentinel-2 

Thermal image, DWT, DnCNN and Vision Transformer 

Comparison of performance metrics of Sentinel-2 Thermal 
image, DWT, DnCNN and Vision Transformer in Figure 13 
shows validation low accuracy and high validation loss. 
Values indicate low performance of the model in the 
classification of pollutants. Transverse Dyadic Wavelet 
Transform is used to improve the pre-processing of 
microplastics, sediments and oil spills images. Comparison 
of performance metrics of Sentinel-2 thermal image, 
TxDyWT, DnCNN-POA, ViT is shown in Table 6. 

 

Table 6. Comparison of performance metrics of Sentinel-2 thermal image, TxDyWT, DnCNN-POA, ViT. 

Performance Metrics Sensitivity Specificity Precision Accuracy F1 Score AUC 

Microplastics 0.85 0.8 0.82 0.83 0.83 0.9 

Oil Spills 0.78 0.85 0.8 0.82 0.79 0.88 

Sediments 0.75 0.82 0.76 0.78 0.75 0.85 

Table 7. Comparison of performance metrics of Sentinel-2 thermal image, TxDyWT, DnCNN-HOA, Vision transformer. 

Performance Metrics Sensitivity Specificity Precision Accuracy F1 Score AUC 

Microplastics 0.9 0.85 0.88 0.89 0.89 0.95 

Oil Spills 0.85 0.9 0.87 0.88 0.86 0.93 

Sediments 0.8 0.88 0.82 0.84 0.81 0.91 

 

 

Figure 14. Comparison of performance metrices of Sentinel-2 

Thermal image, TxDyWT, DnCNN-HOA and Vision Transformer 

Performance metrics of methods shown in Table 6 has low 
specificity indicating that the model incorrectly classifies 
clean areas as contaminated. Low precision shows the 

incorrect identification of pollutants. Microplastics, oil 
spills and sediments can remain undetected with low recall. 
Low accuracy reflects the misclassification of pollutants. 
Values of the performance metrics are low and the 
comparison of performance metrics of Sentinel-2 thermal 
image, TxDyWT pre-processing technique, DnCNN-HOA 
and Vision Transformer is given in Figure 14. 

Comparison of performance metrices of Sentinel-2 
Thermal image, TxDyWT, DnCNN-HOA and Vision 
Transformer in Figure 13 shows higher accuracy reflecting 
effectiveness in classifying pollutants and low loss values 
indicates a well-functioning model. Thermal images are 
pre-processed with Transverse Dyadic Wavelet Transform 
and denoised with DNCNN optimized with HOA to improve 
the performance of the system. Table 7 shows the 
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comparison of performance metrics of Sentinel-2 Thermal 
image, TxDyWt pre-processing technique, DnCNN 
optimized by HOA and Vision transformer. 

High specificity indicates the effectiveness of model in 
correctly identifying the polluted areas. High precision 
shows that system’s detection of microplastics, oil spills 
and sediments are accurate. Pollutants are correctly 
identified by the model with high recall. High accuracy 
indicates that the overall performance of the system is 
reliable with correct classifications. 

Figure 15 shows the comparison of performance metrics of 
Sentinel-2 thermal image pre-processed with TxDyWT, 
denoised using DnCNN optimized with HOA and images 
classified using Vision Transformer. 

 

Figure 15. Comparison of Performance Metrics of Sentinel-2 

thermal image, TxDyWT pre-processing technique, DnCNN 

optimized by HOA and Vision transformer 

Comparison of Performance Metrics of Sentinel-2 thermal 
image, TxDyWT pre-processing technique, DnCNN 
optimized by HOA and Vision transformer in Figure 14 
shows high accuracy and low loss values indicating 

effective differentiation of microplastics, oil spills and 
sediments. 

4.2. Seawater test bed for Microplastics, Oil spill and 
Sediment detection 

Methods used to pre-process, denoise and classify the 
thermal images of microplastics, sediments and oil spills 
are tested with the image of sea water with pollutants. 
Image sea water with pollutants in a tank is pre-processed 
with Transverse Dyadic Wavelet Transform and DnCNN 
optimized with HOA is used to denoise the image. Figure 
16 Shows the thermal image of seawater test bed pre-
processed with DWT and TxDyWT. 

 

Figure 16. Thermal Image of seawater test bed pre-processed 

with DWT and TxDyWT 

Performance analysis on classification of Marine pollutants 
using optimized DnCNN with Vision Transformer model and 
existing methods is shown in Table 8 and Figure 17 shows 
Comparison of Performance Metrics of existing 
classification methods with proposed ViT 

 

Table 8. Performance analysis- Classification of Marine pollutants using optimized DnCNN with Vision Transformer model and existing 

methods 

Metrics (https://www.erpublications.com/uploaded_files/download/trisha-
karmakar-reetu-jain_zAFaL.pdf-) Microplastics 

[Garcia-
Pineda et 
al. 2020] 
Oil Spills 

[Ozerova et al. 
2023] 

Sediments 

Proposed 
Method 

Specificity 0.65 0.70 0.60 0.98 

Precision 0.70 0.65 0.75 0.93 

Recall 0.60 0.75 0.55 0.92 

Accuracy 0.68 0.70 0.65 0.95 

F1Score 0.65 0.70 0.64 0.93 

AUC 0.75 0.78 0.77 0.90 

 

 

Figure 17. Comparison of Performance Metrics of existing 

classification methods with proposed ViT 

Comparison of Performance Metrics of existing 
classification methods with proposed method shown in 
Figure 17 has high values of specificity indicate the 
effectiveness of model in correctly identifying clean areas. 
Correct prediction of pollution by the model is shown by 
high precision. High recall indicates successful 
identification of majority of pollutants with the model. 
Reliability of the model is enhanced by high accuracy 
reflecting the correct prediction of the model. F1 score 
reflects the balance between precision and recall indicating 
the effectiveness of the model in detecting pollutants. 
Figure 18 shows the images of microplastics, oil spills and 
sediments present in the seawater tested. 

4.3. Ablation study 
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Denoising technique plays an important role in increasing 
the accuracy and to enhance the classification of 
pollutants. Effective denoising is essential for distinguishing 
pollutants and is validated with the findings of proposed 
work on MODAS dataset. Table 9 shows the metrics values 
for MODAS Dataset with Sentinel-2RGB image pre-
processed with Discrete Wavelet Transform (DWR), 
denoised with DnCNN without optimization algorithm and 
with HOA, POA. The integrated methods have low accuracy 
of 79%and low PSNR values. Sentinel-2 thermal images pre-
processed with Transverse Dyadic Wavelet Transform 
(TxDyWT) and denoised DnCNN optimized with Pelican 
Optimization Algorithm has the accuracy values of 81% and 
are subjected to Vision Transformer (ViT) for classification. 
DnCNN optimized with Hippopotamus Optimization 
algorithm denoising the sentinel-2 thermal images pre-
processed with Transverse Dyadic Wavelet Transform 

(TxDyWT)has the accuracy of 95%. Vision Transformers are 
used to classify the images. The proposed method is 
superior in terms of accuracy, recall, specificity, precision, 
F1 score and PSNR (db). DnCNN optimized with HOA is 
overall superior compared to DnCNN and DnCNN-POA. 

 

Figure 18. (a) Microplastics (b) Sediments (c) Oil Spills in 

Seawater testbed 

 

Table 9. Ablation study 

Methodology PSNR(dB) Recall Specificity Precision Accuracy F1 Score 

Sentinel-2RGB image,DWT, DnCNN(Without optimization 

algorithm)ViT 

20.50 0.78 0.80 0.79 0.79 0.785 

Sentinel-2 Thermal image, TxDyWT,DnCNN-POA,ViT (reduced 

computational cost, overfitting) 

30.85 0.80 0.83 0.81 0.81 0.805 

Sentinel-2 Thermal Image, TxDyWT,DnCNN-HOA, ViT (High 

PSNR, faster convergence) 

34.00 0.88 0.95 0.93 0.95 0.925 

 

4.4. Discussion 

Harmful substances are introduced into marine 
environment due to human activities and natural 
processes. The substance introduced in the ocean harms 
ecosystems, disrupts biodiversity and affects the health of 
marine organisms and the human beings who depend on 
marine ecosystems. It is important to classify the pollutants 
to trace back to their origin like industrial waste, 
agricultural runoff and marine activities. Classification of 
pollutants enables targeted action to reduce pollution at its 
source. Thermal images are used for the classification of 

pollutants as the temperature variations helps to identify 
various substances. Thermal images enhance detection 
and improve classification. Stable Diffusion Thermal Image 
Generator is used to generate high-quality thermal images. 
The stable diffusion generator model converts the sentinel-
2 multispectral color image into thermal image through 
guided text generation and sentinel-2 multispectral color 
image. It generates images with realistic thermal texture 
and accurate temperature distribution making it easier for 
classification. 

 

Table 10. Advantages of using proposed Sentinel-2 image based Vision Transformer model 

Methods Characteristics Comparison 

Pre-processing: 

DWT 

Retains structural details of microplastics, oil spills and 

sediments essential for pollutant classification. 

TxDyWT is an advanced version of DWT that 

provides better results. 

Pre-processing: 

TxDyWT 

Provides improved frequency localization and better 

handling of noise, enhancing image quality of 

Microplastics, oil spills and sediments. 

TxDyWT outperforms DWT by maintaining 

more relevant details for classifying 

microplastics, oil spills and sediments. 

Denoising: DnCNN Reduces noise in images of microplastics, oil spills and 

sediments, improving the clarity and quality of data for 

further analysis. 

Accurate classification of subtle pollutant 

patterns. 

Denoising: 

Optimized by POA 

Provides efficient optimization, leading to faster 

convergence and better performance in denoising images 

of microplastics, oil spills and sediments. 

POA is effective but not as robust as HOA in 

certain scenarios 

Denoising: 

Optimized by HOA 

Achieves superior optimization results, leading to 

enhanced denoising capabilities 

HOA is considered the best optimization 

algorithm due to its adaptability and 

efficiency. 

Classification: 

Vision Transformer 

Captures intricate patterns in microplastics, oil 

spills,sediments making it ideal for classifying complex 

pollutants. 

ViT's architecture allows for better 

performance compared to traditional CNNs in 

recognizing subtle differences among 

pollutants. 
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Transverse Dyadic Wavelet Transform (TxDyWT) is used to 
pre-process the images of pollutants. TxDyWT adapts 
dyadic structure enabling finer analysis of the image by 
capturing subtle variations and detecting edges. It captures 
detailed spatial, frequency and directional information 
enhancing the classification process. Denoising 
Convolutional Neural Network (DnCNN) is used to remove 
noise from the images, enhancing image quality for better 
classification. DnCNN is optimized with Hippopotamus 
Optimization Algorithm to achieve higher denoising 
accuracy and improved PSNR metrics in denoised images. 
HO Algorithm optimizes DnCNN to handle various noise 
levels and types and leads to faster convergence. 

Vision Transformers (ViT) is used to classify the marine 
pollutants. ViT identifies the pollutants dispersed in larger 
area by capturing long-range dependencies and global 
context within the images. Self-attention mechanism 
weighs importance of various parts of an image to classify 
the pollutants.  Vision transformers handle images with 
varying dimensions unlike other CNN techniques and 
demonstrate superior performance in classification task. 
TxDyWT, DnCNN-HOA, Vision transformers are integrated 
classify the pollutants. Table 10 shows the advantages of 
using proposed Sentinel-2 image based Vision Transformer 
model. 

5. Conclusion 

The proposed methodology integrates advanced 
techniques to effectively classify microplastics, sediments, 
and oil spills. It combines Stable, Transverse Dyadic 
Wavelet Transform (TxDyWT), and Denoising 
Convolutional Neural Network (DnCNN) optimized using 
the Hippopotamus Optimization Algorithm, along with a 
Vision Transformer for pollutant classification. The 
evaluation of this approach utilizes the MADOS dataset, 
which is derived from remote sensing data. In the pre-
processing phase, TxDyWT demonstrates superior 
performance compared to the traditional Discrete Wavelet 
Transform (DWT). During the denoising stage, the DnCNN 
optimized by the Hippopotamus Optimization Algorithm 
shows enhanced effectiveness. Finally, the Vision 
Transformer successfully classifies the various pollutants. 
The practical application of this method was tested in a 
controlled environment using a Seawater test bed 
containing pollutants, achieved an accuracy of 95%. Future 
research will focus on applying this method to diverse 
datasets and exploring strategies to reduce further ocean 
contamination caused by microplastics, oil spills, and 
sediments. 
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