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Abstract 

Flood forecasting is significant for hydrology and disaster 
management due to the complex and nonlinear nature of 
flood-related data. There are several conventional 
forecasting methods often failed to effectively capture 
both spatial and temporal dependencies that leads to 
inaccurate predictions. In order to overcome the 
challenges, a novel method is introduced with data de-
noising and deep learning models for flood prediction. The 
proposed approach comprises of three key steps, wherein 
de-noising of flood data is employed initially using wavelet 
transform with Fuzzy II threshold selection to eliminate 
noise in capturing significant features. Then, Intrinsic 
Mode Function (IMF) extraction is employed using Double 
Ensemble Empirical Mode Decomposition (DEEMD) to 
acquire appropriate flood patterns. Finally, flood 
forecasting is employed using an Attentive Residual Gated 
Recurrent Unit (Att_RGRUNet) model, wherein ResNet is 
utilized extracts spatial features, GRU model is utilized for 
temporal dependencies, and coordinate attention 
mechanism for enhancing the feature representation. The 
combined approach ensures high predictive accuracy and 
enhances early warning systems. The proposed model is 
evaluated based on RMSE, MAE and MAPE and acquired 
the values of 0.76984, 0.8 and 2.94 respectively. 

Keywords: flood forecasting, attention mechanism, gated 
recurrent unit, double ensemble EMD, spatio-temporal 
feature extraction 

1. Introduction 

Weather forecasting is devised for predicting atmospheric 
conditions and mitigating risks related to extreme 
weather conditions (Anuradha et al. 2024). It is essential 
in safeguarding lives, infrastructure, and economic 
activities by providing timely warnings about storms, 
heavy rainfall, heat-waves, and other meteorological 
phenomena. Precise weather prediction is utilized by 
governments, businesses, and individuals to eliminate 
hazards caused due to extreme weather conditions by 
reducing the impact of natural disasters (Akinyoola et al. 
2024; Qin et al. 2024). In addition, weather forecasting is 
utilized in several domains like agriculture, aviation, and 
transportation to detect the weather variations that 
significantly affect operations. Also, the development in 
meteorological science, remote sensing, and artificial 
intelligence have improved forecasting accuracy for 
enhancing disaster awareness and climate resilience. 
Urban flood forecasting is essential for weather 
forecasting due to the increasing frequency and intensity 
of extreme rainfall events in cities (Albahri et al. 2024). 
Rapid urbanization, poor drainage systems and climate 
change contribute to severe flood that causes disruptions 
in transportation, waterlogging, and damage to buildings. 
Real-time flood forecasting is efficient in implementing 
effective disaster response strategies for reducing 
casualties and economic losses (Yang et al. 2024; Zhou et 
al. 2024). 

Traditional urban flood forecasting methods depends on 
hydrological and hydraulic models like Rational Method  
(Fernández-Nóvoa et al. 2024), the Soil Conservation 
Service (SCS) Curve Number Model (Aja et al. 2020), and 
the Hydrologic Engineering Center's Hydrologic Modeling 
System (HEC-HMS) (Verma et al. 2024). These models 
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utilize historical rainfall data, topographical maps, and 
drainage system characteristics to predict flood levels and 
water flow patterns. Still, the traditional methods have 
been widely used, they face significant challenges in urban 
settings (Khan et al. 2024; Peker et al. 2024). The major 
limitation is the inability of the model to accurately model 
rapid urbanization and land-use changes, which 
significantly alter surface runoff patterns (El-Bagoury and 
Gad, 2024). Also, the traditional models struggle with real-
time data processing that leads to delays in flood 
prediction. The requirement of extensive calibration and 
large datasets makes the traditional methods as a 
computationally expensive and less adaptable to dynamic 
urban environments (Zheng et al. 2024; Suwarno et al. 
2021). Besides, traditional models are highly sensitive to 
parameter uncertainties that result in inaccurate flood 
forecasts during risky weather events. 

Machine learning (ML) has been designed to overcome 
the limitations of traditional flood forecasting methods. 
ML models like Artificial Neural Networks (ANNs) (Doan 
and Le-Thi, 2025), Support Vector Machines (SVMs) 
(Sengupta, 2025), and Random Forests (Vamsi and 
Amudha, 2024) approaches are utilized to analyze large 
and complex datasets in real time by identifying nonlinear 
relationships between features. The ML models 
continuously learn and improve over time by making the 
model adaptive to changing environmental conditions. 
However, ML technique results with improved accuracy in 
forecasting; still, feature extraction and long-term 
dependencies in flood prediction was challenging task 
(Ren et al. 2024). To address this, hybrid deep learning 
models like Convolutional Neural Networks (CNNs) 
integrated with Long Short-Term Memory (LSTM) 
networks for providing an efficient solution for real-time 
urban flood forecasting. The hybrid approach enhances 
prediction accuracy by integrating spatial and temporal 
information for more precise and timely flood alerts 
(Wahba et al. 2024). Additionally, the deep learning 
models process the real-time data gathered from Internet 
of Things (IoT) sensors, weather stations, and remote 
sensing technologies for providing highly efficient in 
operational flood forecasting (Kumshe et al. 2024). The 
objectives of the flood forecasting model are: 

To enhance the flood forecasting accuracy by utilizing 
wavelet transforms for signal decomposition and noise 
reduction.  

To design a DEEMD model for extracting relevant IMFs 
from hydrological time-series data. 

To design an Att_RGRUNet model, wherein ResNet is 
utilized extracts spatial features, GRU model is utilized for 
temporal dependencies, and coordinates attention 
mechanism for enhancing the feature representation.  

To compare the proposed model with the existing urban 
flood forecasting model to demonstrate the superiority of 
the proposed model. 

The research is organized as: Section 2 details the related 
works with the problem statement and the detailed 
proposed flood forecasting model in Section 3. The 

experimental results are presented in Section 4 and the 
conclusion in Section 5. 

2. Related works 

The author (Pokharel and Roy, 2024) proposed a 
multimodule based approach for explainable DL-based 
monthly rainfall prediction. The study composed of four 
different modules such as attention mechanism, GRU-
based decoder and encoder modules, and expected-
gradient module. Initially, climate and weather features 
were given as input to the encoder to produce associated 
hidden states. Next, based on the decoder and encoder 
hidden states, a series of attention values were generated 
by the attention mechanism module. In the third step, 
each attention values were integrated with the rainfall 
predicted value in the decoder module at the final time 
stamp. Then, the obtained values were provided to the 
GRU cell to generate recent hidden state. This hidden 
state was passed through fully connected layer of the 
model to achieve associated rainfall prediction value.  
Finally, the expected gradient was used to quantify the 
significance of input feature to the output feature. The 
introduced model struggle in capturing long-term 
dependencies. 

To accurately predict the ponding depth at specific urban 
flood points, (Pokharel and Roy, 2024) designed a 
Gradient Boosting Decision Tree (GBDT) model. In this, the 
rainfall data and ponding depth data were gathered from 
specific urban locations and Moran's I technique was 
employed for spatial analysis. Moran's I was employed to 
confirm the spatial independence of ponding points. The 
designed model portrayed the accuracy of the early 
warning system increases as the prediction period 
decreases. The model's accuracy relies heavily on the 
quality and quantity of rainfall and ponding depth data. 

To create a model capable of predicting urban flood water 
levels in real-time was designed by (Zhou et al. 2024) 
using the Artificial Neural Network connected with 
Multilayer Architectures. In this, ANN was employed to 
capture spatial patterns in flood inundation and MLP was 
employed to process temporal relationships and integrate 
information. The designed model achieved promising 
prediction performance with low computational time that 
enables real-time applications. Balancing prediction 
accuracy with computational efficiency for real-time 
applications was challenging aspect. 

Hybrid Deep Learning Model with Graph Convolutional 
Network (GCN) to capture spatial dependencies and Long 
Short-Term Memory (LSTM) to model temporal 
dependencies and patterns in human mobility flows was 
designed by (Berkhahn and Neuweiler, 2024). In this, the 
feature aggregation was employed to maintain the spatial 
heterogeneity for planning and managing emergency 
responses during urban floods. Enhanced prediction 
accuracy was employed for disaster management. Still, 
the designed model was heavily reliant on the quality and 
accuracy of the graph's adjacency matrix, which degrades 
the performance. 
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Machine learning model-based Flood Susceptibility 
Prediction (FSP) was designed by (Tang et al. 2024) to 
enhance the accuracy of FSP models by optimizing the 
representation and selection of flood conditioning factors 
(FCFs). In this, the feature selection was employed using 
collinearity and mean decrease impurity technique for 
reducing the computation burden. The designed model 
demonstrated that using extreme rainfall indices, 
enhanced accuracy was accomplished. Still, for processing 
large datasets, machine learning models was 
computationally intensive and makes over-fitting issues. 

Unsupervised change detection (CD) Network was 
designed by (Asfaw et al. 2024) for flood extent detection 
using Spatiotemporal Variational Autoencoder (VAE). The 
designed model employed contrastive learning techniques 
to improve the discriminative power of the learned 
features. The designed model demonstrated better 
generalizability on unseen sites compared to supervised 
models. Still, the designed model was inefficient to handle 
uncertainties in reference flood maps. 

Urban flooding is essential for rapid urbanization, climate 
change, and inadequate drainage systems (Yadav et al. 
2024). The unpredictability of extreme weather conditions 
like heavy rainfall cause significant risks to lives, 
infrastructure, and the economy (Karthik et al. 2025). 
Traditional flood management approaches often fail to 
provide timely and accurate predictions that leads to 
severe consequences (Babu et al. 2024). Urban flood 
forecasting is designed to design appropriate models that 
integrate real-time hydrological, meteorological, and 
topographical data to predict flood occurrences and 
intensities (Sundarapandi et al. 2024). Using the 
conventional machine learning, remote sensing, and 
Geographic Information Systems, accurate flood 
predictions is employed to enhance early warning 
systems, aid emergency response, and minimize damage. 
Thus, effective urban flood forecasting is essential for 
sustainable urban planning and resilience against climate-
induced disasters. Hence, a novel deep learning model 
with data pre-processing technique is introduced in this 
research. 

 

Figure 1. Proposed urban flood forecasting model 

3. The proposed model 

The proposed methodology of urban flood forecasting 
model is designed by integrating data processing and 
deep learning techniques. Initially, input flood data with 
various attributes like rainfall, temperature, and humidity 
is applied to the de-noising approach using wavelet 
transform with Fuzzy II threshold selection to remove 
noise and retain critical features. Then, Intrinsic Mode 
Functions (IMFs) are extracted using Double Ensemble 
Empirical Mode Decomposition (DEEMD), which enhances 
the signal decomposition process and extracts significant 
flood-related components. Finally, an Attentive Residual 
Gated Recurrent Unit (Att_RGRUNet) is employed for 
flood forecasting, wherein ResNet extracts the spatial 
features, GRU captures temporal dependencies, and a 
coordinate attention mechanism enhances feature 
representation. A fully connected layer is then used for 
final prediction, which is portrayed in Figure 1. 

3.1. Data gathering 

The input data for the urban flood forecasting is acquired 
from the publically available dataset (Flood Forecasting 
Dataset).  

3.2. Noise reduction using wavelet based fuzzy-II 

Wavelet-based Type II fuzzy de-noising offers a highly 
effective approach for processing noisy time-series data. 
The wavelet transform (WT) enables multi-scale analysis 
for precise localization of both high and low-frequency 
components, which is helpful in separating required and 
noise data form the input flood forecasting data. 
Meanwhile, Type II fuzzy sets introduce an additional layer 
of uncertainty modeling by defining upper and lower 
membership functions for obtaining robust noise filtering 
process. The first step in de-noising the flood prediction 
data is to transform the input data into the wavelet 
domain. It is done using the Wavelet Transform (WT), 
which decomposes the signal into wavelet coefficients at 
different scales and shifts. The decomposition of data is 
expressed as: 
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Here, the scale and shift factor concerning the wavelet 
transform is notated as m, n respectively and the function 

that notates the wavelet is indicated as . The input data 
is symbolized as Ar(u) and the wavelet coefficient is 
indicated as dm, n. Then, the threshold selection is 
employed to identify the wavelet coefficients concerning 
the noise and required data. Normally, noise data is 
assigned with small wavelet coefficients and useful data is 
assigned with large wavelet coefficients. Here, the 
threshold value is represented as β, wherein the wavelet 
coefficients below β are considered noise and set to zero 
and others are retained. Once the threshold is 
determined, it is applied to the wavelet coefficients using 
either hard thresholding or soft thresholding for de-
noising the data. Here, the consideration of fixed 
threshold introduce biased outcome. Thus, Fuzzy-II based 
threshold selection is introduced to overcome the 
challenge faced by the fixed threshold based hard or soft 
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thresholding criteria. Here, Type II fuzzy sets introduce an 
additional layer of uncertainty by defining an upper and 
lower membership function, allowing us to better handle 
imprecise or ambiguous data. The Type II fuzzy index for 
an iterative threshold u* is expressed as: 

( ) ( ) ( ) ( )
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where, R is the total number of elements in the set, E is 
the length of the data, l(p) is the weighting function at 
index p, K(p) is the upper membership function and G(p) is 
the lower membership function. Here, upper and lower 
membership functions are defined as: 
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where  is a positive parameter that determines how 
much uncertainty is present in the data For the flood 

forecasting model, the range of  is generally set within 
[0, 2]. The Gaussian function is used to model uncertainty 
in the fuzzy set: 
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where, max Q is the maximum value of the coefficients, Ni 
is the average level of the coefficients and sl

2 is the 
bandwidth of the Gaussian membership function. The 
bandwidth of the Gaussian function is set to allow useful 
signal information while attenuating high-frequency 
noise: 

( )max ,maxl is u N Q u = − −  
(5) 

Using the index of vagueness, the optimal threshold is 
calculated as: 

( )argmaxopt u =  
(6) 

where arg max finds the threshold value that maximizes 
the Type II fuzzy index, ensuring the best separation 
between noise and useful data. Thus, Type II fuzzy set-
based de-noising offers a powerful method for processing 
noisy time-series data in flood detection. By using fuzzy 
membership functions, Gaussian thresholds, and wavelet 
transformation, this approach effectively separates signal 
from noise and improves the accuracy of flood prediction 
systems. 

3.3. Double ensemble empirical mode decomposition 

EMD is a data-driven method for analyzing nonlinear and 
non-stationary time series. It decomposes a complex 
signal into multiple Intrinsic Mode Functions (IMFs) that 
represent different frequency components of the original 
data. Unlike traditional decomposition methods, EMD 
does not use pre-defined basis functions but derives them 
adaptively from the data itself. It makes EMD particularly 
useful in hydrology and flood forecasting, where water 
levels and rainfall data exhibit complex, fluctuating 
behaviors. The IMF feature extraction process is portrayed 
in Figure 2. 

 

Figure 2. IMF extraction using DEEMD model 

Consider a time series input u(m), where m = 1, 2,g. The 
EMD method follows these steps: 

(i) Identify all local maxima and minima in u(m). 

(ii) Envelope Generation: The local maxima are connected 
using cubic spline interpolation to form the upper 
envelope LMa(m). Also, the local minima are connected 
similarly to form the lower envelope LMi(m). 

(iii) Mean of the envelop is estimated using: 

( )
( ) ( )

2

LMa m LMi m
n m

+
=  

(7) 

(iv) The first IMF candidate is extracted using  

( ) ( ) ( )p m u m n m= −  (8) 

(v) The conditions for extracting the IMF are: 

• The number of extrema both maxima and 
minima should be the same or differ by at most 
one.  

• The mean envelope should be zero at all points. 

• If p(m) satisfies these conditions, it is accepted as 
the first IMF k1(m). 

• Otherwise, replace u(m) with p(m) and repeat 
steps 1-4 until a valid IMF is extracted. 

(vi) Once an IMF is extracted, compute the residual 
outcome as:  

( ) ( ) ( )1q m u m k m= −  (9) 

(vii) Continue the IMF extraction from q(m) until the 
residual becomes a monotonic function. 

(viii) The original data is decomposed as: 

( ) ( ) ( )
1

b
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l

u m k m q m
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= +  
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where kl(m) are the IMFs and qk(m) is the final residual 
representation of the features. Here, the challenging 
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aspect is the IMF with different scales or data with same 
scale for representing multiple IMFs. Thus, a small noise 
component is added with the data prior to performing the 
EMD process, which is termed as Ensemble Empirical 
Mode Decomposition (EEMD). Here, the addition of 
Gaussian white noise to the data reduces mode mixing 
and improves the separation of frequency components. 
Initially, the ensemble size represented as N that 
symbolizes the number of noise realizations and the noise 
amplitude are assigned. Then, generate a white noise 
sequence kn(m) and add it to the original input data. It is 
expressed as: 

( ) ( ) ( )n nu m u m k m= +  (11) 

Decompose un(m) using EMD and extract IMFs and 
perform the decomposition for multiple iterations, each 
time using a different realization of white noise. The final 
IMFs are obtained by averaging over all decompositions: 

,
1

1 N

k k n
n

d IMF
N =

=   
(12) 

where IMFk, n represents the kth IMF in the nth realization. 
Here, addition of noise helps improve IMF separation and 
the extracted IMFs are less likely to contain overlapping 
frequency components. EEMD provides more accurate 
hydrological data analysis for enhancing the reliability of 
flood prediction model. Double Ensemble Empirical Mode 
Decomposition (DEEMD) is a refinement of EEMD that 
specifically targets the first IMF, which contains the 
highest frequency components. It is crucial in flood 
forecasting, where high-frequency variations correspond 
to rapid changes in water levels. The steps considered in 
the DEEMD are: 

• The first IMF is extracted using the EEMD 
process. 

• Decompose the first IMF again using EEMD to 
further separate high-frequency time series data. 

• Extract the refined IMFs to acquire more 
accurate representation of short-term variations. 

The refined IMFs are further utilized for performing the 
urban flood forecasting model using the proposed 
Att_RGRUNet model. 

3.4. Proposed att_rgrunet urban flood forecasting model 

The urban flood forecasting is devised using the proposed 
Attentive Residual Gated Recurrent Unit Network 
(Att_RGRUNet) for extracting the spatial and temporal 
attributes. The designed Att_RGRUNet model is efficient 
in learning the spatial features from IMF data through the 
residual connections. Then, the temporal dependencies 
among the features are acquired through the gated 
recurrent unit (GRU). In addition, the consideration of co-
ordinate attention module is employed to assign higher 
weights to critical flood factors that lead to precise 
forecasting. The structure of Att_RGRUNet is presented in 
Figure 3. 

 

Figure 3. Structure of Att_RGRUNet Model 

The input acquired by the proposed Att_RGRUNet model 
is the IMF features that are shared through various 
convolution layers with skip connections for capturing the 
spatial features. Conventional neural networks have the 
problem of degradation issue with the increase in depth 
size. When gradients shrink too much during 
backpropagation for making the earlier layers learn very 
slowly that leads to vanishing gradient issue. When 
gradient become excessively large that leads to instability 
in training termed exploding gradients. These two issue 
are effectively solved through the network with residual 
(skip) connections. The residual block is the core 
component of ResNet. It allows a neural network to learn 
a residual function instead of trying to learn the entire 
transformation directly. Let, D be the input to the 
Att_RGRUNet model and N(p) be the actual mapping the 
network needs to learn. K(p) is the residual function that 
the network will learn. Instead of learning N(p) directly, 
the residual block learns: 

( ) ( )N p K p D= +  (13) 

where, K(p)is the transformation applied to D and D is 
directly added to the output through a skip connection. 
Since the identity mapping is passed forward, the network 
only needs to learn the difference K(p) = N(p)−D. In this, 
gradients flow directly through the shortcut connections 
that prevent the model from shrinking too much. Also, 
when the additional layers learn nothing K(p) = 0, the 
identity mapping ensures that performance does not 
degrade. The skip connection helps to maintain stable 
gradient values for avoiding exploding gradients. Batch 
Normalization (BN) is applied to stabilize the training by 
normalizing the activations in a neural network. It is used 
in ResNet to speed up convergence and maintain a stable 
distribution of activations. The features extracted through 
the various convolutional layers with skip connections are 
fed into the GRU module for capturing the temporal 
features. In the GRU module, the consideration of 
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dropout layer assists in minimizing the over-fitting issues 
of Att_RGRUNet model. At each time step e, GRU updates 
its hidden state using the following formulas: 

The update gate me determines how much of the previous 
hidden state de−1 should be carried forward. 

( )1e m e m e mm G Q N d l −= + +  (14) 

where, me is the update gate at e, Qe is the input data at e, 
de−1 is the previous hidden state, Gm, Nm is the weight 
matrices, lm is the bias vector, and γ is the sigmoid 
activation function. The reset gate se decides how much of 
the previous hidden state should be forgotten. 

( )1e s e s e ss G Q N d l −= + +  (15) 

A candidate hidden state d̂e is computed using the reset 
gate for selective memory retention. 

( )1
ˆ tanhe d e e d e dd G Q s N d l−= +  +  

(16) 

The hidden state is helpful to generate an intermediate 
flood prediction feature based on both past and current 
information. The final hidden state de is computed as a 
combination of the previous hidden state and the 
candidate state. 

( ) 1
ˆ1e e e e ed m d m d−= −  +   

(17) 

Here, (1−me) controls the influence of past states, and 

med̂e incorporates new flood-related information. Then, 
the co-ordinate attention mechanism is employed for 
capturing the significant features that enhances the 
forecasting accuracy. The co-ordinate attention 
mechanism is employed for capturing both spatial and 
temporal dependencies among the features by using both 
horizontal and vertical global pooling operations. The 
structure of co-ordinate attention mechanism is 
presented in Figure 4. 

 

Figure 4. Structure of co-ordinate attention mechanism 

Using the outcome of the GRU module, the vertical global 
pooling operation is performed by the co-ordinate 
attention mechanism and is formulated as: 

( ) ( )
1

1
,

O
m
f f

u

b m q m u
O =

=   
(18) 

where, bf
m(m) is the height-wise feature representation, qf 

(m, u) is the input feature at channel f, height m, and 
width uand O is the width of the input feature map. 

The horizontal global pooling operation is formulated as: 

( ) ( )
1

1
,

M
o
f f

v

b o q o u
M =

=   
(19) 

where, bf
o(o) is the width-wise feature representation, qf 

(o, u) is the input feature at channel f, height v, and width 
o and M is the height of the input feature map. Here, the 
consideration of both transformations allows the model to 
capture global dependencies along one direction while 
retaining precise spatial information in the other 
direction. The aggregation of features extracted through 
both the horizontal and vertical pooling operations is 
defined as: 

 ( )( )1Re ,m ow LU W b b=  
(20) 

where, W1 is the shared 1×1 convolution, [bm, bo] is the 
concatenated height and width feature maps and ReLU is 
the activation function. After aggregating the features, the 
attention weights are estimated for both horizontal and 
vertical features. It is formulated as: 

( )( )m
f m mx W w=  

(21) 

( )( )o
f o ox W w=  

(22) 

Here, xf
m, xf

o is the attention weights for height and width, 
λ is the sigmoid activation function, and Wm, Wo is the 
convolution operations for height and width. The features 
acquired at the output of the co-ordinate attention 
mechanism zf (u, v) are expressed as: 

( ) ( ) ( ) ( ), , m o
f f f fz u v q u v x u x v=    (23) 

The extracted GRU features are passed through fully 
connected termed dense layers to produce the final flood 
prediction: 

o f oUF G z l= +  (25) 

where, UF is the predicted flood value, Go is the weight 
matrix for output layer, lo is the bias and zf is the final 
outcome of the co-ordinate attention mechanism at the 
last time step. The overall step by step algorithm of the 
proposed urban flood forecasting model is presented in 
Algorithm 1. 

4. Results and discussion 

The proposed urban flood forecasting method is 
implemented in PYTHON programming tool and is 
assessed based on various measures. The proposed 
Att_RGRUNet model is compared with existing methods 
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like GCN-LSTM [23], CD network [25], ANN_MLP [22], and 
GBDT [21] to demonstrate the superiority. For the 
evaluation of proposed urban flood forecasting model, the 
publically available [26] dataset is utilized.  

 

Dataset Description: Dataset from 
https://www.kaggle.com/datasets/s3programmer/flood-
risk-in-india?select=flood_risk_dataset_india.csv is utilized 
for evaluating the proposed urban flood detection model. 
Here, 80% of the data from the dataset is employed for 
training the flood detection model and remaining 20% of 
data is employed for forecasting the urban flood. The 
description of the dataset is presented in Table 1. 

Table 1. Dataset Description 

Parameters Values 

Total Records 1000 

Attributes 14 

Location India 

Time Period 2014 to 2020 

File Format Csv 

Data Size 1.8MB 

The dataset distribution by considering three various 
factors like temperature, humidity and rainfall are 
presented in Figure 5. 

 

Figure 5. Dataset Distribution: (a) humidity, (b) temperature and 

(c) rainfall 

Assessment Measures: The proposed urban flood 
forecasting model is assessed using three various 
measures like Mean Absolute Percentage Error (MAPE), 
Mean Absolute Error (MAE), and Root Mean Squared 
Error (RMSE). The formulation for the assessment 
measures are interpreted as: 

ˆ1 l l

l l

A A
MAPE

D A

−
=   

(26) 

( )
21 ˆ

l l
l

RMSE A A
D

= −  
(27) 

1 ˆ
l l

l

MAE A A
D

= −  
(28) 

where, the total number of samples is symbolized as D, 
the actual outcome is interpreted as Al and the predicted 
outcome is notated as Âl.  

Implementation Details: The proposed model has been 
simulated using the Python programming language. The 
simulation uses the L1 loss as the information loss term 
and the L2 norm as the punishment term. To balance the 
information loss and punishment terms, the 
hyperparameter should be taken into account before the 
penalty term. The Att_RGRUNet model is optimized using 
L1 and L2 losses. An ADAM optimizer is used for training, 
with an initial learning rate of 0.001 and a weight decay of 
0.025. The training process is completed after 100 
iterations with batch size for each iterations is eight. All 
experiments are constructed with PyTorch 1.2.0 and 
Python 3.6 and run on the Nvidia Titan RTX GPUs. 

4.1. Analysis of proposed urban flood forecasting model 

The urban flood forecasting by considering the rainfall 
factor is presented in Figure 6, wherein the outcome 
arrived for RSRUNet, Att_RGRUNet, Att_RGRUNet with 
DEEMD, and proposed method is illustrated. The 
proposed method illustrated the close relationship 
between the actual (green line) and predicted (red line) 
outcome. Thus, the RMSE (brown line) estimated by the 
proposed method is minimal compared to other methods. 

 

Figure 6. Forecasting outcome for Rainfall: (a) RSRUNet, (b) 

Att_RGRUNet with DEEMD, (c) Att_RGRUNet and (d) Proposed 

(Denoising+DEEMD+ Att_RGRUNet) 
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The urban flood forecasting by considering the humidity 
factor is presented in Figure 7, wherein the outcome 
arrived for RSRUNet, Att_RGRUNet, Att_RGRUNet with 
DEEMD, and proposed method is illustrated.  

 

Figure 7. Forecasting outcome for Humidity: (a) RSRUNet, (b) 

Att_RGRUNet with DEEMD, (c) Att_RGRUNet and (d) Proposed 

(Denoising+DEEMD+ Att_RGRUNet) 

The urban flood forecasting by considering the 
temperature factor is presented in Figure 8, wherein the 
outcome arrived for RSRUNet, Att_RGRUNet, 
Att_RGRUNet with DEEMD, and proposed method is 
illustrated.  

The ablation study of the proposed model in terms of 
RMSE, MAPE and MAE for the parameters temperature, 
humidity and rainfall is presented in Table 2. The 
proposed method employed Wavelet transform with 
Fuzzy II based threshold selection removes the noise 
effectively. Then, DEEMD model assist to separate the 
critical flood-related IMFs for enhancing forecasting 

accuracy. Finally, Att_RGRUNet captures both spatial and 
temporal dependencies efficiently. Thus, the enhanced 
outcome is derived by the proposed model. The proposed 
model without de-noising capability (Att_RGRUNet with 
DEEMD) comprises of noisy component that leads to 
biased outcome in forecasting. Thus, poor performance 
compared to proposed method is acquired by 
Att_RGRUNet with DEEMD. Then, the proposed model 
without de-noising and DEEMD (Att_RGRUNet) provides 
the degraded outcome due to the failure in removing the 
artifacts and feature extraction. Similarly, the model 
designed with only the spatio-temporal feature extraction 
model RSRUNet accomplished degraded outcome 
compared to all the other methods. Thus, the combined 
effect of all the techniques assists the proposed model to 
acquire enhanced outcome with minimal error. 

 

Figure 8. Forecasting outcome for Temperature: (a) RSRUNet, (b) 

Att_RGRUNet with DEEMD, (c) Att_RGRUNet and (d) Proposed 

(Denoising+DEEMD+ Att_RGRUNet) 

 

Table 2. Ablation Study 

Parameters Metrics RSRUNet Att_RGRUNet 
Att_RGRUNet with 

DEEMD 
Proposed (DEEMD+ 

Att_RGRUNet) 

Temperature 

MAPE (%) 4.510 3.920 3.280 2.940 

RMSE 2.490 1.860 1.350 0.836 

MAE 2.170 1.580 1.030 0.800 

Humidity 

MAPE (%) 10.430 9.520 8.450 7.830 

RMSE 8.360 7.850 7.160 6.463 

MAE 4.080 3.570 2.860 2.350 

Rainfall 

MAPE (%) 16.810 16.460 15.950 15.310 

RMSE 1.927 1.527 0.911 0.770 

MAE 2.410 1.870 1.570 1.200 

Average 

MAPE (%) 10.583 9.967 9.227 8.693 

RMSE 4.259 3.746 3.140 2.690 

MAE 2.887 2.340 1.820 1.450 

 

The urban flood forecasting for various time steps is 
presented in Figure 9. Here, for the analysis, the proposed 
urban flood forecasting model is compared with existing 
approaches like GCN-LSTM, CD network, ANN_MLP, and 
GBDT. The conventional GCN-LSTM struggles with high 
spatial-temporal dependency complexity that leads to 
larger absolute errors when spatial relationships change 

dynamically. While considering CD network failed to 
capture nonlinear dependencies in flood forecasting 
effectively that leads to increased errors. In addition, 
ANN-MLP model lacks sequential memory capabilities and 
hence it less efficient for time-series flood prediction. The 
GBDT approach is effective for structured data but does 
not perform well with complex sequential data. The 
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proposed model with both spatial and temporal features 
and attention mechanism model selectively focus on the 
most influential flood-related features. Thus, minimal 
MAE is estimated by the proposed model for all the three 
parameters. 

 

Figure 9. MAE Assessment: (a) rainfall, (b) humidity and (c) 

temperature 

 

Figure 10. RMSE and MAPE Assessment: (a) rainfall, (b) humidity 

and (c) temperature 

The assessment of MAPE along with the RMSE is 
presented in Figure 10 for the parameters like 
temperature, humidity and rainfall. Here, the incapability 
of the GCN-LSTM to extract the local flood changes and 
degraded outcome in handling sequential data by the 

GBDT leads to poor performance. The inefficiency in 
sequential learning capabilities of ANN-MLP and failure in 
gathering nonlinear dependencies among the features by 
the CD network makes the models to enhance the error in 
forecasting. The proposed model with efficient de-noising, 
feature extraction and spatio-temporal feature extraction 
with attention mechanism assist the model to minimize 
the error. 

The comparative discussion of the urban flood forecasting 
methods is presented in Table 3. The existing urban flood 
forecasting methods like GCN-LSTM, CD network, 
ANN_MLP, and GBDT are compared with proposed 
method. The existing GBDT approach Moran's I feature 
extraction and the forecasting using GBDT model, which 
was incapable in handling the large dataset that makes 
the over-fitting issues. The ANN_MLP model utilized ANN 
based feature extraction and MLP based forecasting, 
which was failed to consider the temporal feature 
extraction. The CD network utilized the unsupervised 
learning approach that was inefficient to handle 
uncertainties in reference flood maps. The GCN-LSTM 
model employed both spatial and temporal feature 
extraction; still, the representation of features through 
the graph matrix degrades the performance. The 
proposed method employed noise removal technique due 
to environmental and instrumental factors, which impact 
on the forecasting accuracy. To remove the noise, wavelet 
transform is used for signal decomposition and Fuzzy II 
threshold selection method is applied to distinguish 
between noise and required data. The noise removal 
process assists to improve the quality of input data for 
subsequent processing. IMF extraction using DEEMD is 
employed to capture the frequency components relevant 
to flood prediction. By extracting refined IMFs, DEEMD 
ensures the significant flood patterns that are helpful in 
enhancing the forecasting accuracy. Also, Att_RGRUNet 
assist in extracting the spatial and temporal features to 
generate precise flood predictions. Thus, enhanced 
outcome is derived by the proposed urban flood 
forecasting model.  

 

Table 3. Comparative Analysis 

Parameters Metrics GCN-LSTM CD network ANN_MLP GBDT Proposed 

Temperature MAPE (%) 12.98 6.369 5.07 3.98 2.94 

RMSE 4.0347 1.929 1.7461 1.7287 0.836 

MAE 2 1.3 1.25 1.2 0.8 

Humidity MAPE (%) 15.76 13.587 13.5337 12.3566 7.83 

RMSE 18.6453 11.5424 11.6242 9.82943 6.46314 

MAE 15 10 7.7 7.4 2.35 

Rainfall MAPE (%) 23.85 23.13 18 16.73 15.31 

RMSE 1.97756 1.84185 1.74185 1.53038 0.76984 

MAE 2.7 2.4 3.3 2.4 1.2 

 

5. Conclusion 

The proposed methodology of flood forecasting based on 
de-noising, decomposition and urban flood forecasting is 

introduced in this research. The de-noising process is 
devised using wavelet transform with Fuzzy II threshold 
selection for acquiring high-quality input data. Then, 
DEEMD-based IMF extraction effectively isolates 
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significant flood-related attributes. Finally, the Attentive 
Residual Gated Recurrent Unit Network (Att_RGRUNet 
model) is devised for forecasting the urban flood by 
considering spatial and temporal feature extraction 
techniques along with the attention mechanism for 
enhancing the forecasting accuracy. Experimental results 
indicate that the proposed model outperforms 
conventional flood forecasting methods by demonstrating 
improved reliability and early warning capabilities. Still, 
the designed model has certain limitations like increased 
computational complexity due to multiple processing 
stages and the requirement for large-scale datasets for 
model training. Thus, in the future, an optimization based 
model will be designed for enhancing the computational 
efficiency by incorporating real-time data streams and 
extending the model to other hydrological applications. 
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