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Abstract 

Weather forecasting is an essential but complex task 
because of its substantial influence on human life and 
advanced atmospheric dynamics. In recent years, deep 
learning-based techniques have gain high attention for 
weather forecasting. Nevertheless, current forecasting 
models ignore the interdependent relationship between 
variables across regions and primarily examine temporal 
patterns of weather data. In this work, a new Multivariate 
time series weather forecasting model is proposed using 
integrated secondary decomposition and Self-Attentive 
spatio-temporal learning network (SASTLNet). Particularly, 
the weather data is filtered using a Singular Spectrum 
Decomposition with Fuzzy Entropy (SSD-FE) for removing 
the irrelevant components and screening the component 
containing vital information. Moreover, the 
spatiotemporal fluctuations in the meteorological 
variables are investigated using an enhanced empirical 
mode decomposition (E3MD) method and a SASTLNet 
model. The self-attention block of the SASTLNet model is 
discovered using ladder format to lower the processing 
costs while representing the temporal and spatial features 
through single memory cell. The simulation results prove 
that the suggested model can outperforms the baseline 
models in terms of efficacy and accuracy.  

Keywords: Weather forecasting, spatio-temporal learning, 
secondary decomposition, self-attention, and Singular 
spectrum decomposition 

1. Introduction 

Weather forecasting (WF) is a challenging process because 
of the complex system of atmospheric motion and its 
considerable impact on human life. Fang et al. (2021) 
exposed the main goal of WF models is to predict 
variables including temperature, humidity, dew point, 
rainfall, and wind speed using historical data. Accurate 
weather forecasts are critical for many industries, 
including commerce (Wen, L. et al. (2024), Wang, Z. et al. 
(2024)), tourism (Liqin, W., and Yuan, Y. (2024)), sports, 
agriculture, mining, power generation (Yang et al. 2022), 
the food industry, airports (Periasamy S. et al. 2024), and 
naval activities. The WF methods can be widely classified 
as physical, statistical, intelligent, and hybrid methods. 
Mayer et al. (2023) and Zhang, et al. (2022) discussed the 
most popularly utilized physical technique is numerical 
weather prediction (NWP) model. It uses computer 
algorithms to solve a challenging set of nonlinear 
mathematical equations based on certain mathematical 
models in order to generate a forecast. Ren et al. (2021) 
implemented this approach to increases the financial cost 
and requires extensive computations.  

In weather forecasting, statistical methods are crucial 
because they provide valuable tool for investigating the 
historical data, identifying trends, and generating 
forecasts. Jaseena, K. U et al. (2022) and Sharadga, et al. 
(2020) introduced statistical models are ARMA, ARIMA, 
and their derivatives. However, statistical approaches 
frequently require human interaction for parameter 
adjustment and assumptions derived from the historical 
data. It might not be suitable for new or varying weather 
patterns. In contrast, Dewitte et al. (2021) and Surendran 
R et al. (2021) developed the artificial intelligence models 
can continuously evolve and adapt to changing conditions, 
as they are capable of learning from new data and 
adjusting over time. Furthermore, it is not limited to 
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predetermined concepts and may discover more 
complicated patterns and correlations from data. Weather 
forecasting uses a number of well-known artificial 
intelligence models, such as autoencoders (AE), support 
vector machines (SVM), artificial neural networks (ANN), 
convolutional neural networks (CNN), recurrent neural 
networks (RNN), long short-term memory networks 
(LSTM), and autoencoders (AE) from various researchers 
Donadio et al. (2021), Markovics et al. (2022), Xiao et al. 
(2021), Surendran R et al. (2023), Mani et al. (2023), 
Yadav et al. (2024). 

The hybrid models combine two or more models to 
further improve forecasting model performance. The 
majority of the early models only used information at the 
time level and did not account for information at the 
space level (Venkatachalam, K et al. (2023), Dotse et al. 
(2024), Alqahtani et al. (2023)). Goel et al. (2023) and 
Christoforou, E et al. (2023) improved the temporal and 
geographical information incorporated into the models 
for increasing the accuracy of short-term weather 
forecasting. Spatio-temporal data shows universal 
characteristics of correlation and heterogeneity. When 
data are autocorrelated in both the temporal and spatial 
dimensions, it is referred to as correlation. Jin et al. (2023) 
explained the ability of spatiotemporal data to exhibit 
distinct patterns over a variety of temporal or spatial 
dimensions is known as heterogeneity. Recently, CNNs 
were used to forecast wind power and wind speed based 
on spatiotemporal features due to the advancement of 
deep learning methods (Liu et al. (2020)).  

Weerakody et al. (2021) determined the intelligent 
approaches may be more sensitive to noisy data. Noise in 
the data can mask fundamental patterns and result in 
incorrect predictions. He Renfei et al. (2022) approached a 
decomposition boost prediction accuracy and enhance the 
signal-to-noise ratio by eliminating noise or random 
fluctuations.  Therefore, a hybrid model that combines the 
best aspects of multiple models is needed to increase the 
accuracy of weather forecasting. Hybrid models based on 
the data decomposition approach aim to enhance 
forecasting performance through the reduction of 
stochastic disturbance of weather data series. These 
points motivate us to propose a new hybrid weather 
forecasting network based on decomposition and spatio-
temporal learning methods. The research contribution of 
this research work are listed as follows:  

• To introduce a new Multivariate time series WF 
model using integrated secondary decomposition 
and deep learning network. 

• To integrate the concept of fuzzy entropy 
estimation into singular spectrum decomposition 
(SSD) algorithm. This will enable the screening of 
meteorological data as a component containing 
essential information and the removal of 
irrelevant components. 

• To propose a new SASTLNet for capturing the 
spatiotemporal mutual dependence information 
at the same time. This SASTNNet contains a novel 
self-attention based spatiotemporal memory 

(SASTM) cell to obtain global spatial contextual 
information by describing the connections 
between different regions using a self-attention 
block.  

• To reduce the computational cost of self-
attention mechanism by modelling a lightweight 
ladder self-attention block.  

Studying a weather forecasting model in the Chinese 
context not only makes sense due to China’s unique 
geographic and climatic features but also because of its 
ongoing technological innovations, large-scale 
infrastructure, environmental challenges, and critical role 
in global forecasting efforts. The model would be 
particularly important for addressing local weather 
phenomena, managing natural disasters, optimizing 
resource allocation, and contributing to China's broader 
sustainability and technological goals. By understanding 
how China develops and utilizes weather forecasting 
tools, we can gain valuable insights into improving 
prediction accuracy and disaster preparedness both 
within China and globally. 

The rest of the paper is structured as follows: Section 
reviews the existing papers related to weather 
forecasting. Section 3 gives the description for the 
proposed weather forecasting model in detail. Section 4 
investigate the effectiveness of the proposed model by 
conducting extensive simulation. Section 5 Concludes the 
proposed work with future research direction.  

2. Literature survey 

Meteorological analysis and weather forecasting play a 
major role in sustainable development to mitigate the 
damage caused by extreme events. The ability of LSTM to 
record long-term dependencies has led to substantial 
performance on numerous real-world applications. 
Surendran R et al. (2023) used LSTM based data-driven 
prediction framework for a WF application. Also, a 
Transductive LSTM (T-LSTM) was developed for exploiting 
the local knowledge from the time series data. In T-LSTM, 
the samples near the test point were thought to have a 
greater influence on model fitting. Also, a quadratic cost 
function was used for the regression problem. Bai et al. 
(2020) stated that node-specific patterns must be learned 
efficiently to avoid a predefined map during prediction. 
Also, an Adaptive Graph Convolutional Recurrent Network 
(AGConvRN) was introduced, which automatically seized 
detailed spatio-temporal correlations in data series. This 
was achieved through two modules: Node Adaptive 
Parameter Learning and Data Adaptive Graph Generation 
with RNN. 

Wu et al. (2024) introduced a graph neural network (GNN) 
for multi-variable time series data (MVTGNN). This model 
extracted the one-way relations between variables via a 
graph learning unit. This unit could be united with 
external knowledge such as variable attributes seamlessly. 
Two additional layers including mix-hop propagation and a 
dilated inception layers were introduced for capturing the 
spatio-temporal dependences in the time series. Here the 
graph learning, graph convolution, and temporal 



MULTIVARIATE TIME SERIES WEATHER FORECASTING MODEL USING INTEGRATED SECONDARY DECOMPOSITION AND SELF-ATTENTIVE  3 

convolution blocks were collaboratively trained to form 
end-to-end framework. 

One of the key markers for identifying climate change is 
variations in the earth's surface temperature. Suleman et 
al. (2022) introduced a new Spatial Feature Attention 
LSTM (SFA-LSTM) model for capturing the spatio-temporal 
interactions of several meteorological features. Accurate 
data forecasting was aided by significant spatial features 
and temporal interpretations of previous data that were 
directly connected to output features. The mutual 
influence of input features on the target feature was 
captured by the spatial feature attention. Here, the 
encoder-decoder structure allowed for learning temporal 
dependencies in the data through the use of LSTM layers 
during the encoder stage and spatial feature relations 
during the decoder stage. SFA-LSTM anticipates 
temperature through the simultaneous learning of the 
most significant time steps and meteorological factors.  

Han et al (2022) introduced an integrated wind speed 
forecasting framework on the basis of weather research 
and forecasting (WRF) model.  Initially, the WRF model 
was used for obtaining the forecasted wind speed. 
Additional meteorological data were also collected from 
the various WRF fields. Moreover, the primary 
meteorological variables were chosen as the input series 
using the Pearson Correlation Coefficient (PCC) approach. 
Then the historical data and input series were 
decomposed into the appropriate intrinsic mode functions 
(IMFs) using the complete ensemble empirical mode 
decomposition with adaptive noise (CEEMDAN) approach. 
After that, a novel hybrid deep learning model was 
introduced that combined a CNN and a bidirectional LSTM 
(BiLSTM) for predicting the error and correcting the wind 
speed from WRF’s deepest field. Here, the BiLSTM was 
enhanced using an attention and a grid search approach. 
At last, a validation case study was carried out to confirm 
that the suggested model works as intended. 

Ma et al. (2023) developed a new Hierarchical Spatio-
temporal Graph Neural Network (HST-GNN) for enabling 
precise prediction of several variables and stations over 
several time steps. HST-GNN incorporated a dynamic 
graph learning unit for constructing a self-learning 
hierarchical graph. It comprised a global graph that 
depicted regions and a local graph that recorded 
meteorological information for every area. This model 
captured a variety of long-term meteorological trends and 
hidden spatial relationships using a dilated inception and 
graph convolution as the foundation. An adaptive 
collaborative learning was also introduced for facilitating 
bidirectional information among the two-stage graphs.  

Shenglin, M et al. (2024) analysis and demonstrates that 
spatiotemporal learning is essential for weather 
forecasting because of complex and dynamic 
characteristics of atmospheric events. Even though the 
existing deep learning algorithms are capable of producing 
accurate prediction results, there are still have certain 
issues. The existing T-LSTM does not capture spatial 
dependencies naturally. Also, GNNs have been the subject 
of numerous studies including GConvRN, MVTGNN and 

HST-GNN. However, they do not take into account the 
long-range time correlation between the different time 
steps of the nodes. Furthermore, they are unable to 
effectively depict the complex spatial-temporal 
dependencies in the graph.  Inaccurate predictions may 
result from random disturbances in the time series 
weather data. None of the existing models considered this 
issue before learning the spatiotemporal feature. To 
tackle these issue, this research introduced a new hybrid 
models based on the data decomposition approach. These 
models have the ability to forecast more accurately and 
are designed to remove stochastic disturbances from 
meterological variable series. 

3. Proposed method 

In this work, a new Multivariate time series weather 
forecasting model is proposed using integrated secondary 
decomposition and Self-Attentive spatio-temporal 
learning network (SD-SASTLNet). Figure 1 shows the 
complete architecture of the proposed weather 
forecasting model. Initially, the source data including 
temperature, humidity, wind speed, and pressure is 
acquired from weather forecasting datasets. After that, 
SSD-FE is introduced for decreasing the noise of the 
original multivariate series. Subsequently, an E3MD 
algorithm is used for decomposing the denoised series 
into their respective IMFs and residuals. Further, a new 
Self-Attentive spatio-temporal learning network 
(SASTLNet) is introduced for weather forecasting, which 
describes the temporal and spatial models via a unified 
self-attentive spatio-temporal memory (SASTM) cell. The 
SASTM architecture is constructed using Convolutional 
LSTM (C-LSTM) units as a base. In contrast to traditional 
methods that only use simple convolutions to extract 
spatial information, SASTM improves the C-LSTM by 
incorporating a self-attention module. This change 
significantly enhances the network's ability to represent 
global spatial data. 

 

Figure 1. Architecture of the proposed weather forecasting 

model 

3.1. Singular spectrum decomposition with fuzzy entropy 

In this work, the original multivariate meteorological data 
is denoised and decomposed using SSD-FE. An innovative 
data analysis algorithm that has gained popularity recently 
is called singular spectrum analysis (SSA). Zou, F et al. 
(2024) is discussed the capability of separating weak fault 
features and reconstructing nonlinear time series. 
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Nonetheless, the artificial selection of the SSA embedding 
dimension is unavoidable, and the choice of parameters 
significantly impacts the decomposition outcomes. 
Santhanaraj R. K et al. (2023) address this problem, an 
adaptive signal analysis method namely Singular spectrum 
decomposition (SSD) is created.  The weather data may 
contain noisy information because of the motion of the 
sensors. As a consequence, the suggested model screened 
and denoised the SSD decomposition findings using fuzzy 
entropy. The steps comprised in the suggested SSD-FE is 
described as follows:  

Gather the original time series weather signal Sk. 

Execute SSD for decomposing the sensed weather signal 

into k singular spectrum factors SSFs S= {s1
k, S2

k, , SL
k}. 

Compute fuzzy entropy FEk of every SSFs.  

Select SSFs whose fuzzy entropy value exceeds the 
average value.  

Use a soft threshold to reduce the noise of specific SSFs 
and then rebuild the signal. The threshold is computed 
using the following equation:  

 = 102log L
 

(1) 

Every compoent skj (j = 1, 2, , L) of SSF Sk is contracted 
utilizing the soft threshold: 
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The following paragraphs provide the detailed SSD 
solution process. Let s(n) denotes a time-series weather 
data set with length Land embedding dimension is K. The 

construction of the trajectory matrix (K  L) is given by S = 

[s1
T, S2

T, , SK
T] SSD offers a useful way to flexibly 

determine the embedding dimension K using iterative 
process. SSD generates a residual component rj(n) and its 
power spectral density (PSD) using 

( ) ( ) ( ) ( ) ( )
−

=

= − =
1

0
1

  ,  
i

u
u

n s n r n r n s n
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where i represents the iteration. If I > 1, the embedding 
dimension is rephrased as:  
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Where fm̂ax is PSD peak, fŝ denotes the sampling 
frequency. Then, the singular value decomposition (SVD) 
is used to construct trajectory S as given below: 
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(5) 

Where 1R K
ma  represents m-th column vector of 

R L LB , 1R L
mb defines the m-th column vector of 

RK KA , εm denotes the singular value matrix R K L  . 

The trajectory matrix is defined as: 

= + ++1 2 KS S S S  
(6) 

Where Sm = εm am bm. The subsequent stage is the 
reconstruction of particular signals using these primary 
components. Lastly, the iteration's termination condition 
needs to be determined. The definition of the normalized 
mean square error (NMSE) between the residual 
component and the raw data is  

( )

( ) ( )( )
( )( )
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=

=

=
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If NMSE is less than the specified threshold Th = 0.01, it 
terminates the SSD. One can acquire the decomposition 
result as follows: 

( ) ( ) ( ) ( ) ( )−

=

= +
1

1

z
k z

k

s n u n b n
 

(8) 

Where z denotes the number of SSFs and ũ(k) denotes the 
k-th SSF. Following the SSF calculation, the fuzzy entropy 
FEk is calculated for every SSF value. Fuzzy membership 
function was introduced by fuzzy entropy in order to 
enhance traditional information entropy. The k dimension 
vector is created by considering the SSF series as S= {s1, S2, 

, SL}.  

( ) ( ) ( )  ( )= +  + − −

=  − +

, 1 , , 1

, 1, , 1

k
jS s j s j s j k s j

j L k  

(9) 

Where k represents the embedding dimension. The 
distance of Sj

k from its nearby vector Si
k is detected as: 

( )
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(10) 

The resemblance between Sj
k and Si

k is computed using 
the fuzzy membership function as 

( ) ( )( )= = −, , exp /
gk k k

ji ji jiS D g w D w
 

(11) 

where µ (Dij
k, g, w) is denotes the fuzzy membership 

function, g and w denote the gradient and width 
respectively. Analogous to sample entropy, the average 
fuzzy similarity degree is provided as follows 


− +

= 

=
−
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If two vectors are matched based on fuzzy probability 
then it is defined as:  
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=
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(13) 
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The fuzzy probability of {Sj
k+1} is derived as 

( )( )
 

− −
+ +

= = 

=
− − −

1 1

1 1,

1

1

L k L k
k k
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(14) 

The Fuzzy entropy (k, w) is expressed as 

( ) ( )( )


 +

→
= − 1, lim ln /k k

g g
n

FE k w
 

(15) 

When L is limited, the fuzzy entropy is redrafted 

( ) ( ) += 1, , ln /k k
g gFE k w L

 
(16) 

3.2. Enhanced ensemble empirical mode decomposition 
(E3MD) 

The EMD is a dyadic filter that can separate the time 

series denoised weather signal s(n) into various types of 
time series components known as IMFs. The process 
continues until the residue parameter r(n) is lesser than a 
predefined value of significance or the residue parameter 
r(n) becomes a monotonic function (Golyandina et al. 

(2020)). At last, the signal s(n) is stated as the addition of 
constituents with the last residue parameter r(n). But the 
main problem of EMD is mode mixing. This work proposes 
an upgraded EMD to tackle the mode mixing issue in the 
EMD approach. This model receives the denoised weather 
time series data as input to decompose it into the residue 
r(n) and IMFs. The residue r(n) denotes the intrinsic signal 
inclination and is thought to have disconnected fluctuant 
elements. Figure 2 shows a flow chart for the proposed 
method. 

 

Figure 2. Flow chart of the E3MD approach 

The following is a description of the decomposition 
process: 

Determine the local peak of the signal s1(n), and create 
the upper and lower envelopes via cubic spline 
interpolation. Then compute average of upper and lower 
envelopes E1(n): 

( ) ( ) ( ) = −1 1Εs n s n n  
(17) 

Use the standard deviation (∆S) to decide whether to 
continue or halt the sifting procedure described above, 

( ) ( ) ( ) ( ) ( )− −
=

 = −
2

2

1 1
0

' ' /
n

j j j
n

S s n s n s n
 

(18) 

where J denotes the total iterations. 

If ΔS is lesser than a predefined value, the procedure 
described above must be halted and compute IMF1 

( ) ( ) ( )−= = −1 1' ' Εn n nIMF s n s n n  
(19) 

The residue r(n) is the variances between IMF1 and signal 

s1(n)  

( ) ( )= − 1'nr n s n IMF  
(20) 

Reiterate step 1 to step 4 till rx(n) turn out to be a 
monotonic function  

−= − = 1 , 2,3,j j jr r IMF j x
 

(21) 

Consequently, a residual that is isolated from s1(n) and 
the number of IMFs are derived. 

( ) ( ) ( )
=

= +
1

x

j
j

n IMF n r n
 

(22) 

The proposed model constructs a two-dimensional 
frequency matrix using IMFs and residual.  

The constructed frequency matrix (F) was used as the 
input of the SASTLNet. 

3.3. Self-Attentive spatio-temporal learning network 
(SASTLNet) 

In this work, SASTLNet is proposed for extracting the 
spatiotemporal information concurrently. SASTLNet is 
developed specifically for short-term weather forecasting. 
Here, stacked RNN is used for describing spatiotemporal 
sequence forecasting problems as in Figure 3. The SASTM 
module is the fundamental unit of SASTLNet. By extracting 
extremely abstract information layer by layer and 
transferring them back to the values of the weather 
parameter, the SASTM may generate forecasting results.  

 

Figure 3. Realization of (a) SASTLNet (b) SASTM 
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The following expression illustrates the spatial dimension 
status conversion between the two-time steps.   

−=0
1

m
n nM M

 
(23) 

−=0
1

m
n nH H

 
(24) 

Where M̄ denotes the spatial and temporal memory, 
H̄represents the status of hidden layer, and m denotes the 
amount of stacked recurrent network layers. It should be 
noted that the spatiotemporal memory's starting value 
M̄0

0 is initiated with all zeros. For 2  L      m , the SASTM 

network with m-layer stack is developed using the 
following expression:   

( )− −=1 1 1 1 1 0
1 1 1[ , , , , ,n n n n n n nH C M SASTM F H C M

 
(25) 

( )− −

− −=L L L L L L L1 1
1 1 1[ , , ] , ,n n n n n n nH C M SASTM H H C M

 
(26) 

Where hidden status H̄n
1 are tensors, Cn̄

1 denote cell 
outcome and Fnrepresents input frequency matrix. 
Observe that the initial SASTM layer is designated as 
SASTM1. Figure 3 (b) depicts the proposed SASTM 
architecture. The SASTM is constructed using C-LSTM. It is 
utilized for capturing the required data in the temporal 
dimension. An additional self-attention module based on 
C-LSTM is introduced for capturing the long-term 
dependences of contextual data in the spatial dimension. 
Lastly, weather data is predicted by combining the data on 
temporal and spatial dimensions.  

3.3.1. Temporal Learning 

Initially, the convolutional gating unit in C-LSTM is utilized 
for obtaining the present changes in the weather data 
along the temporal domain based on the hidden status 

data 1−L
nH . Subsequently, the proposed model updates 

the preceding temporal cell state 
1−

L
nC  to generate 

temporal unit L
nC  as indicated by the green line container 

in Figure 3. The temporal data transfer procedure is 
expressed as follows:  

( )  −

−= + +L L1
1tanh * *n fp n hp n pp H H

 
(27) 

( )   −

−= + +L L1
1* *n fq n hq n qq H H

 
(28) 

( )   −

−= + +L L1
1* *n fg n hg n gg H H

 
(29) 

− +=  L L

1n n n n nC g C q p
 

(30) 

where  denotes the sigmoidal activation function, ‘∗’ and 
‘◦’ represent the convolution operation and the Hadamard 
operation correspondingly. pn, qn, and gndefine various 
tensors.  

3.3.2. Spatial learning 

Here, C-LSTM is utilized for extracting spatial changes in 

the weather data based on 1−L
nH  and the cell state 1−L

nM . 

After that the spatial cell status 1−L
nM  of the preceding 

layer is updated for generating a fresh spatial unit 
L

nM  . 

Then the ladder self-attention (LSA) is used to give 

importance to the spatial data 
L

nM  extracted by the C-

LSTM operation. This allows the network to concentrate 
on the relationship between all data in the same setting as 
in blue dotted line container in Figure 3. The spatial data 
transfer procedure is expressed as follows:  

( ) − −= + +L L1 1tanh * * )fp pn n rp np H H  
(31) 

( )  − −= + +L L1 1* *n qfq n rq nH Hq  
(32) 

( )   − −= + +L L1 1* *n gfg n rg ng H H  
(33) 
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(34) 

 
=  

 

L
L   nn MM LSA

 

(35) 

where ng ,   nq , and ng  are tensors and LAS () denotes 

ladder self-attention operation. 

3.3.3. Ladder self-attention block (LSA) 

The proposed SASTLNet utilizes LSA for greatly improving 
the system's capacity to represent global spatial 
information. The traditional self-attention modules are 
challenging to implement in edge computing devices like 
FPGAs that have limited memory and processing power. In 
order to lower the computational cost, a lightweight LSA 
block that models local self-attention in each branch is 
introduced. The LSA unit distributes the input feature map 
to various branches after dividing it into several equal 
sections along the channel dimension as in Figure 4 (a).  

 

Figure 4. Self-attention block (a) LSA (b) DSA 
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Initially, the dynamic self-attention (DSA) with the 
dynamic self-windowed multi-head self-attention (DSW-
MHSA) processes the input features in the 1st branch 
without using a shift process. The properties of the 
remaining two branches are changed in different ways to 
represent various local relations. DSW-MHSA performs 1 × 
1 convolution on the input feature for yielding the query 
and key. This process is utilized for computing the 
resemblance between the feature points. The DSW-MHSA 
is used for modelling long-range dependences after 
delivering the output features for each branch. After 
modelling the local relations, the data controlled in the 
divided windows of the present branch is interacted with 
data external to the window in the subsequent branches.  

This reduces the training time of the LSA unit and allows it 
to represent long-range relations between data in distinct 
windows with the aid of many branches. The LSA blocks 
are legitimately calculated as 

−

 
=  

 

L

1
ˆ DSW_MHSA  ,nn nO M O

 

(36) 

− −

    =      

+

L LL

L

MHSA 1 1DSW , softmax n nM M
n n n

n

Q K
M O O

c

M

 

(37) 

( )( )− =1
ˆ

n nO LgtFFN LN O
 

(38) 

( )= =,      0,1nO AFU O n  
(39) 

The DSW-MHSA uses input data of n-th branch 
L

nM  and 

the output characteristics of the (n−1) −th branch (On−1) to 
compute output (Ôn). Following the DSW-MHSA output 
computation, the Light FFN (LgtFFN) and layer norm (LN) 
are used for producing the outcome of the n-th branch 
(On).  In the end, an adaptive fusion module (AFM) is 
created to produce the LSA block's output (Õ) based on 
the outcome of every branches. Here, LgtFFN is projecting 
the input with c2 channels to a finer feature with c2/4 
channels by using a fully connected (FC) layer with c 
channels. After modeling local interactions with a 
depthwise convolution, the channels are restored using a 
pointwise convolution. At last, the AFM concatenates the 
outcome of every branch and transmitted to two FC layers 
to produce the weights for every data. The weights 
denote the significance of features from every branch.  

3.4. Aggregation mechanism 

The aggregation mechanism employs the communal 
output gate for smoothly merging the data stored in the 
temporal and spatial memories. The last hidden status 
relies on the spatiotemporal memory after the merging. 
The aggregation mechanism combines the memory data 
along both horizontal and vertical paths. After that, 1×1 
convolutional layer is used for reducing the 

dimensionality. As a result, the size of hidden status L
nH  is 

similar to the size of L
nH  and L

nH . Here, the spatial and 

temporal data is incorporated in an aggregate unit to 
improve the spatiotemporal weather series prediction. At 
last, the aggregation mechanism creates the final 
prediction for the subsequent SASTM unit using the 
subsequent formula: 

 


  

−

−
 +

=  
 + + + 

L L

L L

1
0 0 1

0 0

* *

* *

f n h n

n

v n r n o

H H
out

C M  

(40) 

( ) 
 =  

L L L

1 1tanh * ,n n n nH out C M
 

(41) 

Overall, the spatiotemporal information was retrieved 
simultaneously by the SASTLNet model. The SASTM 
module improves the global context information 
capturing capability and breakdowns the restriction of C-
LSTM. Because C-LSTM captured local context information 
alone. As a result, it can improve weather forecasting 
ability.  

4. Results and discussion 

In this section, the proposed SASTLNet is validated by 
considering actual weather datasets from various regions. 
Initially, the required simulated parameters including 
datasets, evaluation metrics, comparison methods, and 
hyperparameter settings are outlined. Next, the simulated 
results are analysed in detail.  

4.1. Dataset description 

The suggested WF model is verified by collecting the data 
from 
https://www.kaggle.com/datasets/selfishgene/historical-
hourly-weather-data. It contains the 4 meteorological 
variables including temperature, humidity, wind speed, 
and atmospheric pressure gathered from 6 cities of Israel. 
A 24-hour time step is used in the forecasting process. Ten 
percentage of the data are utilized for validation, eighty 
percentage are utilized for training, and the remaining 
data are utilized for testing in sequential order. Table 1 
provides a summary of the dataset. The temperature, 
wind speed, atmospheric pressure, and relative humidity 
of New York are displayed in Figure 5.  

 

Figure 5. Visualizing the target data from dataset (a) 

Temperature (b) Pressure (c) Humidity (d) Wind speed 

https://www.kaggle.com/datasets/selfishgene/historical-hourly-weather-data
https://www.kaggle.com/datasets/selfishgene/historical-hourly-weather-data
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Table 1. Dataset details 

Data Description 

Location Israel  

Time period Feb. 2nd, 2012 to Oct. 28th, 2017 

Time interval 1 hour 

Meteorological variable  4 

Weather station 6 

Sample size 1850 

Input length  48 

Output length 24 

4.2. Evaluation metrics 

In this work, three widely used performance measures 
including Root Mean Squared Error (RMSE), Mean 
Absolute Error (MAE), and Mean Absolute Percentage 
Error (MAPE) are used for validation. They can be 
measured using the following equations:  

( )= −
2

ˆ
1

j j
j

RMSE o o
m  

(42) 

= − ˆ
1

j j
j

MAE o o
m  

(43) 

−
= 

1 ˆ
j j

j j

o o
MAPE

m o  

(44) 

where O and Ô denote the actual and forecasted data. m 
denote the total quantity of forecasted values. According 
to these measures, lower values are preferable for the 
best model.  

4.3. Implementation details 

The Python programming language has been used to 
simulate the suggested model. The L1 loss and L2 norm is 
used as the information loss and penalty term in the 
simulation respectively. The hyperparameter ρ should be 
considered before the penalty term for balancing the 
information loss and penalty terms. L1 and L2 losses are 
used to optimize the SASTLNet model. Training is done 
with an ADAM optimizer, with a weight decay of 0.025 
and an initial learning rate of 0.001. 100 iterations are 
required to terminate the training procedure. Every 
iteration has a batch size of eight. The Nvidia Titan RTX 
GPUs are used for all experiments, which are built using 
Python 3.6 and PyTorch 1.2.0.  

4.4. Evaluation of the proposed method 

Initially, the performance of the proposed model (SSD-FE- 
E3MD-SASTLNet) is validated by comparing it with 
SASTLNet (core model), SSD-FE- SASTLNet, and SSD-FE-
E3MD-STLNet (without self-attention) This analysis is 
carried out for emphasizing the significance of SSD-FE, 
E3MD and self-attention mechanism. The forecasting 
results of the proposed model and other models are 
shown in Figure 6. The actual and the predicted values of 
the weather data are indicated by solid blue lines and 
green lines respectively. The predicting errors of the 
models at each time point are shown by the brown 
histograms.  

 

Figure 6. Forecasting results of Wind speed (a) SASTLNet, (b) 

SSD-FE- SASTLNet, (c) SSD-FE-E3MD-STLNet (without self-

attention) and (d) SSD-FE- E3MD-SASTLNet (proposed) 

 

Figure 7. Forecasting results of Humidity (a) SASTLNet, (b) SSD-

FE- SASTLNet, (c) SSD-FE-E3MD-STLNet (without self-attention) 

and (d) SSD-FE- E3MD-SASTLNet (proposed) 

Table 2 presents the performance indicators such as MAE, 
RMSE, and MAPE for each variable and the average 
performance over all variables. Here, the forecasting 
results of SASTLNet, SSD-FE- SASTLNet, SSD-FE-E3MD-
STLNet (without self-attention), and SSD-FE-E3MD-
SASTLNet are compared. This table clearly shows that the 
predicting errors decrease when utilizing SSD-FE and 
E3MD decomposition. Consequently, the precision of 
weather forecasting is improved due to the use of 
multivariate data secondary decomposition techniques. 
Also, the SSD-FE- E3MD-SASTLNet model outperforms 
other models in terms of MAE and RMSE. This suggests 
that one may effectively capture the spatiotemporal 
properties of weather data through the addition of spatial 
dimension modeling on top of temporal dimension 
modeling with LSA. 
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Table 2. Ablation study 

Methods Metrics Temperature Humidity Wind speed Pressure Average 

SASTLNet MAE 1.8432 6.9214 0.8264 3.8679 5.0194 

RMSE 2.9417 8.7631 1.1245 6.5267 6.2468 

MAPE (%) 6.76 12.14 29.34 0.3198 11.694 

SSD-FE- 

SASTLNet 

MAE 1.1497 6.2142 0.7849 3.1645 4.3481 

RMSE 2.1094 8.1955 0.9174 5.8364 5.9461 

MAPE (%) 5.64 11.68 28.88 0.2851 11.2481 

SSD-FE-E3MD-

STLNet 

MAE 0.9032 5.3241 0.6719 2.7843 3.1457 

RMSE 1.9745 7.8491 0.8431 5.1248 4.5347 

MAPE (%) 4.57 10.21 26.94 0.2411 10.9423 

SSD-FE- E3MD-

SASTLNet 

MAE 0.8712 4.3216 0.4231 1.2341 1.7125 

RMSE 0.9836 6.6314 0.6984 3.8467 3.0400 

MAPE (%) 3.94 9.83 25.31 0.142 9.8055 

 

 

Figure 8. MAE perfromance analysis against baseline models (a) 

temperature (b) Humidity (c) Wind speed (d) Pressure 

Next, the multi-time step forecasting capabilities of the 
baseline models and the suggested SASTLNet are 
thoroughly examined. Figure 8 presents a comparison 
between SASTLNet and other baseline models, including 
as SARIMA, AGConvRN [27], MVTGNN [28], and HST-GNN 
[31]. It shows the forecasting errors over the next 24 
hours. It is observed that the HST-GNN network 
outperforms the conventional SARIMA model and all 
other models. Nevertheless, following a strong beginning, 
the performance of HST-GNN network is noticeably 
declining in terms of MAE values as compared to 
proposed model. Interestingly, the circle-shaped blue line 
surpassing the other lines indicates that SASTLNet 
consistently performed better than the other models and 
most of the multiple-time steps.  

Figure 9 compare the MAPE and RMSE of the proposed 
model with SARIMA, AGConvRN, MVTGNN, convLSTM and 
HST-GNN for each weather forecasting variables including 
temperature, Humidity, wind speed and pressure.  In 
comparison to other characteristics, this chart 
demonstrates that deep learning and conventional models 
do worse at forecasting humidity. Deep learning models 
have not effectively capturing all pertinent dependencies 
due to the complexity and nonlinearity of the humidity 
parameter. However, the techniques, such as spatio-

temporal modelling and ladder-based self-attention 
mechanisms. Also, it performance of humidity forecasting 
was improved by the suggested advances in deep learning 
provides reasonable performance improvements against 
all other meteorological variables.  

 

Figure 9. RMSE and MAE performance (a) (a) temperature (b) 

Humidity (c) Wind speed (d) Pressure 

The performance of the suggested weather prediction is 
compared with state-of-the-art methods in Table 2. Here, 
the traditional statistical univariate time series forecasting 
technique, i.e. Seasonal Autoregressive Integrated Moving 
Average (SARIMA) estimates future values by combining 
the autoregressive, differencing, moving average, and the 
three seasonal components. On the other hand, it may be 
difficult for them to cope with highly erratic or non-linear 
seasonal variations often seen in weather data, including 
sudden changes in pressure or temperature. Hence it 
achieves least performance as compared to deep learning 
models. Compared to conventional SARIMA, deep 
learning techniques like MVTGNN [28], AGConvRN [27], 
HST-GNN [31], and SASTLNet have a number of benefits. 
When it comes to managing the transition between 
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meteorological variables, MVTGNN and AGCRN use flat 
graph topologies. Hence, they perform worse than HST-
GNN and SASTLNet. Furthermore, well pre-processed and 
organized spatiotemporal data such as graph 
representations of temporal sequences and spatial 
interactions are frequently needed for HST-GNNs. Model 
performance may be impacted by graph representations 
that are not properly structured. However, the proposes 

model does not require such complex representation and 
uses lightweight ladder self-attention to learn the most 
significant information required for weather forecasting. 
Hence, it outperforms all other models by achieving 
average MAE of 1.7125, RMSE of 3.0400and MAPE of 
3.0400%.  

 

Methods Metrics Temperature Humidity Wind speed Pressure Average 

SARIMA MAE 3.1419 15.8560 1.3799 3.6863 6.0160 

RMSE 4.0347 19.2929 1.7756 6.2767 7.8450 

MAPE (%) 12.98 30.76 61.85 0.36 26.49 

MVTGNN MAE 1.4483 7.5238 1.0138 2.5149 3.1252 

RMSE 1.9290 11.2421 1.4185 4.2898 4.7198 

MAPE (%) 5.69 14.87 35.13 0.25 13.99 

AGConvRN MAE 1.2644 7.5966 0.9105 2.5471 3.0770 

RMSE 1.7461 11.2421 1.4185 4.2898 4.7198 

MAPE (%) 5.07 15.37 38.00 0.25 14.67 

HST-GNN MAE 1.2551 7.2302 0.9018 2.3911 2.9446 

RMSE 1.7287 10.9434 1.3038 4.2666 4.5606 

MAPE (%) 4.98 14.66 36.73 0.23 14.15 

SASTLNet MAE 0.8712 4.3216 0.4231 1.2341 1.7125 

RMSE 0.9836 6.6314 0.6984 3.8467 3.0400 

MAPE (%) 3.94 9.83 25.31 0.142 9.8055 

5. Conclusion 

This study developed a unique hybrid weather forecasting 
model using a multivariate data secondary decomposition 
approach and deep learning algorithm to increase the 
precision and dependability of weather forecasting. The 
suggested model uses SSD-FE to filter out some noise 
components and extract significant data from a 
multivariate meteorological series. The denoised 
multivariate series is then broken down into 
corresponding IMFs and residuals using various 
frequencies by E3MD. SASTLNet then extracts 
characteristics related to correlation in both the spatial 
and temporal domains. In particular, the SASTM module 
makes sure that the memory states reflect the 
summarized spatial properties in the horizontal path and 
passed via the time states in the vertical path. A 
progressive shift approach is introduced to model long-
range dependences using local self-attention on every 
branch and interrelating between these branches. This 
improves computation efficiency and expands the 
receptive field of the LSA unit. The findings indicate that 
the suggested model outperforms the other baseline 
models in terms of generalization and forecasting 
accuracy. The limitations of the work is could focus on 
optimizing the computational efficiency of the model, 
potentially through techniques like model pruning, 
parallelization, or leveraging specialized hardware like 
GPUs and TPUs to reduce inference time. 
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