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Abstract 

Hydraulic infiltration and decontamination performance 
of bioretention systems are influenced by plant species 
and planting layers. However, traditional evaluation 
methods are limited by their high subjectivity and inability 
to capture complex relationships among multidimensional 
data accurately. This study developed a coupled PCA-PP-
GA model, integrating principal component analysis (PCA) 
for dimensionality reduction, projection pursuit (PP) for 
comprehensive evaluation, and genetic algorithm (GA) for 
optimization. Through analyzing Pearson correlation 
coefficients and principal component loadings, which 
showed strong multicollinearity and significant weights, 
the rationality of employing PCA for dimensionality 
reduction was validated. In evaluating five plant species 
(Cynodon dactylon, Hemarthria sibirica, Paspalum 

wettsteinii, Lolium perenne, and Festuca elata) across
growth stages and different planting layers for 
stormwater runoff control, results indicated that Cynodon
dactylon exhibited the highest score of 1.22, and L4 
planting layer composition (10.0% loamy sandy soil +
90.0% fine sand) scored 1.47. Furthermore, compared to
the analytic hierarchy process (AHP) and traditional 
projection pursuit model (PP-GA), the data-driven PCA-PP-
GA offers a more comprehensive consideration of both
cost and pollutant removal efficiency, demonstrating 
advantages in reducing subjective bias and enhancing 
information screening efficiency. This study provides a 
reference for evaluating the effectiveness and
implementation of ecological engineering in stormwater
runoff control.

Keywords: bioretention systems, evaluation, genetic 
algorithm, principal component analysis, projection 
pursuit 

1. Introduction

In recent years, ecological engineering (e.g., bioretention 
systems, slope engineering, and grass swales) has been 
pivotal in the prevention and control of urban flooding 
and water pollution (Muhammad et al., 2024). Among 
these measures, bioretention systems stand out as a 
crucial strategy for enhancing water quality (Li et al., 
2021; Vijayaraghavan et al., 2021). They could effectively 
reduce pollutants in stormwater runoff through multiple 
actions, including plant uptake, filler filtration, and 
microbial degradation, thereby acting as a protective 
barrier for river ecosystems (Mehmood et al., 2021). As an 
essential component of bioretention systems, plants and 
planting layers can directly affect their pollutant removal 
efficiency (Xu et al., 2019; De-yong et al., 2020; Liu et al., 
2020). However, the variability in pollutant removal 
capacity and hydraulic performance among different 
plants and planting layers introduces a multidimensional 
and non-linear relationship between evaluation 
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indicators, rendering common analytical methods 
inadequate for accurate evaluation (Liu et al., 2018; 
Wang, Zhang & Li, 2019; Aziz et al., 2021; Mehmood et al., 
2021). Consequently, how to scientifically and reasonably 
evaluate the control effect of plants and planting layers on 
stormwater runoff has become an important problem yet 
to be solved in ecological engineering. 

Nowadays, there is no standardized approach, either 
domestically or internationally, for evaluating the
effectiveness of ecological engineering in managing 
rainwater runoff (Muhammad et al., 2022). Among them,
the evaluation of bioretention systems typically adopts
methods such as the analytic hierarchy process (AHP) and
fuzzy comprehensive evaluation. Mei et al. integrated
fuzzy set theory with an improved analytic hierarchy
process (IAHP) to develop a fuzzy synthetic evaluation
model to evaluate the comprehensive removal capability
and infiltration rate of sand media in different
bioretention systems. The findings indicated that the
media with a sand content of 96% performed the best
(Mei et al., 2018). Xu et al. constructed an evaluation
methodology for environmental pollution management 
systems, utilizing 5 primary indicators and 26 secondary
indicators, combined with the Delphi method to collect 
experts' opinions and feature vector analysis by AHP, and
finally determined the importance ranking of secondary
indicators (Xu, Ling & Jin, 2017). Jia also used the same
approach for evaluating ecological suitability (Jia &
Zhessakov, 2021). The above methods provide significant 
flexibility in evaluation and analysis, making them
adaptable to diverse evaluation scenarios. Nevertheless,
since they rely on expert subjective judgment, the
evaluation results of these methods are prone to 
subjectivity and ambiguity, potentially leading to large
errors.

The ability of PP to reveal the intrinsic structure of data 
has garnered widespread attention within the domain of
the ecological environment. PP mitigates the interference
of empowerment with outcomes and ensures the
objectivity of the results by searching for projections that
maximize non-Gaussianity (Wentzell et al., 2015). In
evaluating the rationality of water resource utilization
across 31 provinces, Wu applied the evaluation results
from the PP model to yield projections that more closely
align with the actual target value (Wu, 2019). Similarly,
Yang et al. demonstrated in their evaluation of the
groundwater resources and environmental carrying
capacity that PP can more accurately reflect the actual
situation of the data (Yang et al., 2010). However, Zhang
found that the PP model may encounter challenges such
as noise interference, computational instability, and a
large number of multi-objective evaluations during the
iterative adjustment of projection directions (Zhang, Ye &
Wang, 2023). Therefore, optimizing the computational 
process of PP projection could be key to improving the
accuracy of the evaluation results.

Given that dimensionality reduction techniques can 
effectively reduce data noise and improve computational 
efficiency, researchers have explored the integration of PP 

with methods including independent component analysis 
(ICA) and PCA. ICA separates independent signal sources, 
providing a clearer projection direction for PP in cases of 
signal interference, thereby mitigating the impact of 
noise. However, Seonjoo Lee et al. pointed out in their 
study that ICA is sensitive to initial conditions and 
algorithm parameters, which may fluctuate with changes 
in data distribution, leading to different outcomes in 
multi-objective evaluation (Lee et al., 2015). In contrast, 
PCA, as a classical dimensionality reduction technique, can 
provide consistent key features by compressing large 
datasets when dealing with the same dataset, thus 
optimizing the indicator system, reducing the number of 
multi-objective evaluations, and providing a more robust 
projection foundation for the PP model (Pereira et al., 
2017; Ferde et al., 2021). When employing the combined 
PCA-PP model, a critical aspect is the determination of the 
optimal projection direction.  

This process involves solving nonlinear problems, which 
generally cannot be tackled using straightforward
mathematical methods. Owing to their efficiency in
automatically optimizing complex systems, intelligent 
algorithms such as GA, particle swarm optimization (PSO),
and simulated annealing (SA) have been extensively
utilized for selecting the projection direction (Garg, 2016;
Xu et al., 2022). Among these, GA has demonstrated a 
superior capability in reliably identifying the globally
optimal solution (Jafari et al., 2020). The PCA-PP
combined model has been preliminarily applied in the
domains of cybersecurity and data mining, effectively
improving the accuracy of evaluation and prediction (Wen
& Chen, 2012), but its application within the ecological 
environment, especially in evaluating the effectiveness of
bioretention system plants and planting layers for 
stormwater runoff management, remains unexplored.

To this end, this study proposed a PCA-PP model 
optimized through GA for the multi-objective evaluation 
of the effectiveness of stormwater runoff management in 
bioretention systems, focusing on the role of plants and 
planting layers. Initially, PCA was used to perform 
dimensionality reduction on the raw data, including 
hydraulic performance and pollutant removal rates. This 
process extracted several comprehensive indicators to 
reduce the computational complexity inherent in 
traditional models. Subsequently, GA was used to solve 
the constructed multi-objective comprehensive evaluation 
model (PCA-PP). The evaluation outcomes were then 
compared and analyzed against those obtained from AHP 
and PP-GA models to verify the reliability of the proposed 
method. This novel approach not only advances the 
theoretical foundation of multi-objective evaluation but 
also provides a scalable framework for optimizing 
ecological engineering solutions, offering a scientific 
foundation for the plants and planting layers selection. 

2. Methods

2.1. Data sources 

The data and planting layer ratios utilized in this study are 
derived from the previous experiments conducted by the 
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research group. Detailed information on the specific 
groupings and evaluation indicators can be found in Table 
1. The experiments in the plant group were designed to 
investigate the effects of plants at various growth stages 
(seedling, growth, maturity, and aging) on pollutant 
removal and soil hydraulic properties in stormwater 

runoff (Muhammad et al., 2019). And the experiments in 
the planting layer group, which were conducted in the 
absence of plants, aimed to explore the impact of planting 
layer structural ratios on the efficiency of pollutant 
removal in stormwater runoff. 

 

Table 1. Evaluation indicator system 

Groups Research subject Evaluation indicators 
Sample 

size 

Plant group 
Cynodon dactylon, Hemarthria sibirica, Paspalum 

wettsteinii, Lolium perenne, Festuca elata 
TN, NH4

+−N, TP, NO3−−N, COD, HPC 80 

Planting layer group 

L1 9.8%Ls+88.2%S+2.0% Ve 

TN, NH4
+−N, TP, NO3−−N, COD, HPC, Price 72 

L2 9.8% Ls +88.2%S+2.0% Bi 

L3 9.8%Ls +88.2%S+2.0% Pe 

L4 10.0% Ls +90.0% Fs 

S1 18.4% Ss+73.6%S+8.0% Ve 

S2 18.4% Ss +73.6%S+8.0% Bi 

S3 18.4% Ss +73.6%S+8.0% Pe 

S4 20.0% Ss +80.0% Fs 

 

Based on the identification of sandy soil (Ss) and loamy 
sand (Ls) as the predominant soil types in Chongqing’s 
urban area, commonly used fine sand (Fs), vermiculite 
(Ve), biochar (Bi), and perlite (Pe) were selected as 
amendments. In accordance with soil particle size 
gradation guidelines for bioretention facilities, Ss and Ls 
were graded to obtain different planting layer ratio 
combinations. 

The evaluation indicators include common stormwater 

runoff pollution indicators —total nitrogen (TN), nitrate 

nitrogen ( -

3NO -N ), ammonia nitrogen ( +

4NH -N ), total 

phosphorus (TP), and chemical oxygen demand (COD)—
alongside the hydraulic permeability coefficient (HPC). 
Additionally, the price of the planting layer is a key factor 
influencing the economic feasibility of ecological 
restoration projects. Therefore, it is necessary to 
incorporate price into the evaluation framework to ensure 
the validity of the study. 

2.2. Model construction 

2.2.1. Principal component analysis 

Principal Component Analysis (PCA) is a dimensionality 
reduction technique that performs an orthogonal 
transformation on the original data, mapping it onto a 
new coordinate system. By using a few mutually 
independent variables to capture as much variance in the 
data as possible, thus most of the original information is 
retained while eliminating irrelevant noise. Figure 1 
illustrates the geometric procedure of PCA. In this 
transformation, the initial variables x1 and x2 are linearly 
combined to generate new variables y1 and y2. A sample 
with greater dispersion along y1 has a large variance 
contribution. It can be extracted as the first principal 
component (PC1), while a sample with less dispersion 
along the y2 has a small variance contribution and can be 
used as the second principal component (PC2). By 
following this process, the dimensionality of the data can 
be reduced. Typically, cumulative variance denotes the 

aggregated proportion of variance explained by the initial 
principal components, reflecting the extent of information 
retained from the original dataset (Yuan et al., 2022). This 
study selects the number of principal components, m, 
based on the principle that the cumulative variance 
contribution reaches 85%. 

 

Figure 1. Geometrical interpretation of PCA 

In conclusion, assuming that there are n variables in the 
original data, if the Pearson correlation analysis reveals 
strong correlations between the variables, PCA will reduce 
the dimensionality by transforming the data into m 
principal components (m<n). The reduced components yi 

(i=1,2, , m） can be represented by Equation (1). 

1 11 1 12 2 1n n

2 21 1 22 2 2n n

m m1 1 m2 2 mn n

y =u x +u x + +u x

y =u x +u x + +u x

y =u x +u x + +u x








 

(1) 

Where umn is the loading coefficient, representing the 
weight and contribution of each original variable in the 
corresponding principal component. The higher the 
absolute value of the loading coefficient, the greater the 
explanatory power of the variable in the corresponding 
principal component. 

2.2.2. Projection pursuit 

Projection Pursuit (PP) is a statistical method that 
identifies an optimal projection direction to highlight 
specific patterns or features in the given data. Based on 
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the dimensionality-reduced data obtained from PCA, this 
study employs PP to construct the projection index 
function Q(a). By employing the intelligent algorithm to 
optimize the projection direction, the final evaluation 
results are obtained. 

(1) Normalization processing 

To reduce the errors caused by the scale of different 
indicators in the calculation, this study used the min-max 
normalization (Equation (2)) to adjust the reduced 
dimensionality of the data, so that the values are 
uniformly distributed between 0 and 1 while maintaining 
the relative relationships in the data. 

ij j,min*
ij

j,max j,min

S S
S

S S

−
=

−
 

(2) 

Where i is the number of samples in each group of 
experiments; j is the number of sample indicators; Sij is 
the jth indicator of the ith sample; Sj, max is the maximum 
value of the jth indicator of all the samples; Sj, min 
represents the minimum value of the jth indicator of all the 
samples; and Sij

* is the result of normalization of the jth 
indicator of the ith sample. 

(2) Model construction 

The core of PP lies in determining the projection direction 

a=a (a1, a2,   , am), formulating the projection index 

function Q(a), and solving for the optimal projection 
direction to obtain the one-dimensional evaluation value 
Zi (Equation (3)). To ensure that Zi demonstrates both local 
clustering and overall dispersion, Q(a) can be represented 
by both the standard deviation Sz and the local density Dz 
(Huang & Lu, 2014). The model equation is shown as 
follows. 
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 (6) 

p
2

j=1

s.t. a(j) =1
 

(7) 

Where Ez is the projected mean of the sequence {Zi|I = 1, 

2, , n}; R denotes the window radius of the local density 
in the projection distribution, typically set as 0.1SZ; rik = 
|Zi−Zk| refers to the distance between samples; U(R−rik) 
represents the Heaviside step function. 

(3) Solving for the optimal projection direction 

In the PP model, solving for the optimal projection 
direction constitutes a nonlinear optimization problem, 
typically necessitating the application of advanced 
computational algorithms. (Zhu & Chen, 2017; Huo et al., 
2023). Among the available optimization techniques, GA 
stands out for its robust global search capabilities, 

adaptability, and efficiency in handling complex, high-
dimensional problems (Li & Fu, 2022). It mimics biological 
evolution by iteratively applying operations such as 
selection, crossover, and mutation to improve a 
population of candidate solutions. These operations not 
only maintain diversity within the solution space but also 
enable GA to effectively explore large and complex search 
spaces, gradually converging toward the optimal or near-
optimal solution. 

2.2.3. Comprehensive evaluation 

After solving for the optimal projection direction, 
combining the normalized data, and substituting it into 
Equation (3), the final evaluation results Zi of each group 
of data, followed by ranking from best to worst. To 
uniformly evaluate the hydraulic permeability and 
pollutant removal capabilities of the plants, the Zi from 
the four stages are weighted at 25% each. 

The workflow of PCA-PP-GA is illustrated in detail in Figure 
S1. 

 

Figure 2. Correlation coefficient heatmap of the plant group: (a) 

Seedling Stage, (b) Growth Stage, (c) Maturity Stage, and (d) 

Aging Stage 

 

Figure 3. Correlation coefficient heatmap of the planting layer 

group 

3. Results and discussion 

3.1. Results of principal component analysis 

By calculating the Pearson correlation coefficients of the 
plant group and planting layer group, the correlation 
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analyses of each evaluation indicator were carried out 
separately. As illustrated in Figure 2, TN and NO3

−−N 
exhibit a high correlation across different stages (r=0.97, 
0.94, 0.80, 0.92) during the removal of pollutants from 
stormwater runoff by plants. However, the correlation is 
low (r= 0.38) in the planting layer shown in Figure 3. 
Additionally, within the plant group, HPC is predominantly 
positively correlated with other indicators. In contrast, 
HPC generally shows significant negative correlations in 
the planting layer group. These observations suggested 
that, in the absence of plants, the soil permeability in the 
bioretention system increased, resulting in accelerated 
water flow and diminished contact time between 
pollutants and soil particles, thereby reducing the 
effectiveness of stormwater runoff purification. At the 
plant maturity stage (Figure 2(c)), the correlation of TP 
with TN and COD (r = 0.83 and 0.97), respectively, 
significantly increases compared to the earlier two stages 
((Figure 2(a) and Figure 2(b)). It indicated that plant 
decomposition activity may have intensified, indirectly 
enhancing pollutant removal rates. This aligned with Liu et 
al.’s findings on the effects of Phragmites at different 
stages in constructed wetlands (Liu et al., 2018). In the 
correlation analysis of the planting layer group (Figure 3), 
the coefficient of NO3

−−N and NH4
+−N is 0.87, indicating a 

synergistic trend. In summary, both the plant group and 
the planting layer group showed high correlations among 
evaluation indicators, proving that there was a strong 
linear dependence between multiple variables. Therefore, 
PCA can effectively extract representative principal 
components, thus simplifying the data dimensions. 

By analyzing the correlation coefficients, potential 
multicollinearity between the variables was preliminarily 
identified, forming the foundation for the PCA 
dimensionality reduction. After calculating the covariance 
matrix and performing eigen decomposition, the 
contribution rate of each group of data was obtained 
(Figure 4). Following the criterion that the cumulative 
variance contribution rate exceeds 85%, the 
corresponding principal components of the plant group 
and planting layer group were selected to maximize the 
reflection of the original information (Yuan et al., 2023). 
As seen in Figure 4(a), the evaluation indicators for the 
seedling, growth, and maturity stages of the plants were 
reduced from six to two dimensions (PC1 and PC2), with 
cumulative variance contribution rates of 93.54%, 89.60%, 
and 96.22%, respectively. Figures 4(a)-(b) showed that the 
data for the aging stage and the planting layer group were 
reduced to three dimensions (PC1, PC2, and PC3), with 
cumulative variance contribution rates of 97.0% and 
86.53%, respectively. 

The principal component factor loading matrix was 
obtained by calculating the weights of the original 
variables in the new coordinates (Table S1). Based on the 
data presented in Table S1, the loadings of PC1 on TP at 
maturity is 0.982, and on TN is 0.907. This result is 
consistent with the correlation coefficient between TP 
and TN (r=0.83) depicted in Figure 2(c). The high 
correlation between TP and TN during the maturity stage, 

coupled with their substantial loadings on PC1, 
underscored the significant impact of these variables on 
ecosystem functions. 

 

Figure 4. Cumulative contribution rate: (a) Plant group (b) 

Planting layer group 

The above results showed that the PCA-based 
dimensionality reduction method simplified the data 
dimensions for pollutant removal performance and 
hydraulic permeability of plants and planting layers in 
bioretention systems. 

3.2. Results of the principal component analysis-projection 
pursuit model 

Based on the above PCA dimensionality reduction results, 
this study further developed the PCA-PP model to 
evaluate plants and planting layers within bioretention 
systems. The best projection coefficients were 
determined by solving the model using GA, as shown in 
Table S2, the comprehensive scores of the plant group 
(Hemarthria sibirica, Cynodon dactylon, Paspalum 
wettsteinii, Lolium perenne, and Festuca elata) and the 
planting layer group (L1, L2, L3, L4, and S1, S2, S3, S4) 
were obtained (Figure 5). In Figure 5(a), Cynodon dactylon 
had the most outstanding performance in removing 
stormwater runoff pollutants, whereas Paspalum 
wettsteinii performed the worst, with a score (Zi) 
difference of 0.97 between the two species. And analyzing 
the ratings of the plants at each growth stage, it could be 
seen that Paspalum wettsteinii, Lolium perenne, and 
Festuca elata were dominant only at a single stage, 
achieving their highest rating of merely 1.11. This value 
was significantly lower than the peak rating of Cynodon 
dactylon, which reached 1.58 during the aging stage. The 
ratings for Paspalum wettsteinii, Lolium perenne, and 
Festuca elata in other stages were generally below 0.5, 
contributing to their lower overall rankings. Conversely, 
Cynodon dactylon and Hemarthria consistently 
maintained high scores across all stages, with values 
exceeding 0.95. This may be attributed to the well-
developed root systems and growth rates of both plants, 
which enhanced the hydraulic infiltration properties and 
pollutant filtration capacity of the soil. Compared to 
Hemarthria sibirica, Cynodon dactylon was able to 
maintain higher physiological activity during the aging 
period, therefore it was rated the highest among the five 
plants. 

In addition, the scores of each planting layer are 
illustrated in Figure 5(b), revealing that L4 performed the 
best in removing stormwater runoff pollutants, while S4 
performed the worst. By analyzing the planting layer 
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ratios (Table 1), it was evident that the scores of the 

planting layers with Ss added (ZS1、ZS2、ZS3和 ZS4=0.37、

0.32、0.51 and 0.12) were generally lower than those of 

the planting layers with Ls (ZL1、ZL2、ZL3 和 ZL4=1.44、

1.29、1.0 and 1.47). This difference may be due to the silt 

and clay particles in Ls, which enhanced the soil’s 
adsorption capacity. However, the single-grain structure 
of Ss was not conducive to pollutant adsorption and 
treatment. Moreover, in the Ss combinations, the 
substrate layers with added Ve (S1), Bi (S2), and Pe (S3) 
had higher scores than S4, which had no additives. In 
contrast, the same additives did not produce similar 
effects in the Ls combinations (L1, L2, L3, and L4), possibly 
because the additives disrupted the structural balance of 
Ls. 

 

Figure 5. Evaluation results: (a) the plant group and (b) the 

planting layer group 

Based on the results of this study, Cynodon dactylon was 
recommended as the plant, and L4 as the planting layer, 
for use in bioretention systems. 

3.3. Comparison of evaluation methods 

To verify the validity of the models, this study conducted a 
comparative analysis of the AHP and the PP-GA model in 
evaluating the hydraulic infiltration and pollutant removal 
performance of various plants and planting layers within 
the bioretention system. AHP is a decision-making method 
that helps evaluate complex problems by breaking them 
down into a set of criteria. By comparing the importance 
of each criterion in a pairwise comparison, it calculates 
the relative weight of each factor to help prioritize 
decisions. The judgment matrix derived from AHP is 
presented in Table S3, and the optimal projection 
coefficients obtained from the PP-GA model are detailed 
in Figure S2. By combining the results of both methods, 
the final performance ranking was derived (Figure 6).  

In the ranking of the plant group results, the ranking 
obtained using the method proposed in this study is 
consistent with that of the PP-GA model, specifically 

following the order Cynodon dactylo＞Hemarthria sibirica

＞Festuca elata＞Lolium perenne＞Paspalum wettsteinii. 

However, when evaluated using AHP, the ranking 
between Festuca elata and Lolium perenne, differed from 
the other methods. Upon examining the AHP calculation 
process, it was found that the weight of HPC was merely 
0.05 (Table S3). This indicated that the AHP model mainly 
focused on pollutant removal performance during the 
weight allocation process, while insufficient consideration 
was given to hydraulic permeability performance, 
resulting in an underestimation of the HPC weight, which 
is a key indicator. In comparison, the PP model in the 

remaining two methods could analyze the characteristics 
of the data structure of the evaluation object and 
automatically adjust the weights of the indicators, thus 
providing more realistic results. 

 

Figure 6. Evaluation results of three methods: (a) Plant group 

and (b) Planting layer group 

When analyzing the evaluation results of different 
planting layers (Figure 6), it can be seen the ranking of 

PCA-PP-GA was L4 > L1 > L2 > L3 > S3 > S1 > S2 > S4， 

whereas both the AHP and the traditional PP-GA model 
identified L1 as the optimal planting layer ratio scheme. 
This discrepancy arose because, during PCA in this study, 
the data dimensionality was reduced and the focus was 
placed on important variables, taking the impact of price 
into account. For instance, the weight of the price 
indicator in PC3 was as high as 0.962, while in AHP it was 
only 0.0412 (Table S3). Therefore, PCA-PP-GA chose the 
more cost-effective L4 when the two planting layers had 
similar pollutant removal effects, and AHP chose L1 with 
less consideration of cost in assigning values. 
Furthermore, unlike AHP, which used consistent weights 
at all stages (Table S3), the PP-GA model could adjust the 
weights of different indicators based on the actual data 
characteristics of each variable at the four stages (Figure 
S2), thereby providing a more objective evaluation of the 
various plant growth periods. Nevertheless, the 
conventional PP-GA relied on the direct projection of the 
original data, and there existed a significant strong 

correlation between COD and TN, -

3NO -N , +

4NH -N  and 

other indicators (Figure 2). This could result in this 
model’s derived projection coefficients not being accurate 
enough when faced with complex or multidimensional 
data, thereby causing a loss of information. The 
comparison of the evaluation methods is summarized in 
Table S4. 

In conclusion, the PCA-PP-GA model not only reduced 
information redundancy and enhanced accuracy through 
dimensionality reduction but also achieved a better 
balance between performance and economic factors. It 
was more appropriate for bioretention system designs 
under economic constraints. 

4. Conclusion 

Aiming at the problem of multi-objective evaluation of the 
effectiveness of bioretention systems on stormwater 
runoff management, a PCA-PP model combined with GA 
was proposed in this study. By applying PCA to optimize 
the indicators of the raw data, the processing of complex 
multi-dimensional data was simplified. Meanwhile, the GA 
avoided the difficulties of traditional methods, such as 
parameter determination and the risk of falling into local 
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optima, achieving more reasonable indicator weights. The 
evaluation results showed that Cynodon dactylon 
exhibited superior performance within the bioretention 
system, while the L4 configuration (10.0% Ls + 90.0% S) 
was identified as the optimal planting layer. Compared 
with AHP, the ranking obtained through PCA-PP was 
based on data-driven analysis, reducing the interference 
of subjective judgment and thus capturing the importance 
of cost-effectiveness for practical applications. In 
comparison to the PP-GA model, this study initially 
employed PCA to transform the raw data into principal 
components (e.g., PC1, PC2) with higher explanatory 
power, effectively mitigating the interference of irrelevant 
or secondary information and improving the accuracy of 
the multi-objective evaluation method. These results 
provide actionable guidance for the practical design and 
optimization of bioretention systems, particularly in 
enhancing cost-effective stormwater management 
strategies. By prioritizing these configurations, urban 
planners and ecological engineers could improve pollutant 
removal and hydraulic performance, contributing to the 
broader goals of sustainable urban development. 

5. Limitations and prospects 

Despite the promising potential of the PCA-PP-GA model 
in evaluating the performance of bioretention systems, 
this study primarily relies on a limited dataset for model 
construction and validation, as well as specific plant 
species and planting layer ratio combinations. This 
limitation introduces potential biases, restricting the 
generalizability of the results to other geographical 
regions or climatic conditions. 

Future researches are recommended to focus on 
expanding the dataset by incorporating field data from 
various climates, soil types, and pollution characteristics 
to validate the applicability and robustness of the findings. 
Additionally, in addressing the economic and logistical 
constraints of real-world applications, exploring local 
material alternatives and modular construction methods 
would be valuable. It is suggested that prioritizing the use 
of local materials in small-scale experiments could help 
ensure scalability and adaptability to different urban 
environments. 
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