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Abstract 

The present paper mainly focused on the statistical 
optimization of biodiesel production from the non-edible 
seeds of Mimusops Elengi using a KOH base-catalyzed 
Transesterification process. Consequently, it compares the 
prediction and simulating efficiencies of the Response 
Surface Method (RSM) and Artificial Neural Network 
(ANN) for biodiesel yield achieved via the 
Transesterification process. This experimental reaction 
analyzed various process variables influencing the 
transesterification process: methanol oil ratio, catalyst 
concentration, reaction temperature, and time. In both 
statistical analyses, RSM and ANN studies obtained R2 
values of 0.9923 and 0.9992, respectively. The optimum 
biodiesel yield achieved was 89% at a 1:7.5 molar ratio of 
methanol and M. Elengi seed oil using potassium 
hydroxide as a base catalyst.  

Keywords: Biodiesel, non-edible, mimusops elengi l, 
response surface methodology, artificial neural network 

1. Introduction 

Energy demand is increasing day by day due to the 
increase in the human population all over the world 
(Panwar, Kaushik, and Kothari 2011) In the past decade, 
the cost of petroleum crude oil has increased in the 
international market, and fossil fuel exhaustion and 
limitations resulted in alternative, renewable, and 

sustainable sources (Stigka, Paravantis, and Mihalakakou 
2014; Yusuf, Kamarudin, and Yaakub 2011). Hence, 
alternative fuels are required to sustainably satisfy the 
world's energy needs. Biodiesel, known as Fatty Acid 
Methyl Ester (FAME), is an eco-friendly and renewable 
fuel that can be used as an alternative to diesel fuel 
independently (or) blended with diesel (Jamil et al. 2021). 
Biodiesel derived from various feedstocks, like waste fats, 
waste cooking oils, and non-edible seeds, is used as a 
feedstock for biodiesel production (Athar and Zaidi 2020; 
Hamza et al. 2021). Several research studies have been 
carried out in the production of biodiesel from various 
non-edible seeds like Bryonia Dioica (Sanyasi kai), Garcinia 
xanthochymus (Jaarige), Mimusops elengi (Ranja), 
Terminalia bellirica (Shanthi kai) and Anamirta Cocculus 
(Chiplotte) (Ala'a H. Al-Muhtaseb et al. 2020; Habib et al. 
2020; Jume et al. 2020). The biodiesel produced from 
various non-edible seeds is tested in a diesel engine. 
Consequently, multiple processes produce biodiesel, such 
as transesterification, pyrolysis, micro-emulsion, and 
dilution (Esan, Adeyemi, and Ganesan 2020), and 
transesterification is the most viable and economical 
process for biodiesel production. The transesterification 
process is the chemical reaction between the triglycerides 
(or) vegetable oils and the alcohol in the presence of a 
catalyst to produce biodiesel (Hájek et al. 2017; 
Kirubakaran and Arul Mozhi Selvan 2018; Vonortas and 
Papayannakos 2014) A base-catalyzed transesterification 
of radish seed oil (33.5%) with Methanol, Ethanol, and 
Mixed Methanol-Ethanol resulted in alkyl esters 
(biodiesel). The blends of the produced biodiesel are 
tested in a diesel engine and compared with the ASTM 
D6751 standard (Adama and Anani, 2023; Vávra, Hájek, 
and Skopal 2017). Similarly, a two-step transesterification 
process was performed for Argemone Mexicana seed oil 
and optimized biodiesel reaction and analyzed its 
performance characteristics in the CI engine (Kumar 
Paswan et al. 2023; Naveenkumar and Baskar 2020). 
Among the various non-edible seed feedstocks, Mimusops 
Elengi is available in most parts of India, and the biodiesel 
production from this plant is not well established; only 
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limited research works are available (Ala'a H. Al-Muhtaseb 
2021; Potrč et al. 2021) Recently, biodiesel was produced 
from the seed oil of M. elengi using a potassium 
aluminum silicate, and the biodiesel yield was achieved up 
to 73.4% (Rezania et al. 2019; Sierchuła et al. 2019). 
Response Surface Methodology (RSM) and Artificial 
Neural Network (ANN) are used to determine optimal 
biodiesel production yield efficiency. The prediction 
capabilities of RSM and ANN are evaluated and compared 
using root mean square error to view the two approaches 
better (Chutia et al. 2023; Kesharvani et al. 2024). 
Generally, mathematical modeling and statistical 
optimization of the biodiesel yield are performed based 
on process parameters, mainly molar ratios, catalyst 
concentration, Reaction time, and temperature (Al-
dobouni, Fadhil, and Saeed 2016; Rao et al. 2012). 
Response surface methodology (RSM) is one of the 
multivariate methods used to analyze reaction 
parameters and quantitative test factors (Anjum, Prakash, 
and Pal 2019; Kumar, Varun, and Chauhan 2013). ANN is 
based on organic sensory systems and nonlinear issues 
and has a solid learning capacity to anticipate (Garg and 
Jain 2020; Krupakaran, Hariprasad, and Gopalakrishna 
2018). These approaches are being utilized in various 
fields for statistical understanding of process variables and 
optimization of yield efficiency (Fadhil, Sedeeq, and Al-
Layla 2019; Sangeetha et al. 2023; Malani et al. 2017). The 
relationship between simulation and experimental data 
has revealed a significant reaction parameter optimisation 
for the enhancement of biodiesel yield (Choudhury, 
Chakma, and Moholkar 2014). This paper focuses on the 
statistical optimization of biodiesel production from the 
seed oil of Mimusops Elengi using RSM and ANN. 

2. Methodology 

2.1. Material and methods 

All the chemicals, including n-hexane, isopropanol, 
Potassium Hydroxide (KOH), and Methanol (CH3OH), were 
purchased from Sigma-Aldrich (India) and SD Fine 
Chemicals (India). 

2.2. Collection of seeds 

The Mimusops Elengi seeds were collected from Vellore 
Institute of Technology (VIT) Nursey Garden, Vellore, 
Tamil Nadu, India. The external shells of the seeds were 
removed, and the inner part was known as the kernel. The 
seed kernels were cleaned using distilled water to remove 
the suspended particles and impurities. The cleaned seeds 
were dried in a hot air oven for five hours at 40-50°C, and 
the moisture content was removed. Finally, the seeds 
were crushed, and a powder was obtained and utilized to 
extract bio-oil from the Mimusops Elengi seeds. 

2.3. Significance of mimusops elengi seeds 

Mimusops elengi, also known as maulsari, is not utilized 
for biodiesel production.  Compared to other non-edible 
seeds like Jatropha curcas, Pongamaia Pinnata, Hevea 
brasiliensis, Azadirachta indica, Madhuca indica, Sapindus 
mukorossi, Mimusops elengi contains similar oil content 
seeds have not been thoroughly investigated. Biodiesel 

production requires oils containing high amounts of 
unsaturated fatty acids, such as oleic acid, linoleic acid, 
and palmitic acid. According to the previous research 
report (Gami, Pathak, and Parabia 2012). M. elengi seed 
oils contain various fatty acids like capric, lauric, myristic, 
palmitic, stearic, oleic, and linoleic acids suitable for 
biodiesel production. 

2.4. Sustainability 

Mimusops elengi has been a hardy, fast-growing tree 
throughout time, and its cultivation could potentially have 
environmental benefits, such as soil stabilization and 
carbon sequestration. However, its overall potential for 
large-scale biodiesel production satisfies the oil yield, 
extraction feasibility, and costs compared to other 
feedstocks. It is an economically viable biodiesel feedstock 
compared to other feedstocks like Jatropha curcas, 
Pongamaia Pinnata, Hevea brasiliensis, Azadirachta 
indica, Madhuca indica, Sapindus mukorossi, Mimusops 
elengi used for biodiesel production. TEA (Techno-
economic analysis) is mainly based on seed harvesting, 
crude oil extraction, biodiesel production, catalyst 
synthesis, and engine testing.  

2.5. Biooil extraction and transesterification 

The bio-oil was extracted from the kernel of the mimusops 
elengi seeds using the Soxhlet extraction method. In this 
method, the seeds were coarse powdered and packed in 
the thimble for Soxhlet extraction. Initially, 300g of a dried 
kernel of the mimusops elengi seeds powder was taken in 
a Soxhlet tube containing 350 mL of n-hexane as a solvent 
and heated at 40°C - 60°C for 72 hrs, and the crude bio-oil 
was obtained. A rotary evaporator was used to remove 
the excess solvent, and finally, 60ml of bio-oil was 
obtained. The transesterification of mimusops elengi seed 
oil was done using Methanol (CH3OH) and Potassium 
Hydroxide (KOH) as a catalyst, as shown in Figure 1.  

 

Figure 1. Transesterification Process of M. elengi Seed Oil 

2.6. RSM for biodiesel reaction optimisation 

Response Surface Methodology is a statistical modelling 
method used for multiple regression analysis using 
quantitative data obtained from the experiment. In this 
study, a 5-level, 4-factor central composite rotatable 
design (CCRD) was used to analyse the effect of the 
influence variable on the biodiesel conversion efficiency. 
The five levels in CCRD were –α, –1, 0, +1, and +α, in 
which axial points (±α) were for a factor and 0 for all other 
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aspects. A total of 30 experiments in a single block were 
used in CCRD, including 16 factorial points, eight axial 
points, and six center-point replications. The biodiesel 
conversion efficiency (FAME) is expressed as the function 
of influence variables based on Equation 1. 

   

= = = = +

= + + +  
4 4 3 4

2
     

1 1 1 1

            i i ii i ij i j
i i i j i

Y X X X X  
(1) 

The predicted RSM fame conversion is Y. The regression 
coefficients β0 is the intercept coefficient, βi are linear 
coefficients, βii are quadratic coefficients βij, are 
interaction Coefficients, and Xi, Xj are independent 

influence variables. This study used four process influence 
variables: molar ratio (oil to methanol), catalyst (KOH), 
reaction temperature, and reaction time associated with 
the biodiesel conversion from Mimusops Elengi seed via 
the Transesterification process. These variables have five 
levels (- α, -1, 0, +1, and + α) representing the upper and 
lower range division. These variables input the statistical 
modelling in RSM to obtain the space point division of 30 
runs. The process variables used in the CCRD of biodiesel 
production from Mimusops Elengi seed are shown in 
Table 1. 

 

Table 1. CCRD-RSM process variables used in biodiesel production from Mimusops Elengi seeds 

Factors Symbols Dimensions Limit and code level 

Independent Variables -α -1 0 +1 +α 

Molar Ratio A Mol/mol 3 4.5 6 7.5 9 

Catalyst Conc. B Wt.% 0.5 0.7 0.9 1.1 1.3 

Temperature C °C 32.5 40 47.5 55 62.5 

Time D min 270 300 330 360 390 

 

2.7. Artificial neural network study for biodiesel reaction 
optimisation 

ANN is an alternative to the polynomial regression-based 
modeling tool, which models complex nonlinear 
relationships. It is a feed-forward, back-spread multi-facet 
insight (MLP) brain network examination through the 
Levenberg-Marquardt (LM) calculation to demonstrate 
the interaction boundaries of the base-catalyzed 
transesterification process by utilizing the brain network 
tool compartment of MATLAB 2015a (8.5.0.197613). The 
feed-forward network is straightforward and requires 
experimental yields to be incorporated into the model to 
explore the ANN working capacity. The chosen ANN has 
two layers of neurons: an info layer, a secret layer, and a 
result layer. The exaggerated digression sigmoid exchange 
works (Tansig), and direct exchange works (Purelin) are 
picked separately for info and result layers. The amount of 
information layer neurons is four, related to oil molar 
ratio (X1), catalyst concentration (X2), reaction 
temperature (X3), and reaction time (X4), and finally, the 
result layer is FAME (Biodiesel) content.  

3. Results and discussion 

3.1. Oil and ffa analysis 

Based on the extensive literature, mimusops elengi seeds 
contain 20% of oil content, which is ideal for large-scale 
biodiesel production. In this study, the non-edible 
Mimusops Elengi seeds are well-suited for commercial 
biodiesel synthesis. Additionally, the free fatty acid (FFA) 
content of the Mimusops Elengi seed oil was found to be 
0.37 mg KOH/g, which is relatively low and carried out a 
single-step transesterification process, as lower FFA levels 
improve biodiesel yield and quality.  

3.2. Analysis of response surface methodology 

The response surface method in DOE software utilizes 
regression model equations to generate and stimulate 
response data from the experimental set of values for 
FAME conversion, as shown in Figure 3. A total of 30 runs 

was performed in RSM; the oil to molar ratio varies 
between 3 to 9 (v/v), catalyst concentration of 0.5 to 1.1 
(wt. %), temperature varies between 40 to 65 (°C), and 
times varies from 250 to 400 (min) respectively. The 
experimental analysis was performed in the laboratory 
with the help of the predicted values in Design Expert 
software. Run 4 gives the highest yield of 89.38% of 
experimental yield with the help of oil, a molar ratio of 
1:7.5, catalyst concentration of 1.1 wt.%, temperature of 
40°C, and reaction time of 300min. The predicted yield 
equals the experimental value of 89.38% and the ANN 
value, which would be used to compare RSM and 
experimental results. The value of ANN is 89.11%. Hence, 
the output yield of biodiesel at specific parameters gives 
89% of the yield statistically and experimentally. The 
lowest value was noted in run 13, and the experimental 
yield of 61.67% with a catalyst concentration of 0.7 wt.%, 
oil-to-molar ratio of 1:7.5 v/v, temperature of 55°C and a 
reaction time of 360min with the help of experimental 
value the RSM yield gives 61.91% the difference of 0.24% 
takes place. Compared with ANN, it is 61.94%, a relatively 
0.3% higher rate than RSM. The mean square error of 
RSM was noted as 0.40335, and the ANN value is 0.2356. 
the R2 value of RSM is 0.99, and ANN is 0.99; both 
statistical results give 0.9 equal unity. The coded equation 
2 obtained during stimulating the model is shown below.  

= + + − − −

+ + + + +

− − − + 2

80.60 9.02 4.3 0.1583 0.2617 0.1875

0.15125 1.02 0.1625 0.08375 0.2

4.08167 ² 0.76417 ² 0.1279 ² 1.4183

A B C D AB

AC AD BC BD CD

A B C D

Y

 

(2) 

The statistical analysis performed by RSM with no 
transformation on experimental yield values results in 
equation 2 and fit summary, F(x) model, ANOVA table, 
diagnostics, and model graphs. The fit summary of the 
model indicates the quadratic model as the significant 
model with an F-value of 92.89 and a p-value less than 
0.0001. The adjusted and predicted R2 values obtained 
were 0.9851 and 0.9651, whereas the R2 value of 0.9923 
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was obtained. The study of the ANOVA table suggests the 
model is significant. It produces the actual equation that 
can be utilized to get the predicted RSM values for 
biodiesel yield efficiency, and the exact equation 
simulation of data results in the R2 value being close to 
unity. The actual equation focuses on the model 
maximizing the adjusted R² and the predicted R2. The 
expected set of RSM values is optimized to obtain the 
statistically optimum experimental yield of the biodiesel, 
as shown in Table 3. The statistical model analyzed using 
the response surface method suggests that the quadratic 
model is significant. Fit summary, sequential sum of the 

square, model statistics, ANOVA table, and diagnostic 
graphs were obtained using analysis of the model. The fit 
statistics table indicates that the predicted R² of 0.9657 is 
in reasonable agreement with the adjusted R² of 0.9851; 
i.e., the difference is less than 0.2. The adequate precision 
evaluates the signal-to-noise ratio. A ratio higher than 
four is recommendable. The ratio of 51.251 indicates a 
sufficient signal. This model can be utilized to explore the 
plan space. The selected model, i.e., the Quadratic vs. 2FI 
model, has an insignificant lack of fit.  

 

Table 2a. ANOVA table for Quadratic Model of RSM 

Source Sum of Squares df Mean Square F-value p-value  

Model 2992.54 14 213.75 137.82 < 0.0001 Significant 

A-Molar Ratio 1950.85 1 1950.85 1257.85 < 0.0001  

B-Catalyst Content 444.45 1 444.45 286.57 < 0.0001  

C-Temperature 0.6017 1 0.6017 0.3879 0.5427  

D-Time 1.64 1 1.64 1.06 0.3196  

AB 0.5625 1 0.5625 0.3627 0.5560  

AC 0.3660 1 0.3660 0.2360 0.6341  

AD 16.65 1 16.65 10.73 0.0051  

BC 0.4225 1 0.4225 0.2724 0.6093  

BD 0.1122 1 0.1122 0.0724 0.7916  

CD 0.6400 1 0.6400 0.4127 0.5303  

A² 456.96 1 456.96 294.63 < 0.0001  

B² 16.02 1 16.02 10.33 0.0058  

C² 0.4488 1 0.4488 0.2894 0.5985  

D² 55.18 1 55.18 35.58 < 0.0001  

Residual 23.26 15 1.55    

Lack of Fit 16.18 10 1.62 1.14 0.4690 not significant 

Pure Error 7.08 5 1.42    

Cor Total 3015.81 29     

Table 2b. Sequential Model Sum of Squares of RSM Analysed data 

Source Sum of Squares df Mean Square F-value p-value  

Mean vs Total 1.814E+05 1 1.814E+05    

Linear vs Mean 2397.54 4 599.38 24.24 < 0.0001  

2FI vs Linear 18.75 6 3.12 0.0990 0.9956  

Quadratic vs 2FI 576.25 4 144.06 92.89 < 0.0001 Suggested 

Cubic vs Quadratic 15.37 8 1.92 1.70 0.2486 Aliased 

Residual 7.90 7 1.13    

Total 1.844E+05 30 6145.95    

 

 

Figure 2. Neural Networks for training, testing, and validation 

3.3. Analysis of ANOVA 

The ANOVA analysis of the variance table showed that the 
Model F-value is 137.82, implying that the model is 
significant. There is only a 0.01% probability that an F-
value this large could occur due to noise. A P-value under 
0.0500 demonstrates that the model terms are significant. 

The values more prominent than 0.1000 indicate the 
model terms are insignificant, as shown in Tables 2a and 
2b. The lack of fit F-value of 1.14 infers that the lack of fit 
is insignificant. There is a 46.90% opportunity that a lack 
of fit F-value is enormous, which could happen because of 
noise. A non-significant absence of fit is excellent. The 
actual factors can be utilized to forecast the reaction for 
each variable's given levels. The equation, in terms of 
actual factors, can be used to determine the response of 
each component at a given level, as shown in Equation 3. 
These RSM predicted value analyses correspond to R2, 
adjusted R2, and predicted R2 towards 1.0000, indicating 
the model fit for optimization. The data results in 82.8662 
% as the optimum yield at 1:7.47526 oil-methanol molar 
ratio, 0.768 by wt.% KOH concentration, 49.613°C 
temperature, and 340.55 min time.  
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(3) 

Similarly, artificial neural networks are another approach 
to obtain the predicted set of values. The MATLAB code 
with influence variables from the statistical table as input 
variable and experimental yield as output variable was 
used to train, test, and validate the data. The input 
variables were initially utilized to obtain ANN architecture 
by creating a new model with TRAINLM and LEARNGDM 
as training and adaptive learning functions. 2-layer 14 
neurons, tansig and purlin, were used to prepare the 
model, as shown in Figure 4. The training of the data with 
100 fails and six epochs was done along with input and 
output parameters to generate R2 values. The R2 value of 
0.9992 was obtained as the highest. After training, the 
model was simulated to get the predicted values as 

output. The predicted values indicated as ANN yield 
percentage in the statistical table are utilized to obtain the 
Mean Square Error (MSE) between the experimental and 
ANN predicted data set, as shown in Table 3.  

( )
=

= −
30

2

1

( )  1 /
i

MSE n E A  
(4) 

( )=  RMSE sqrt MSE  
(5) 

MATLAB digital tool was utilized to perform ANN analysis 
on the experimental data to train, test, and validate data 
set results in R2 values of 0.83885, 0.99924, and 0.99295 
for each. All R2 values of 0.90246 were obtained. The 
resultant value for R2 for the predicted set is 0.9992, 
indicating the model fit. The best validation obtained was 
1.687 for six epochs, as shown in Figure 2. 

 

Table 3. RSM and ANN predicted Process variables between experimental and statistical analysis  

Std Space Type A:Molar Ratio 
mol/mol 

B: Catalyst 
Content wt.% 

C: Temp. 
(°C) 

D: Time 
min 

Experimental 
% 

RSM 
Predicted % 

ANN 
Predicted % 

1 Factorial 4.5 0.7 40 300 64.45 64.58 64.21 

2 Factorial 7.5 0.7 40 300 81.75 81.64 81.49 

3 Factorial 4.5 1.1 40 300 73.17 74.07 74.01 

4 Factorial 7.5 1.1 40 300 89.38 89.38 89.11 

5 Factorial 4.5 0.7 55 300 64.52 64.24 64.56 

6 Factorial 7.5 0.7 55 300 81.77 80.91 81.1 

7 Factorial 4.5 1.1 55 300 72.93 73.38 72.96 

8 Factorial 7.5 1.1 55 300 89.28 89.3 88.64 

9 Factorial 4.5 0.7 40 360 62.15 62.45 63.02 

10 Factorial 7.5 0.7 40 360 82.8 82.6 82.06 

11 Factorial 4.5 1.1 40 360 70.17 70.18 70.85 

12 Factorial 7.5 1.1 40 360 88.07 88.67 89.69 

13 Factorial 4.5 0.7 55 360 61.67 61.91 61.94 

14 Factorial 7.5 0.7 55 360 83.24 82.66 83.1 

15 Factorial 4.5 1.1 55 360 70.96 71.38 71.32 

16 Factorial 7.5 1.1 55 360 89.27 89.38 89.12 

17 Axial 3 0.9 47.5 330 48.07 46.25 48.44 

18 Axial 9 0.9 47.5 330 80.99 81.31 80.38 

19 Axial 6 0.5 47.5 330 68.45 68.94 69.39 

20 Axial 6 1.1 47.5 330 87.15 86.16 87.794 

21 Axial 6 0.9 32.5 330 81.97 81.41 82.22 

22 Axial 6 0.9 62.5 330 78.72 78.78 78.68 

23 Axial 6 0.9 47.5 270 87.12 86.8 86.73 

24 Axial 6 0.9 47.5 390 85.94 85.76 86.007 

25 Center 6 0.9 47.5 330 80.15 80.61 80.69 

26 Center 6 0.9 47.5 330 82.37 81.61 81.73 

27 Center 6 0.9 47.5 330 81.74 81.61 81.69 

28 Center 6 0.9 47.5 330 80.28 80.61 79.69 

29 Center 6 0.9 47.5 330 79.45 80.61 79.69 

30 Center 6 0.9 47.5 330 79.59 80.61 79.69 

MSE  0.40335 0.235601 

R2  0.9923 0.9992 

 

3.4. ANN analysis 

An ANN is typically composed of a few neurons joined by 
connections. Through the synaptic weights of the 

connections between the neurons, the information is 
transmitted to other neurons after being processed within 
the neurons. A literature review demonstrates that ANN 
models outperform regression models regarding 
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prediction ability. Thus, ANN models are also developed 
to predict surface roughness. The preprocesses, model 
design, training, model simulation, and postprocesses are 
involved in ANN prediction models. The 30 experimental 
data sets are separated into three categories: testing, 
validation, and training. There are four data sets for 
testing, four for validation, and twenty-three for training. 
Numerous data sets are employed to train the models 
because it is evident that doing so speeds up ANN learning 
processing times and enhances the models' capacity for 
generalization. Studies of the network's performance 
using varying numbers of hidden neurons have been 
attempted. The best network is chosen based on the 
precision of the predictions made during the testing phase 
after a network is built, and each one is trained 
independently. Three-layer feed-forward neural networks 
with backpropagation are employed. The sigmoid 
activation function activates the input layer, the first 
layer. 

 

Figure 3. CCRD Plot between Catalyst Concentration (Wt. %) and 

Molar Ratio (mol/mol) for Biodiesel efficiency 

 

Table 4. Model summary statistic of RSM 

Source Std. Dev. R² Adjusted R² Predicted R² PRESS  

Linear 4.97 0.7950 0.7622 0.6888 938.66  

2FI 5.62 0.8012 0.6966 0.6758 977.77  

Quadratic 1.25 0.9923 0.9851 0.9657 103.42 Suggested 

Cubic 1.06 0.9974 0.9892 0.9576 127.82 Aliased 

 

 

Figure 4. ANN Plots for Training, Testing and Target 

 

Figure 5. Network Layer of ANN 

In contrast, the linear activation function activates the 
hidden layer and output layer, which are the second and 
third layers. Any function can be approximated by training 

a network of two transfer functions, with the first being 
tansig and the second being Purelin. The validation of the 
Artificial neural network and the predicted result with 
experimental value is performed. This method is used to 
predict biodiesel yield. The mean square error of ANN was 
0.1667 less than RSM's, indicating that ANN has better 
predictive efficiency than RSM, as shown in Table 4. The 
maximum yield predicted was 89.1% for ANN and was 
closer to the experimental yield of 89%. The R2 values for 
ANN and RSM were 0.9992 and 0.9923, respectively.  

4. Conclusion 

In conclusion, this study demonstrates the statistical 
optimization of biodiesel production from Mimusops 
elengi seeds using a potassium hydroxide-catalyzed 
transesterification process. The RSM and ANN studies 
were employed to model and predict the biodiesel yield, 
using different process variables such as oil-to-methanol 
molar ratio, catalyst concentration, reaction temperature, 
and time. The results showed that the ANN model had 
superior prediction accuracy, with a higher R2 value of 
0.9992 compared to 0.9923 for RSM and a mean square 
error of 0.2356, which is 0.1667 lower than RSM's. The 
optimum biodiesel yield of 89% was achieved at a 1:7.5 
molar ratio optimized using RSM and ANN studies. These 
experimental findings recommend that ANN is a more 
effective and accurate analysis for predicting biodiesel 
yield. 
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Nomenclature 

FAME Fatty Acid Methyl Ester 

RSM Response Surface Methodology 

ANN Artificial Neural Network 

BD Biodiesel 

KOH Potassium Hydroxide 

CCRD Central Composite Rotatable Design 

DOE Design of Experiment 

MLP Multi Fact Insight 

LM Levenberg – Marquardt 

MSE Mean Square Error 

TEA Techno-economic analysis 
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