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Abstract 

This study utilizes the Time-Varying Parameter Vector 
Auto-Regression (TVP-VAR) Connectedness model and 
wavelet coherence analysis to investigate, for the first 
time, the dynamic connection between China's carbon 
market and high-tech industry. The results show an 
overall market Connectedness index of 71.47%, indicating 
significant information transmission across markets. 
However, the carbon market exhibits relatively 
independent characteristics, with spillover coefficients 
generally below 1%. Dynamic analysis reveals that market 
Connectedness fluctuates between 60% and 70%, with a 
narrowing range of fluctuation observed since 2023, 
suggesting the market's increasing maturity. Wavelet 
coherence analysis highlights interaction characteristics 
between the carbon market and various sectors over 
different time scales: in the long-term frequency domain 
(128 days), the carbon market exerts sustained influence 
on sectors such as technology and new energy; in the mid-
term frequency domain (16-64 days), notable periodic 
correlations emerge; and in the short-term high-
frequency domain (4-8 days), active daily trading 
interactions are evident. Net spillover effect analysis 
demonstrates that the Advanced Manufacturing Index 
and High-End Equipment Index act as primary sources of 

information transmission, while the carbon market 
primarily absorbs impacts from other markets. These 
findings have significant policy implications for improving 
carbon market mechanisms, promoting low-carbon 
industrial transitions, and fostering high-tech industry 
development. They also provide valuable references for 
investors in asset allocation and risk management. 

Keywords: carbon market; connectedness; tvp-var model; 
wavelet coherence; high-tech industry 

1. Introduction 

Against the backdrop of intensifying global climate 
change, China as the world's largest emitter of 
greenhouse gases, faces unprecedented pressure to 
reduce emissions (Lian and Li 2024; Wu et al. 2024; Zeng 

et al., 2024). To achieve its dual carbon goals—peaking 

carbon emissions by 2030 and attaining carbon neutrality 

by 2060—the Chinese government has introduced a series 

of major policy measures. Among them, the nationwide 
Carbon Emission Allowance (CEA) trading mechanism 
stands out as a landmark market-based tool. Since the 
launch of China's carbon allowance trading market as a 
regional pilot project in 2011, its development has 
continued to mature and improve after the establishment 
of a unified national market in 2017 and the opening of 
online trading on 16 July 2021. As an important part of the 
green financial system, the carbon allowance trading 
market dominates the allocation of carbon resources 
through the CEA system trading mechanism, allocating 
progressively reduced emission allowances to enterprises 
through competitive bidding, with the aim of guiding and 
positively incentivising enterprises to adopt low-carbon 
production methods with a view to achieving the goal of 
industrial carbon emission reduction. 

At the same time, China's high-tech industry is booming, 
and its position in the global technology industry 
landscape is becoming increasingly prominent 
(Appelbaum et al., 2018; Zeng et al., 2023). As the Chinese 
government and business community continue to invest 
in high-tech fields such as new energy, semiconductors 
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and advanced manufacturing, and the industrial sector is 
closely related to carbon emissions, the expected complex 
interaction between high-tech industries and the carbon 
market can be expected to form (Zhang et al. 2013; Wu 
and Li, 2024). On the one hand, high-tech firms that emit 
GHGs during industrial production are undoubtedly 
affected by carbon market policies (Leggett et al., 2019; 
Zeng, 2024). On the other hand, the technological 
revolution and innovations generated by high-tech 
industries, especially the implementation and application 
of cutting-edge management methods such as artificial 
intelligence, have allowed us to provide strong 
technological and ecological support for carbon emissions 
monitoring, quota allocation, and trading management, 
which has strongly contributed to the digital 
transformation of the carbon trading market (Chatterjee 
et al., 2023; Lu and Zeng, 2023). All in all, this two-way 
potential linkage makes the risk transmission mechanism 
and price linkage between the carbon trading market and 
the high-tech industry increasingly significant. 

Specifically, the practical implications of this study are 
threefold. First, this study provides valuable insights for 
policymakers to design more effective carbon market 
regulations that take into account the unique 
characteristics of high-tech industries. Second, we can 
help investors better understand the risk transmission 
mechanism across carbon emissions trading and high-tech 
markets, thereby helping them make more informed 
investment decisions. Third, we can provide guidance to 
high-tech firms in managing their carbon assets and 
effectively developing emission reduction strategies. 

However, existing studies have mainly focused on the 
European Union Emissions Trading System (EU ETS), and 
few studies have checked the complex dynamic linkages 
between Chinese carbon market and other markets. To fill 
this key research gap, this paper selects representative 
high-tech industry indicators such as Everbright China 
Manufacturing 2025 Index, China Technology 100 Index, 
China New Energy Index, China Advanced Manufacturing 
Index and China High-end Equipment Index. Then the 
connectedness structure and time-frequency links 
between the CEA market and various segments of China's 
high-tech industry are systematically investigated using 
the TVP-VAR connectedness model and wavelet 
coherence estimate. 

Among them, the TVP-VAR connectedness model has the 
following significant advantages over traditional VAR-
based connectedness models: first, it not only captures 
the time-varying characteristics of the dynamic 
relationships between markets, but also quantifies the 
spillover effects through the extended connectedness 
metrics, which more accurately depicts the complex 
interdependencies between markets (Wu et al., 2025). In 
addition, by integrating wavelet coherence analysis, this 
study investigates the lead-lag linkages between markets 
in the short and long term in the time-frequency domain 
(Lu et al., 2023). 

Based on the theoretical analyses and existing literature, 
this study proposes the following core hypotheses. 

H1 (Time-varying correlation hypothesis): 

The correlation between China's CEA market and China's 
high-tech industry segments exhibits significant time-
varying characteristics, with the strength of the 
relationship fluctuating in response to market conditions 
and policy changes. This hypothesis rests on several key 
theoretical foundations: first, the evolutionary nature of 
China's CEA market suggests a dynamic pattern of 
integration with other financial markets as the market 
matures. Second, the rapid development of high-tech 
industries and the growing concern of market participants 
about their environmental sustainability suggest that their 
interaction with the carbon market may change over time 
and over the term of the transaction. Third, the gradual 
implementation of carbon emission-related policies and 
advances in carbon emission monitoring technology can 
be expected to result in dynamic changes in inter-market 
linkages. 

The validation of the above hypotheses will help 
academics and market participants gain a deeper 
understanding of the non-linear dynamic interaction 
mechanism between China's carbon emission market and 
high-tech industries. The primary innovation of this study 
lies in the first-time application of the extended TVP-VAR 
Connectedness analysis framework to explore the 
connection between Chinese carbon market and high-tech 
industry. This framework not only captures the dynamic 
evolution of inter-market relationships but also accurately 
quantifies directional spillover effects between different 
markets. Furthermore, by integrating wavelet coherence 
analysis, this study examines short-term and long-term 
linkages between markets within the time-frequency 
domain, providing a new perspective for understanding 
multi-scale interaction relationships. These findings not 
only enrich related theoretical research but also offer 
crucial empirical evidence for regulatory authorities to 
formulate differentiated policies and for investors to 
manage risks effectively. The empirical analysis of this 
study reveals that although China’s carbon market has 
integrated into the financial market system, it still 
operates with relatively independent characteristics. The 
Total Connectedness Index is 71.47%, indicating 
significant information transmission across markets. 
However, the spillover coefficients of the carbon market 
generally remain below 1%, reflecting its limited 
susceptibility to external shocks. Dynamic analysis shows 
that market Connectedness fluctuates steadily within the 
60%-70% range, with a further narrowing of volatility 
observed in 2023, signifying the market’s increasing 
maturity. Wavelet coherence analysis highlights the 
interaction characteristics of the carbon market with 
different sectors across various time scales. In the long-
term frequency domain, the carbon market exhibits 
sustained influence on the technology and new energy 
sectors. In the mid-term frequency domain, significant 
periodic correlations are observed. In the short-term high-
frequency domain, active daily trading interactions are 
evident. Net spillover effect analysis shows that the High-
End Equipment Index and the Advanced Manufacturing 
Index act as primary sources of information transmission, 



 

while the carbon market mainly absorbs impacts from 
other markets. These findings deepen the understanding 
of the operational mechanisms of the carbon market and 
provide critical references for policy formulation and 
investment decision-making.  

This work makes several theoretical contributions to the 
existing literature. First, it extends the application of TVP-
VAR Connectedness analysis to a novel context, providing 
insights into the dynamic relationships between carbon 
and high-tech markets. Second, we combines wavelet 
coherence analysis, offering a multi-dimensional 
perspective on market interactions. Third, it advances our 
understanding of how emerging carbon markets integrate 
with established financial systems, particularly in the 
context of developing economies. 

The remainder of this paper is organized as follows. The 
second section reviews the relevant literature. The third 
section introduces the data sources and research 
methodology. The fourth section presents the empirical 
results and provides a discussion. The final section 
concludes the paper and offers policy recommendations. 

2. Literature review 

The carbon market, as a crucial governance mechanism to 
address climate change, has been the focus of academic 
research, particularly its effectiveness and market 
linkages. Existing studies primarily explore the carbon 
market's interaction with the energy market, the impact 
of carbon market attention, and the transmission 
mechanisms of market uncertainty. Millischer et al. 
(2023), through empirical analysis, found that China's 
regional carbon emission trading markets exhibit 
significant negative net spillover effects, which are 
particularly pronounced in the short term. This finding 
suggests that regional carbon markets in China may not 
be operating as efficiently as intended, potentially due to 
market fragmentation and varying levels of market 
maturity across regions. Notably, since 2018, the spillover 
effects of the natural gas market on the carbon trading 
market have surpassed those of the coal market, 
indicating a structural shift in energy market dynamics and 
their influence on carbon pricing mechanisms. 

Li et al. (2024) explored the risk spillover and correlation 
relationship between U.S. business development and 
clean energy, concluding that clean energy significantly 
impacts the ADS index both in the short term and long 
term. This bilateral relationship demonstrates the gradual 
integration of carbon and sustainable energy 
considerations into mainstream portfolios, highlighting 
the growing importance of understanding the dynamics of 
cross-sustainability and other financial assets in the 
context of the current sustainability transition. 

Moreover, it is an interesting indicator for market 
attention. Zheng et al. (2022) investigated the correlation 
between carbon market attention and returns on EU 
carbon allowances (EU ETS). Their study found a 
significant negative correlation between the two and 
showed a lagged effect of increasing and then decreasing 
under bullish market conditions. They conclude that this 

pattern is significantly different from the pattern of 
correlations in traditional financial markets, where 
increased market attention is usually followed by positive 
price performance changes. This heterogeneous result 
suggests that carbon markets are subject to unique 
market psychology and different regulatory frameworks. 

Regarding the exploration of the transmission mechanism 
of market uncertainty, Liu et al. (2023) further explored 
the risk transmission relationship between carbon and 
energy markets. Their study shows that global economic 
turmoil and major risk events significantly affect volatility 
correlations and spillover indices. This high sensitivity to 
macroeconomic and financial factors distinguishes carbon 
markets from other commodity markets, which highlights 
their dual attributes as environmental policy instruments 
and financial instruments. In particular, the coal market 
exhibits the strongest volatility link with the carbon 
market, while spillovers from the renewable energy 
market to the carbon market are also observed to be 
increasing. In addition, from the perspective of structural 
evolution, carbon markets have transformed from 
information receivers to information disseminators. This 
evolution reflects the growing maturity of carbon 
markets. 

On the other hand, through VAR-Base's connectedness 
index model, Xia et al. (2022) find that China's carbon 
trading market mainly acts as a risk taker, with its risks 
mainly coming from high-carbon emitting industries. 
However, this risk transmission relationship may be 
reversed under external risk shocks, especially during 
major events such as the U.S.-China trade war and COVID-
19. 

At the same time, the interaction between the high-tech 
industry and the carbon trading market has inevitably 
attracted increasing attention from both the academic 
and practical communities Li et al. (2022), using a PSM-
DID model, revealed that carbon emission trading policies 
significantly promote green technological innovation in 
firms, although this impact varies significantly by region 
and enterprise type. This heterogeneous effect suggests 
that market-based environmental policies may need to be 
complemented by targeted innovation support measures 
to achieve optimal outcomes across different contexts. 
Nie et al. (2022) uncovered significant short-term spillover 
effects among clean energy and technology stocks, and 
index of carbon allowances, with technology stocks 
exerting a particularly prominent influence on renewable 
energy stocks. Qi et al. (2022) further confirmed the high-
tech industry's dominant position in market systems, 
acting as a primary propagator of shocks to other 
variables. This finding positions the high-tech sector as a 
potential catalyst for market-wide transitions toward low-
carbon development. 

In terms of environmental impacts, Rasool et al. (2022) 
found a significant negative correlation between the 
development of China's high-tech industry and 
environmental degradation, indicating that the 
advancement of the high-tech sector contributes to 
environmental improvement. This relationship suggests 



 

that technological advancement and environmental 
protection can be mutually reinforcing, challenging the 
traditional trade-off narrative between economic 
development and environmental conservation. 

While currently available research has delved into the 
dynamics between carbon markets and other financial 
markets, there remains a critical gap in research on the 
linkages between carbon markets and high-tech stock 
markets. This gap provides a key entry point for this study. 

3. Methodology and data 

3.1. TVP-VAR connectedness method 

Antonakakis et al. (2020) developed the connectedness 
framework introduced by Diebold and Yılmaz (2012; 2014) 
into a TVP-VAR method. This version of connectedness 
method was designed to accurately measure the 
dynamics of connectedness. By utilizing a rolling window 
technique, it allowed for the calculation of spillover 
indices that changed over time while maintaining the 
integrity of the initial sample estimations. Furthermore, it 
was robust against the influence of outliers in the dataset. 
Let us assume an N-dimensional TVP-VAR framework with 
p lags: 
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Where Yt = (y1,t, y2, t, , yN−1, t, yN, t) is an N × 1 vector 
indicating N dimensional market returns at time t, and Xt−1 

is a Np by 1 matrix, which equals to (Yt−1, Yt−2, , Yt−p) 
denoting the past values of Yt with p lags. In this article, 
we select the lag order p by applying the BIC. At is a N by 
Np matrix containing the coefficient matrix with p lags. 

Namely, At = (A1t, A2t, , Apt). More specifically, in the 
matrix At, each N columns of matrix, Amt, is an N by N 
parameter matrix measuring the effect of Yt−m, where m 
=1…p. vec (At) is an N2 p by 1 dimensional vector denoting 

the vectorisation of At. In addition, εt and t are error 

vectors with zero mean, and t−1 is the set of information 

available at t−1. Finally, t and t are the dynamic 

variance covariance matrices of εt and t. 

The fundamental concept behind the spillover index 
method was to gauge the H-step ahead GFEVD using the 
TVP-VAR(p) model, as outlined below: 
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p
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B0, t is the unit matrix and Bh, t = 0 when h<0; Accordingly, 
the H step-head GFEVD is calculated as follows: 
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Where k are N × 1 selection vectors with the k-th 

parameters are 1, otherwise 0;j works in the same 

manner. When j  k, jk, t(H) denote the share of the H-
step prediction error variance j due to impacts of k. To 

define that the amount of variables in every row is 1, we 
normalize each entry: 
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ensure the dynamic TCI at time t in the TVP-VAR structure 
as: 
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TCI could be applied to account the total strength of 
connectedness between all the assets in the system. 
Further, we can also explore the connection between 
markets by calculating the directional spillover effect. The 
directional spillover effect measures the market j receives 

from other assets at time t as follows： 
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The natural way to measure directional overflow from 
asset j to all the other assets at time t is then as follows: 
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Next, to calculate the net directional connectedness of the 
variables, i.e. the difference between the directional TO 
and FROM connectedness, we calculated this as: 

( ) ( ) ( ), *, *,j t j t j tNET H TO H FROM H→ = −
 

(8) 

It can be seen from the equation (8): A positive net 
connecteness index indicates that asset j is a net transfer 
shock to other variables, otherwise it is a net recipient. 
Finally, to assess the connectedness between two specific 
assets, we establish the net pairwise directional 
connectedness (NPDC) between market j and k as: 
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(9) 

Similarly, a positive NPDC indicates that the 
connectedness k to j is stronger than the spillover effect 
to, denoting that market j dominates the return 
transmission with k, and vice versa. 

3.2. Wavelet coherence 

Following the definition of Torrence and Compo (1998), 
we let WC equals to 
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where Wxy (a, b) = Wx (a, b) Wy (a, b) is indicated as the 
cross wavelet transform and S stands for the smoothing 

parameter, 0  Rxu
2(a, b) 1. 

Then the phase difference in the wavelet as, 
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Where, Im and Re indicate the imaginary and real sections 

of the smoothed power spectrum. The phase xy offers 
understandings into the connection and potential leading-
lag causality between two markets. 

This study uses daily data spanning from July 19, 2021, to 
May 22, 2023, including the price of China’s national 
carbon emission allowances (CEA) and five representative 
high-tech-related indices: the Everbright China 
Manufacturing 2025 Index (GD), the China Tech 100 Index 
(TECH), the China New Energy Index (NE), the China 
Advanced Manufacturing Index (AM), and the China High-
End Equipment Index (HE). The data is sourced from the 
Wind Financial Database. The starting date of the sample 
is determined based on the official launch of trading in 

China’s national carbon market, while the end date 
corresponds to the latest available data. 

The descriptive statistics in Table 1 indicate that the 
average returns of the six indices are generally low, with 
the TECH index showing the worst performance (-0.074) 
and the NE index demonstrating the best performance 
(0.012). Additionally, the NE index has the highest 
variance (4.21), reflecting a higher risk profile, while the 
GD index has the lowest variance (0.595), indicating 
relative stability. Skewness data reveal that the CEA index 
exhibits the most pronounced right-skewed distribution 
(0.345), whereas the HE index shows the most 
pronounced left-skewed distribution (-0.351). In terms of 
kurtosis, the CEA index significantly surpasses the others 
(6.308), suggesting a sharper peak in its return 
distribution. The Jarque-Bera test results are all significant 
at the 1% level, indicating that the return distributions of 
all indices deviate from normality. Moreover, the ERS unit 
root test results are all significantly negative at the 1% 
level, suggesting that all-time series are stationary and 
suitable for subsequent econometric analysis. 

 

Table 1. Descriptive statistics 

 CEA GD HE NE TECH AM 

Mean -0.052 -0.02 -0.008 0.012 -0.074 -0.052 

Variance 3.913 0.595 2.25 4.21 2.306 2.88 

Skewness 0.345 -0.017 -0.351 0.082 0.005 0.043 

Kurtosis 6.308 1.391 1.663 1.026 1.126 1.469 

JB 746.682*** 35.911*** 60.399*** 20.013*** 23.502*** 40.128*** 

ERS -3.571*** -5.587*** -9.877*** -8.635*** -9.718*** -6.741*** 

Notes: The JB (Jarque-Bera) test is used to test whether the series follows a normal distribution, and the ERS (Elliott-Rothenberg-Stock) 

test is used to test for the presence of a unit root (i.e., to test for the smoothness of the series), where *** denotes that it is significant 

at the 1% significance level. 

Table 2. Granger causality test results 

Variable CEA to Others Others to CEA 

GD 2.3042 10.7957 

HE 7.3227 10.1215 

NE 8.7984 9.4408 

TECH 7.8594 10.1947 

AM 8.5012 9.8527 

Notes: The critical F-statistic value at the 5% significance level is 2.21 

 

According to the Granger causality results in Table 2, 
there exists significant bidirectional causality between all 
high-tech industries and CEA. The influence of high-tech 
industries on CEA is generally stronger than the reverse 
effect, with GD exhibiting the most substantial impact on 
CEA (10.7957). The bidirectional relationship between NE 
and CEA demonstrates the highest degree of balance, with 
F-statistics of 8.7984 and 9.4408, respectively. All F-
statistics exceed the critical value of 2.21 at the 5% 
significance level, indicating statistical significance across 
all relationships. 

4. Empirical results 

From the perspective of static Connectedness presented 
in Table 3, the TVP-VAR Connectedness model reveals the 
degree of mutual influence among different variables. The 

values in the table show a strong connection between the 
China AM, the TECH, and the GD Index, with most of the 
transmission coefficients between them exceeding 20%. 
Notably, the transmission coefficient from GD to TECH is 
27.74%, from TECH to GD is 25.79%, and from AM to TECH 
is 23.54%. These high transmission coefficients indicate a 
close mutual influence among these variables. In contrast, 
the Connectedness between the CEA market and other 
variables is weaker, with transmission coefficients 
generally below 1%. The highest external transmission 
from CEA is only 0.9% (to the China New Energy Index, 
NE), indicating that the carbon market is relatively 
independent and less affected by the fluctuations of other 
indices.  

Examining the FROM column, it can be observed that the 
FROM values for AM, GD, and TECH are all above 87%, 



 

indicating that these indices are significantly influenced by 
other variables in the system.  

A particularly noteworthy observation is the Total 
Connectedness Index (TCI) of 71.47%, which suggests that, 
on average, 71.47% of the forecast error variance during 
the sample period is driven by interactions among the 
variables rather than by shocks specific to individual 
variables. In other words, over 70% of market dynamics 
arise from the mutual interactions of variables, reflecting 
a highly integrated market system. When compared to TCI 
values reported in similar studies of financial markets, 
which typically range from 50% to 65%, this relatively high 
level of connectedness indicates that the carbon market 
has achieved a substantial degree of integration with 
other market segments. However, the remaining 
approximately 30% of variance attributable to individual 
shocks suggests that there is still room for further market 
development and maturation. This intermediate level of 
integration might reflect the carbon market's unique 
position as both a policy-driven environmental tool and a 
financial instrument, where market forces operate within 
regulatory constraints. Higher TCI values emphasise that 
investors should focus on the systematic risk among 
indices rather than the relative importance of individual 
indices in the system when making investment decisions 
(Zeng and Ahmed, 2024). 

From the point of view of NET, HE and AM are the net 
spillover senders and their net spillover values are 5.31% 
and 5.48% respectively, indicating that these two indices 
are the most significant shocks to the other indices in the 
system. In contrast, the GD Index and CEA are net 
receivers, with NET values of -5.82% and -1.92%, 
respectively, reflecting that they primarily absorb shocks 
from other indices.  

Looking at the TO column, the TO values for AM and TECH 
are 94.79% and 89.47%, respectively, further confirming 
their roles as key sources of information transmission.   

Further analysis of the Net Pairwise Connectedness 
(NPDC) ranking shows that HE, AM, and TECH rank as the 
5th, 4th, and 3rd most significant indices, respectively. 
These rankings align with their NET values and 
transmission coefficients, reflecting their importance in 
the system. From the overall transmission structure, the 
relationships among indices exhibit clear hierarchical 
characteristics. Upstream indices, such as AM and HE, 
dominate the direction of information transmission, while 
downstream indices, such as the GD Index and CEA, 
primarily act as receivers, absorbing and responding to 
these impacts. 

 

Table 3. Connectedness Table 

 CEA GD HE NE TECH AM FROM 

CEA 96.95 0.79 0.27 0.9 0.53 0.56 3.05 

GD 0.39 11.01 19.84 14.44 27.74 26.58 88.99 

HE 0.11 17.94 18.45 21.94 19.8 21.76 81.55 

NE 0.16 14.54 24.51 21.16 17.87 21.77 78.84 

TECH 0.23 25.79 20.44 16.52 12.89 24.12 87.11 

AM 0.24 24.12 21.8 19.63 23.54 10.69 89.31 

TO 1.13 83.17 86.86 73.43 89.47 94.79 428.85 

NET -1.92 -5.82 5.31 -5.42 2.36 5.48 TCI=71.47% 

NPDC 0 2 5 1 3 4  

Notes: TCI indicates the total connectedness index 

 

 

Figure 1. Dynamic TCI 

From the perspective of dynamic Connectedness, Figure 1 
illustrates the overall Connectedness changes within the 
market system during the sample period. The upper 
boundary of the black-shaded area in the figure shows 
that Connectedness levels generally fluctuate within the 
60-70% range. This relatively stable range indicates that 

the information transmission mechanisms among market 
indices operate smoothly, with the system demonstrating 
strong resilience. Over the time dimension, a slight decline 
in Connectedness levels can be observed in the first half 
of 2022, gradually decreasing from approximately 70% to 
around 65%. This may reflect a temporary weakening of 
the linkage among market sectors during that period. In 
the second half of 2022, the Connectedness levels 
stabilized and slightly rebounded, reaching a small peak 
by the end of 2022. Entering 2023, the Connectedness 
levels remained relatively stable, consistently hovering 
around 70%, with further narrowing of the fluctuation 
range.  

These dynamic characteristics convey several important 
insights. First, the Connectedness level of 60-70% 
indicates significant mutual influence among market 
indices, but the degree of influence is not sufficient to 
trigger severe market volatility. Second, the relative 
stability of Connectedness levels suggests that the 



 

fundamental structure of the market remained 
unchanged during the observation period, which helps 
market participants form stable expectations. Lastly, the 
gradual narrowing of fluctuations may imply an 
improvement in market maturity, with inter-index 
relationships becoming more normalized.  These 
observations support the confirmation of H1. 

From the dynamic perspective of NET shown in Figure 2, 
the indices exhibit varying spillover characteristics and 
trends between 2022 and 2023. The TECH demonstrates a 
transition from weak net spillover to strong net spillover. 
During 2022, its net spillover effect remained relatively 
stable and weak, but entering 2023, particularly in the 
latter half of the year, the net spillover effect 
strengthened significantly, indicating a growing influence 
of TECH on other indices. This transformation reflects the 
technology sector's evolving role in China's economic 
landscape. The strengthening spillover effect suggests 
that the tech sector has become increasingly central to 
market dynamics, potentially due to its pivotal role in 
driving digital transformation and green innovation. The 
timing of this shift is particularly noteworthy as it 
coincides with China's intensified focus on indigenous 
technological development and the implementation of 
various supportive policies for high-tech industries. The 
driver behind this change may be related to the strong 
performance of China's tech sector in recent times. 

In addition, we note that AM exhibits significant volatility. 
It reaches a high level of net spillovers (around 10 per 
cent) in the first half of 2022, followed by a significant 
decline, but then shows signs of recovery towards the end 
of 2023. This change may indicate that while AM generally 
maintains a net spillover effect, the intensity of its impact 
adjusts dynamically over time. The China High-End 
Equipment Index (HE) shows relatively stable net spillover 
characteristics, with values mostly remaining positive and 
with small fluctuations. This suggests that HE consistently 
acted as a stable information transmitter throughout the 
sample period. 

In contrast, the GD Index and the China New Energy Index 
(NE) mostly acted as net receivers. The GD Index 
maintained a negative NET value throughout the period, 
with its net receiver role strengthening toward the end of 
2023. NE demonstrated even more pronounced net 
receiver characteristics, particularly with a significant 
negative NET value in early 2022. Although its position 
improved slightly later, it still predominantly acted as a 
net receiver. 

The CEA market exhibited the most stable characteristics, 
with a narrow NET value range consistently hovering 
around slight negative values. This aligns with its relatively 
independent market nature. These dynamic evolutionary 
characteristics indicate that while the overall market 
Connectedness level (TCI = 71.47%) remains stable, the 
influence relationships among individual indices are 
dynamically changing. In particular, the rising influence of 
the TECH sector and the cyclical fluctuations of AM reflect 
subtle structural changes in the market. For investors, this 
dynamic feature carries significant implications, as it 

suggests potential shifts in market leadership roles. This 
may necessitate timely adjustments to risk management 
strategies to align with the evolving market dynamics. 

 

Figure 2. Dynamic NET of all indices 

From the analysis of Net Pairwise Directional 
Connectedness (NPDC) in Figure 3, the dynamic 
interactions between the CEA market and other indices 
exhibit distinct characteristics. The relationship between 
CEA and NE is particularly pronounced. We note that the 
net effect of NE on CEA reaches its lowest value of about -
4 per cent in mid-2022, and although this improves as we 
move into 2023, the net effect is still negative. 

On the other hand, the connectedness between CEA and 
the GD index also shows a significant negative correlation, 
with a nadir of about -2 per cent in mid-2022. In contrast, 
the relationships between CEA and the TECH as well as 
the China AM are relatively weaker, with fluctuations 
mostly ranging between -1% and 0. This suggests that 
while the development of the technology and advanced 
manufacturing sectors is linked to the carbon market, the 
degree of influence is relatively limited. This may be 
because these sectors inherently emphasize energy 
efficiency and emissions reduction, resulting in a lower 
dependency on carbon allowances.   

The relationship between CEA and the China High-End 
Equipment Index (HE) is the most stable, with the smallest 
fluctuation range, consistently remaining in a slightly 
negative range. This indicates that the development of the 
high-end equipment manufacturing sector has a relatively 
mild and stable impact on the carbon market.   

Overall, the figure demonstrates that the carbon market 
primarily acts as a net receiver, consistent with the earlier 
NET analysis. The impact of different sectors on the 
carbon market varies significantly, with the most notable 
effects coming from the new energy and traditional 
manufacturing sectors. These relationships generally 
stabilized in 2023, supporting the confirmation of H2.   

These findings offer critical insights for market 
participants and policymakers. The carbon market's 
pricing mechanism is influenced by multiple related 
markets, particularly the significant impact of the new 
energy sector, which underscores the need for carbon 
market participants to closely monitor developments in 
the new energy industry. The negative association with 
traditional manufacturing suggests that the carbon 
market may face pricing pressures during the 



 

manufacturing sector's transformation and upgrading. In 
contrast, the weaker correlation with high-tech and 
advanced manufacturing sectors indicates that these 
industries may have already adapted well to carbon 
reduction requirements. Future efforts may need to focus 
more on supporting emission reduction transitions in 
traditional industries. 

 

Figure 3. NPDC of CEA and other indices 

From the color-coded network diagram in Figure 4, the 
roles of each index in the spillover effects are more clearly 
illustrated. Blue nodes represent spillover transmitters, 
including the China High-End Equipment Index (HE), the 
TECH, and the China AM. These indices predominantly 
transmit information and shocks to other markets. Yellow 
nodes represent spillover receivers, including the CEA 
market, the China New Energy Index (NE), and the GD 
Index. These indices mainly absorb impacts from other 
markets.   

Particular attention should be given to the position and 
color of CEA. As a yellow node, CEA not only occupies a 
peripheral position in the network but is also connected 
to the network solely through NE. This structural feature 
conveys two key insights. First, CEA’s role as a spillover 
receiver is evident, consistent with the negative NET 
values observed in earlier analyses. Second, its connection 
to the network through another spillover receiver (NE) 
reflects a “weak-to-weak” linkage structure, which may 
exacerbate its sensitivity to external shocks.   

In terms of transmission pathways, information primarily 
flows from blue nodes (HE, TECH, AM) to yellow nodes. 
CEA receives influences indirectly through NE as an 
intermediary node. This indirect transmission pathway 
could dilute the intensity of external shocks, explaining 
why CEA, despite being a net receiver, is relatively less 
affected by spillovers.   

This structured spillover pattern provides a novel 
perspective for understanding the price formation 
mechanisms of the carbon market. It also highlights that 
the future development of the carbon market may benefit 
from strengthening direct connections with information-

dominant blue nodes (transmitters) to enhance market 
efficiency and pricing capabilities. 

Figure 4. Network spillover structure of CEA and other indices 

Figure 5 illustrates the dynamic relationship between 
China’s CEA trading market and the TECH during the 
observation period. In the long-term frequency domain 
(128 days), a sustained high-correlation region (deep red) 
is observed from the fourth quarter of 2022 to early 2023, 
indicating a significant long-term impact of the carbon 
market on the technology sector. In the mid-term 
frequency domain (16-64 days), several regions of strong 
correlation are also evident, particularly in mid-2022, 
reflecting the phase-specific influence of carbon market 
price fluctuations on the technology sector.   

In the short-term high-frequency domain (4-8 days), 
multiple scattered regions of high correlation appear, 
notably in early 2023, highlighting the active short-term 
interaction between the two markets during daily trading 
activities.   

These multi-layered correlation characteristics suggest 
that the carbon market is driving the transition of 
technology enterprises toward low-carbon and 
environmentally friendly development through price 
mechanisms. 

 

Figure 5. Wavelet coherence between CEA and TECH 



 

Notes: The spectrum displayed colour transitions varying 
from crimson (elevated consistency) to azure (reduced 
consistency), which illustrated movement correlations. 
Crimson demonstrated robust parallel shifts, whereas 
azure exhibited minimal synchronisation. Directional 

markers → and  revealed synchronous and 
asynchronous market yield patterns, correspondingly. 
Synchronous (asynchronous) patterns reflected 
affirmative (adverse) linkages amidst market yields. 

Moreover, (     ) highlighted leading preceding 

parameters; (     ) and (     ) emphasised leading 

subsequent parameters; whilst (     ) manifested leading 
preceding parameters. Such interpretative guidelines 
remained uniform across all graphical presentations. 

Figure 6 reveals the multi-layered correlation 
characteristics between China’s CEA trading market and 
the China New Energy Index (NE) during the observation 
period. In the long-term frequency domain (64 days), a 
prominent high-correlation region emerges in mid-2022, 
indicating a sustained impact of the carbon market on the 
new energy sector.   

In the mid-term frequency domain (16-32 days), several 
significant correlation regions are observed, particularly in 
the fourth quarter of 2022, reflecting the phase-specific 
influence of carbon market price fluctuations on the new 
energy sector.   

In the short-term high-frequency domain (4-8 days), 
multiple scattered high-correlation regions appear, with 
notably stronger correlations (deep red regions) in early 
2023, suggesting close short-term interactions between 
the two markets during daily trading activities.   

These multi-layered correlation patterns demonstrate 
that the development of the carbon market is effectively 
fostering innovation and market expansion in the new 
energy sector through market mechanisms. 

 

Figure 6. Wavelet coherence between CEA and NE 

Figure 7 highlights the dynamic correlation characteristics 
between China’s CEA trading market and the HE index 
from the fourth quarter of 2022 to early 2023. In the long-
term frequency domain (128 days), the correlation is 
relatively weak. However, in the mid-term frequency 
domain (16-32 days), a significant high-correlation region 
emerges, particularly in the second half of 2022, indicating 

that fluctuations in carbon market prices have had a 
substantial impact on the high-end equipment sector.  

In the short-term high-frequency domain (4-8 days), 
multiple scattered high-correlation regions are observed, 
with particularly strong correlations in early 2022, 
reflecting the close short-term interactions between the 
two markets during daily trading activities.  

 

Figure 7. Wavelet coherence between CEA and HE 

Overall, these dynamic correlation characteristics suggest 
that the carbon market, through price signals and policy 
guidance, is driving the transformation of China’s high-end 
equipment manufacturing industry toward more 
environmentally friendly and low-carbon practices. 

Figure 8 depicts the complex dynamic relationship 
between China’s CEA trading market and the GD from the 
fourth quarter of 2022 to early 2023. In the long-term 
frequency domain (128 days), significant correlation 
regions (red areas) are observed, reflecting the sustained 
influence of the carbon market on the transformation of 
the manufacturing sector. 

 

Figure 8. Wavelet coherence between CEA and GD 

In the mid-term frequency domain (16-32 days), several 
notable correlation regions emerge, particularly the high-
correlation region in mid-2022, indicating the phase-
specific impact of carbon market price fluctuations on the 
manufacturing index.   

In the short-term high-frequency domain (4-8 days), 
multiple scattered high-correlation regions are observed, 



 

illustrating the short-term linkage effects between the 
two markets during daily trading activities.   

These multi-layered correlation characteristics indicate 
that, as an emerging yet pivotal financial market, carbon 
emissions trading is exerting a substantive impact on the 
green transformation of China’s manufacturing sector 
through price signals and policy guidance. 

Figure 9 illustrates the multi-layered correlation 
characteristics between China’s CEA trading market and 
the AM during the observation period. In the long-term 
frequency domain (128 days), strong correlation regions 
(red areas) are observed from the fourth quarter of 2022 
to early 2023, reflecting the profound impact of the 
carbon market on the long-term development trajectory 
of the advanced manufacturing sector.  

In the mid-term frequency domain (16-32 days), several 
significant correlation regions emerge, particularly in mid-
2022, indicating the noticeable mid-term effects of carbon 
market price fluctuations on the advanced manufacturing 
index.  

In the short-term high-frequency domain (4-8 days), 
numerous scattered high-correlation regions (small red 
patches) are observed, highlighting frequent interactive 
relationships between the two markets in daily trading 
activities.  

These multi-dimensional correlation features suggest that 
the carbon market, as an emerging financial instrument, is 
exerting a profound influence on the low-carbon 
transformation and innovative development of China’s 
advanced manufacturing sector through market 
mechanisms. 

 

Figure 9. Wavelet coherence of CEA and AM 

5. Conclusions 

The findings of this study reveal a complex and dynamic 
interaction between China’s carbon market and the high-
tech industry. The Total Connectedness Index (TCI) 
reached 71.47%, indicating a significant mechanism of 
information transmission across markets. This high level 
of market integration suggests that over 70% of market 
changes are driven by interactions between variables. 
However, the carbon market exhibits relatively 
independent characteristics, with outward transmission 
coefficients generally below 1%, peaking at only 0.9% (to 
the China New Energy Index). This unique market feature 
suggests that while the carbon market has become an 

integral part of the financial market system, it still 
maintains a relatively independent operating mechanism.  

From the perspective of dynamic Connectedness, the 
market system as a whole fluctuates within a stable range 
of 60-70%, demonstrating strong system resilience. 
Notably, the stabilization trend beginning in the second 
half of 2022, coupled with further stabilization and 
narrowing fluctuations in 2023, reflects a maturing 
market. The transition of the TECH from weak to strong 
net spillover and the cyclical fluctuations of the China AM 
suggest subtle changes in market structure.  

Wavelet coherence analysis further reveals the interaction 
characteristics of the carbon market with various sectors 
across different time dimensions. In the long-term 
frequency domain (128 days), the carbon market exerts 
sustained influence on sectors such as technology and 
new energy, particularly prominent from the fourth 
quarter of 2022 to early 2023. In the mid-term frequency 
domain (16-64 days), the appearance of multiple 
significant correlation regions reflects the phase-specific 
impacts of carbon market price fluctuations on different 
sectors. In the short-term high-frequency domain (4-8 
days), scattered regions of high correlation indicate active 
daily trading interactions among markets. This multi-
layered correlation structure underscores the real-world 
role of the carbon market in driving low-carbon transitions 
across industries through price mechanisms.  

For policymakers, the findings offer several key policy 
implications. First, policymakers need to further improve 
the underlying system of the carbon market in response 
to changes in the market environment. This may often 
include optimising the quota allocation mechanism, 
continuously improving the trading rules and 
strengthening the timely regulation of potential emerging 
issues or emergencies. Second, policymakers need to 
continuously improve the liquidity and price discovery 
function of the carbon market. This may be achieved by 
introducing multiple market players and developing more 
carbon financial derivatives. 

For investors, it is recommended to strengthen multi-
dimensional risk management in investment practice, 
focusing on the interaction between the carbon trading 
market and related industries such as new energy and 
manufacturing, so as to optimise investment portfolios 
according to their own risk appetite. At the same time, we 
should pay attention to the changes in the market pattern 
that may be brought about by the cutting-edge 
development and innovation in the technology industry, 
and use this as the basis for updating our investment 
portfolio. In addition, it is recommended to keep track of 
carbon market policy trends in order to grasp potential 
investment opportunities, with special attention to 
macroeconomic and financial policies that promote 
synergies between technological innovation and 
emissions reduction. 

The limitation of this study is that it has not explored in 
depth the interaction between the carbon market and 
macroeconomic policies, such as the impact of monetary 



 

and fiscal policies. Future research could further focus on 
the transmission mechanism of monetary policy affecting 
the liquidity of the carbon market and the interaction 
between fiscal policy and the carbon market. In addition, 
the integration of the international carbon market is also 
an important direction, including the harmonisation of 
trading rules and the further development of uniform 
carbon accounting standards. The role of technological 
innovation in promoting market integration and reducing 
cross-platform transaction costs also deserves attention. 
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