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GRAPHICAL ABSTRACT 

 

Abstract 

This study presents an innovative approach to air quality assessment by integrating 

low-cost sensor networks with line source modeling. The research focuses on monitoring air 

pollutants in urban environments, particularly along a busy highway corridor in Chennai, 

India. A portable sensor kit was fabricated using metal oxide semiconductor sensors (MICS) 

to measure NO2 and CO concentrations, along with temperature, humidity and wind speed. 

Ten monitoring stations were strategically selected based on traffic congestion levels. A 

portable sensor kit with MICS sensor to measure CO and NO2, a Wi-Fi module 



 

 
 

 

(NODEMCU), an analog to digital converter (ADC16 BIT) and DHT-11 sensor to measure 

temperature (℃) and humidity (%). Also meterological parameters like wind speed and wind 

direction was also recorded. To validate the sensor data, the Delhi Finite Line Source Model 

(DFLSM) was employed. The study revealed maximum CO concentration ranging from 1.8 

to 5 mg/m3 and NO was from 8 to 32 µg/m3. There has been occasional spike in CO 

concentration in monitoring stations 5, 6 and 10 beyond the threshold limit of 4 mg/m3. The 

correlation between observed and modelled data showed R2 values from 0.82 for CO and 

0.95 for NO2 indicating good agreement. This integrated approach offers several advantages 

over traditional monitoring methods, including cost-effectiveness, real-time data collection, 

and the ability to cover larger areas. This study demonstrates the potential of this method for 

comprehensive air quality monitoring in urban settings, which can aid in identifying pollution 

hotspots and informing urban planning and policy decisions.  

 

Key words: Air Quality Assessment, Sensor Network, Line Source Modeling, Emission 

Sources, Data Validation, Atmospheric Dispersion 

 

1. INTRODUCTION 

The expansion of urban areas and industrial growth has led to increased traffic and 

industrial activity, resulting in environmental issues such as water, air, and soil 

contamination. As essential components for human survival, any alteration in the 

composition of air and water can have detrimental health effects. (Pandey A. et al. 2021, Li 

Lin. et al. 2022). Consequently, environmental protection agencies prioritize the preservation 

of these elements and have established standards for quality monitoring. While water 

pollution is often easily detectable through visual and olfactory cues, air pollution is less 

visible and more challenging to measure. The primary air pollutants include particulate 



 

 
 

 

matter, SO2, NOx, O3, CO, and CO2. A research study found that air pollutants were related 

in causing various symptoms in humans that ultimately lead to causing autoimmune disease. 

(Wen J. et al. 2024). Certain components of PM2.5 especially polycyclic aromatic 

hydrocarbons (PAH) are found to cause systemic lupus erythematosus after long term 

exposure in humans especially children, pregnant women and patients (Alves AGF et al, 

2018, Conde PG et al. 2018). Due to the high costs associated with establishing monitoring 

stations, only a limited number are set up in select metropolitan areas, making it difficult to 

measure pollutant concentrations according to National Ambient Air Quality Standards 

(NAAQS) guidelines. Although portable monitoring devices exist, comprehensive tools for 

measuring multiple pollutants simultaneously are scarce. It has also been proved that gases 

like CO, NO2, SO2, and CO2 in the atmosphere can be detected using multi-pass cavity-

enhanced Raman spectroscopy technique in lower concentrations. (Wang M et al. 2025). In 

addition to these pollutants, VOCs like benzene, toluene, ethylbenzene and xylene also play a 

role in deteriorating the air quality both indoors due to paints, solvents, cigarette smoke, and 

outdoors due to industrial activities, fuel stations, incomplete combustion of gasoline and 

diesel vehicles. Research studies show that inhalation of benzene can cause cancer in humans 

and ethylbenzene are found to be carcinogenic to animals. (Khoshakhlagh A.H et al., 2024, 

Moolla R et al. 2015). A study conducted in various indoor environment in Iran found that 

these VOCs were exceeding the standards set by Environmental Protection Agency based on 

inhalation exposure time. (Kanmani H et al. 2023). The integration of vision and language 

models for analyzing air pollutant imagery and sensor data can improve detection, 

classification, and real-time evaluation of air pollutants. (Chen Y et al. 2024). Pollutant 

concentrations vary along line sources and wind paths (Qin P. et al. 2024, Wen YB. et al., 

2022). 



 

 
 

 

Air quality monitoring is crucial for raising awareness and controlling harmful emissions that 

may pose health risks. (Baklanov A. et al. 2016, Ababio B.A et al. 2025). Various methods 

can be employed for this purpose, including real-time monitoring stations, portable 

equipment, diffusion tubes, and sensors. Fixed monitoring stations can only capture pollutant 

concentrations at a single point, serving as a representative sample. Portable devices require 

manual operation and can only be used for limited time periods (Wang Y.Z et al. 2025, 

Huang M. et al. 2024). Passive diffusion tubes are suitable for analyzing monthly average 

concentrations but are restricted to detecting gaseous pollutants. (Ballesta P.P. et al., 2023). 

Trace organic pollutants can also cause degradation of the environment and human health 

(Gong H. et al. 2024). Research on the fluorescence quenching mechanism and pseudo-

second-order kinetics model of HMQ composite was conducted by a researcher, potentially 

leading to the creation of more effective gas sensors for monitoring air quality. The 

interaction between air pollutants and specific quantum dots or biomimetic materials could 

potentially enhance the capabilities of current sensors through fluorescence-based detection 

methods. (Xu F. et al. 2024).  

Recent research has focused on developing sensors to detect major pollutant 

concentrations. These sensors utilize micro sensing technology and offer innovative ways to 

collect air quality data. However, their accuracy must be validated against reference data 

from monitoring stations or portable equipment before deployment. Low-cost sensors have 

been used in community-based air pollution studies (Kortoci P. 2022, Thulliez E. et al. 2024, 

Albarracin K.Y.A. et al. 2023). Mobile air quality monitoring stations equipped with sensors 

can provide insights into air pollutants in specific areas (Lee C.C. et al. 2020, Miao C. et al. 

2024). 

The reliability of monitoring devices is called into question due to their limitations. 

Research has shown that long-term spatial data on pollutants and their variations do not 



 

 
 

 

significantly correlate with the information generated by these devices (Chojer H. et al. 2020, 

Morawska L. et al. 2018, Rai A.C. et al. 2017). Despite extensive global research on utilizing 

low-cost sensors for air quality monitoring significant challenges persist. (Poupry S. et al. 

2023, Castell N. et al. 2017, Deary M.E. et al. 2016) One major issue is that fabricated 

sensors require calibration with standard sensors and often exhibit sensitivity and instability 

at ground monitoring stations (Jiao W. et al. 2016). This can lead to data misinterpretation, 

necessitating a validation system to verify the accuracy of data collected by these low-cost 

sensors (Boulic M. et al. 2024). Many researchers have noted the drawbacks of using sensors 

as mobile monitoring stations during post-processing and validation, with consistent sensor 

performance over time being a primary concern. In Canada, air quality was monitored using a 

mobile van equipped with sensors, and the data was validated and used to assess population 

exposure to particulate matter pollutants. Researchers reported a strong correlation between 

observed and monitored data, which also aligned well with modeled data (Weichenthal S. et 

al. 2016, Sabaliauskas K. et al. 2015). Mapping air pollutant spatial data can highlight 

concentration in specific areas, and reducing these concentrations may mitigate their impact 

on human health and ensure cleaner air in the future. The development of these sensors has 

enabled air quality data collection over longer distances by installing devices in mobile vans, 

bicycles, cars, buses, and taxis (Minet L. et al. 2017, Xie S. et al. 2024, Clark S.N et al. 

2024). 

Air quality monitoring sensors employ diverse working principles. These include 

optical particle counters for particulate matter analysis, metal oxide-coated semiconductor 

sensors, electrochemical devices, photo ionization detectors, and non-dispersive infrared 

sensors (Borrego C. et al. 2016, Seesaard T. et al. 2024, Yi W.Y. et al. 2015). Sensor 

integration typically involves combining pollutant-specific sensors with those measuring 

meteorological parameters, enabling the study of pollutant patterns in relation to factors such 

https://www.sciencedirect.com/author/57202555239/scott-a-weichenthal


 

 
 

 

as temperature, wind speed, and humidity. The monitoring device can be assembled as a kit, 

incorporating these sensors alongside a control board integrated with the sensor board for 

data storage and transmission. After determining the sensor configuration, a validation profile 

must be established. Optimal calibration involves comparing sensor data with reference 

measurements from standard monitoring stations. Alternatively, sensors can be validated 

against well-established, time-tested models that accurately reflect pollutant concentrations 

based on meteorological data and emission factors. A study showed that a suspended 

nanomembrane silicon micro ring resonator exhibited high sensitivity when utilized for CO2 

gas detection. (Guo R. et al. 2024) 

Mathematical modeling serves as a predictive tool for responses influenced by various 

factors. In air quality modeling, numerous parameters are considered, including wind speed, 

wind direction, source location, and elements that significantly affect pollutant dispersion. 

Research indicates that mathematical equations and software can model air pollution based 

on its source, categorized as line, point, or area sources. Line source pollution predictions 

often employ Gaussian-based models, utilizing wind data, emission factors, and various 

parameters (Brusca S. et al. 2016, Yang Z. et al. 2020). Deterministic air quality models 

determine pollution concentrations using source information, emission factors, wind data, and 

dispersion parameters. The model's integrity relies heavily on the accuracy of input data. Air 

quality data can be analyzed by a variety of techniques and methods. (Wang Y. et al. 2023). 

A self powered biomimetic mouse whisker sensor (BMWS) studied by a researcher has the 

possibility to be applied to air quality monitoring since they are more energy-efficient and 

suitable for long-term remote deployments in urban environments. (Hou X. et al. 2023). A 

researcher suggested a novel method to remove CO2 from air contaminants by using 

permeation test with a prepared polymeric nanocomposite membrane. This findings could be 
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used as a mitigatory measure to remove CO2 from the mixture of atmospheric gases in future. 

(Delavari M. et al. 2024).  

This study introduces an innovative, cost-effective miniature air quality monitoring 

device with high sensitivity and specificity. The device consumes minimal power and 

responds quickly. Its measured data is integrated and validated using mathematical modeling 

with predictive capabilities, enabling validation and calibration. The combination of MICS 

sensors and mathematical modeling enhances accuracy and reliability, facilitating real-time 

monitoring, forecasting, and air quality management for improved public health outcomes. 

This paper aims to analyze pollutants using a sensor and validate pollution concentrations 

using finite line source models. 

 

2. Methodology 

2.1 Location of Study area 

The study area chosen for this work is on the National Highways (NH-48) connecting 

Chennai and Bengaluru. The road is a four-lane road with extension works carried out for 

widening the highway to 8 lanes. A stretch of 10 stations were selected in a close interval of 3 

to 5 km so that the entire stretch of the Highway stating from Chennai outer to Sriperambudur 

Toll gate is covered. Major traffic signals and road intersections wherein the anticipated 

traffic is in a stagnant condition for a considerable amount time were identified as monitoring 

stations. This road houses two major SIPCOT (Industrial zones) and many educational 

institutions. The road has a mixed culture of residential, commercial, educational and 

industrial corridor.  

https://link.springer.com/article/10.1007/s10924-024-03247-z#auth-Mina-Delavari-Aff1
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Fig 1: Wind rose diagram showing wind velocity and direction 

 

2.2 Meteorological Data 

The transport of pollutants is enabled by the wind parameters and dispersion is 

facilitated by the weather conditions like temperature, relative humidity and rainfall. Wind 

speed and direction plays a major role in diluting the concentration. The data with respect to 

wind speed and direction is given as a wind rose diagram in Fig-1. The average relative 

humidity observed in this place ranged from 65 to 72% during summer and 75 to 90 % during 

winter. The average monthly rainfall along with the maximum and minimum observed 

temperatures is given in the data presented in fig-2. 
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Fig 2: Meteorological data 

(source: https://weatherspark.com/h/y/110123/2023/Historical-Weather-during-2023-in-

Chennai-India) 

 

2.3 Methodology 

A sensor kit was fabricated using an aurdino board. The sensor used for monitoring 

the data is MICS 6814. It is silicon gas sensor consisting of a diaphragm with a sensing layer 

on top and an embedded heat resistor. It has 3 sensor chips out of which one sensor detects 

oxidizing gases, the other sensor detects reducing gases and the third sensor detects NH3. The 

range of gases that could be detected by the sensors is carbon monoxide (CO) – 1 to 1000 

ppm and Nitrogen di oxide (NO2) - 0.05 to 10 ppm. The other components that were added in 

the aurdino board are the sensor that can measure temperature and humidity (DHT-11), a Wi-

Fi module (NODEMCU) and an Analog to digital converter (ADC 16 BIT). The pollutants 

considered in this study are NOx and CO as these pollutants can easily be measured using 

such metal oxide semiconductor sensors and moreover the area under study has these gases as 

major pollutants. These sensors work by the redox process facilitating the metal oxide to 



 

 
 

 

undergo oxidation and reduction as it comes in contact with the gaseous pollutants. Due to 

this reaction the output is a change in resistance. 

  

Fig 3: (a) Fabricated sensor kit 

Fig 3: (b) Architectural diagram of the sensor kit  

The profile and architecture diagram of the fabricated sensor kit is given in Fig 3 (a) 

and 3 (b) respectively. 

Appropriate sensors are selected and calibrated in a controlled laboratory environment 

using standard reference. Field calibration is done by way of placing the sensors alongside an 

existing monitoring station to ascertain the accuracy of measured data. Strategic placement is 



 

 
 

 

planned considering the pollution sources, population density and geographic features. 

Environmental data comprising the meteorological data (Temperature, humidity, wind speed 

and direction) and supplement data like traffic count and sources of industrial emission are 

collected. The sensor kit was connected to a laptop and the air pollutant concentrations were 

measured from 8 am to 8 pm covering the peak hour traffic. The vehicle count was also taken 

in order to use it for line source model. The line source used in this work for validating the 

data is Delhi finite line source model (DLSFM). The input data for the models as per the 

equation was prepared and configured based on the study area and specific pollutants. The 

data observed using the sensor kit was compared with the model. The air pollutant data is 

cross validated to evaluate the model accuracy and monitored data. Statistical metrics like 

correlation coefficients are used to quantify the agreement between the model predictions and 

sensor observations. 

 

3. Results and Discussions 

3.1 Monitored data using sensor kit 

The data that is monitored using the sensor kit is plotted to show the concentration of 

the pollutants during summer and winter. The concentration of CO given in fig-4 has 

maximum values in station 5, 6 and 10. The NAAQS value as given for pollution threshold is 

2-4 mg/m3. There has been a marginal increase in CO cumulative concentration beyond 4 

mg/m3 in stations 5, 6 and 10 indicating that it is exceeding the standards.  



 

 
 

 

 

Fig 4: Variation of CO in summer and winter 

 

Fig 5: Variation of NO2 in summer and winter 

The station 5, 6, and 10 are locations having higher idling of traffic since they are in 

zones having traffic signal and road intersections. The idling of vehicles for a considerable 

amount of time could result in higher concentration of CO concentration. Moreover, the 

vehicle counts reveals that around 9000 vehicles pass this road in an hour. These monitoring 

stations are in industrial area that houses automobile industries like Hyundai car factory 

which has containers for transporting the manufactured cars. The major reason for CO spike 
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is the incomplete combustion of fuels used in these vehicles especially diesel trucks. The 

other cause associated with increase in CO concentration is from the machineries and 

equipment’s that are used along road-side for construction works like bitumen mixer, paver 

equipment’s, rollers and compactors. Even short-term exposure to CO can reduce the level of 

oxygen in the blood leading to heart diseases in humans. 

Similarly, the concentration of NO2 given in fig-5 had maximum concentration in 

stations 3, 5 and 10. Station 10 is located exactly opposite to the Hyundai car factory. The 

NAAQS value for NO2 can be from 40 to 80 µg/m3. The value measured in all the stations 

are well below the threshold levels. Pollution from industries and vehicles are the main 

reason for higher concentration of NO2. NOx denotes the group of compounds of nitrogen 

and oxygen. The source of NO2 is generated from tropospheric ozone, from exhaust of 

petrochemical process and by burning of fossil fuels. The particles get deposited in wet and 

dry states in the atmosphere as acidic compounds. NO2 is considered as a greenhouse gas and 

is said to create global warming approximately 300 times more than that of CO2. The 

concentration of NO2 in the atmosphere is said to cause acute health hazards in humans like 

respiratory ailments and low birth weight. 

 

3.2 Modeled data using DFLSM 

The model used in the study given in equation (1) was referred from the one used by 

Khare and Sharma (1999) [27] that was modified from the conventional general finite source 

model (GFLSM). The major difference in this model is that the error function is eliminated 

from the base GFLSM. The modeled data was compared with the observed experimental 

data. The concentration of the pollutants is given as: 
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In the above equation Q represents the emission rate, u is the wind speed, the 

dispersion parameters are σy are σz in the horizontal and vertical direction, the receptor 

distance from the road is y and the height of the receptor is z. The parameters for fixing the 

receptor were adopted as specified by Gokhale and Khare [28]. In the line source co-

ordination system all the parameters, namely, x ,y ,z can be evaluated from road receptor 

geometry. This model as given in equation (2) specifies the dispersion parameter as a 

function of wind-road orientation angle and distance from the source. Height of the receptor 

relative to the ground is taken as 1.8 m. Horizontal Dispersion Parameter ( σy ) is given as: 

yayty

22  +=  (2) 

ztyt  2=  (3) 

Ozt U53.057.3 −=  (4) 

UO is mean wind speed, m/s 






cos15.2

sinX
ya = (5) 

λ depends on stability class and is given by: 

λ = 18.33-1.8096 In (x/1000)/57.2958 for unstable (A to C) 

 = 14.333-1.7706 In (x/1000)/57.2958 for neutral (D) 

 = 12.500-1.0857 In (x/1000)/57.2958 for stable (E to F) 

Here x is in metres and λ in radians 

Vertical Dispersion Parameter ( σz ) 

The vertical dispersion parameter in is given as 

( )( )cz xbfa  += (6) 



 

 
 

 

However, for GFLSM model, the effective downwind distance is given as X/sin θ. a, 

b, c depends upon stability class. Then 1/sin θ =1/0.2242 for stability class (A-D),= 1/0.1466 

for stability class (E), θ = angle between the ambient wind and the road. 

The temperature and wind data as given in Fig 1 and 2 are considered as those 

occuring on the particular day of measurement. Atmospheric stability is based on Pasquill 

Gifford stability classes. The traffic data was collected manually and the emission factors 

were calculated based on the type of vehicle. The mobile source emission factor is defined as 

the quantity of a pollutant emitted when a vehicle runs a unit length of road and depends 

upon the type, speed, age, etc of the vehicle. Hence Q is given by : hf VEQ =  Where, E f is 

the pollutant emission factor; and Vh is the vehicle density (vehicles/h). 

 

Fig 6: (a) Correlation of observed and modeled data for CO 
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Fig 6: (b) Correlation of observed and modeled data for CO 

 

Fig 7: (a) Correlation of observed and modeled data for NO2 
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Fig 7: (b) Correlation of observed and modeled data for NO2 

The results given in fig-6(a) and fig-7(a) are the values of pollutant concentration that 

was modeled using DFLSM and the concentrations that were observed using the sensor kit. It 

shows that there are some variations in the numerical values with increase and decrease of 2 

to 3 units in both the cases. The correlation coefficient by linear regression between the 

observed and modeled data is plotted in Fig 6(b) and 7(b). The R2 value for CO is 0.8 and for 

NO2 it is 0.94.  

Comprehensive data collection is the major complexity of the model. Gathering 

detailed traffic volume, classifying the types of vehicles and estimation of emission factors 

involves more field monitoring. Accurate meteorological parameters are needed to drive the 

accuracy of the data. Though the meteorological data keeps varying in a day the average 

values are considered for calculation. The model’s sensitivity to various parameters like 

atmospheric stability and mixing height requires careful validation. Integrating MICS sensors 

data with model outputs for validation requires careful analysis and data processing. 

Continuous calibration of the model against observed data to improve accuracy and reliability 

is essential. 
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Exposure of sensors to high levels of pollutants, humidity and temperature variation 

can cause degradation. Compared to High volume samplers, the data acquired from the 

sensor kits are thought to have low accuracy and precision. Hence the MICS metal oxide 

sensor was subjected to a number of periodical calibration and testing methods in order to 

ensure accuracy in measuring the concentration of pollutants. To evaluate the sensors 

sensitivity and response characteristics, they were subjected to a range of CO and NO2 

concentrations. This evaluation approach involved introducing and withdrawing the target 

gases, and the sensors displayed steady and reproducible responses. The sensors were 

subjected to a known concentrations of CO and NO2 during the gas sensitivity test, and the 

voltage level and resistance changes were recorded. This lets us determine how well the 

sensor performs in various temperature, pressure, and humidity settings and forces us to 

verify the sensor's linearity and sensitivity. The Response and Recovery Time Testing 

ensures that the MICS sensor utilized in these studies has a good recovery time and 

necessitates ongoing monitoring. There is very little interference when these sensors are 

tested for cross-sensitivity and interference since it is periodically checked once every 3 

weeks. If the MICS sensor shows high interference due to environmental conditions such as 

temperature (20℃-40℃) and humidity (20%-60%) which impacts the sensor output with the 

standard reference equipment, then a new calibrated MICS sensor is used replacing the 

defective sensor. Long-term stability tests reveal that the sensors provided reliable readings 

with low drift over a 24-hour period. According to the findings, MICS gas sensors are suited 

for real-time monitoring since they have good sensitivity and selectivity for CO and NO2. 

Combining MICS sensor data with advanced modeling techniques can help mitigate some of 

the limitations and enhance the overall quality of air quality assessments. 

Further enhancements in MICS sensor technology can focus on improving sensitivity, 

accuracy, durability while reducing the cost and power consumption. A wholesome air 



 

 
 

 

quality assessment assembly can be fabricated using various other sensors and integrating it 

to be a complete monitoring assembly which can be used in place of high-volume samplers 

especially in places where high pollution concentration tends to prevail and where human 

health hazards may occur due to higher concentration of air pollutants. 

The highlight of this works involves an innovative approach of using low-cost sensors 

integrated with line source modeling to assess air quality. This approach renders a cost 

effective and widespread solution for air quality monitoring especially in urban areas. The 

integration of sensor networks with line source models allows for continuous data collection 

and dynamic updating of the models. This ensures more accurate air quality assessments 

under varying environmental conditions and traffic patterns. The use of low-cost sensors 

enables deployment across multiple locations, facilitating large-scale air quality monitoring. 

This provides a more comprehensive view of air pollution distribution compared to 

traditional, limited monitoring stations. This study also demonstrates a method for validating 

data from low-cost sensors using line source modeling, addressing concerns about the 

accuracy and reliability of such sensors. This validation process enhances credibility of data 

collected through these sensors. Finally, the data collected through this method can 

significantly aid urban planners and policy makers in identifying pollution hot spots and 

developing targeted strategies for air pollution mitigation. This has important implications for 

public health and urban development. 

 

4. Conclusions 

The key conclusions from this research can be summarized as follows: 

➢ Combining the real time data from sensor network distribution with line source 

models significantly improves the accuracy of air quality assessments. 



 

 
 

 

➢ This integration facilitates comprehensive monitoring of pollutant dispersion 

specifically in urban environment prone to complex emission sources. 

➢ The real time data of the sensor network enables continuous data collection thereby 

allowing for dynamic update of line source models. This ensures the accuracy of models 

under the varied climatic conditions and traffic fluctuations. Hence a robust air quality 

information and forecast system can be developed by this integration. 

➢ The use of low-cost sensors makes widespread deployment in various stations 

covering a larger extent facilitating large scale air quality monitoring. The study also 

demonstrates an alternative low-cost solution in the place of more expensive monitoring 

stations. 

➢ The air quality data provided in this study can help the urban planners and policy 

makers to identify pollution hot spots and devise appropriate strategies for mitigating the 

pollution which has significant public health implications. 
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