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ABSTRACT 

Conventional electrical power systems often prioritize economic gain over environmental protection, 

which can lead to negative environmental consequences, such as emissions from thermal power 

plants. In recent years, there has been significant research and investment aimed at addressing the 

challenges posed by both environmental restrictions and economic dispatch. This study introduces 

the Black Widow Optimization (BWO) technique to optimize the integration of Renewable Energy 

Sources (RES) in the context of effective economic dispatch. The BWO algorithm is inspired by the 

unique mating behaviors of black widow spiders, where cannibalism plays a crucial role in the 

process. To achieve faster convergence, the BWO removes species with poor fitness from the 

population. Compared to other optimization algorithms, BWO offers several advantages, including 

early convergence and the ability to achieve higher fitness values. To assess the performance of the 

proposed approach, we applied it to various test cases, including a 10-unit generator system, the IEEE 

30-bus system, and the real-time 62-bus Indian Utility System (IUS), which incorporates RES output. 

The results show that, in comparison to other contemporary algorithms, the BWO method 

significantly reduces fuel costs, as demonstrated by both the Probability Distribution Function (PDF) 

and the Cumulative Distribution Function (CDF). 

Keywords: Renewable Energy Sources, Black Widow Optimization, Cumulative Distributive 

Function, Probability Distribution Function, Economic Load Dispatch, Economic and Emission 

Dispatch.  
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1. Introduction 

Reliable and well-planned electricity-producing systems are essential for the development of the 

electrical sector. Problems with Economic Load Dispatch (ELD) are among the most pressing when 

it comes to managing and running electricity systems. We can identify the most effective, economical, 

and error-free functioning by maximizing the end results of the numerous components supplying the 

needed load. ELD's sole goal is to lower the cost of electricity generation while adhering to all 

regulations. However, we cannot ignore the emissions from fossil fuel-based power plants. In light 

of growing environmental concerns, it is our responsibility to maximize these power plants' efficiency 

for financial gain while also addressing the pollution problems that have gotten worse as a result 

(Dey, Bhattacharyya et al. 2021). 

To address the issues, we developed Economic Emission Dispatch (EED) optimization. Using 

renewable energy sources (RES) cuts emissions of harmful gases significantly. Most studies conclude 

that grid integration of renewable energy resources is a developing technology, achievable with 

reasonable effort and cost. 

Meanwhile, the electricity supply from renewables, notably wind and PV, is inconsistent and causes 

problems for the current infrastructure. Power networks have major forecasting challenges due to the 

transient and fluctuating pattern of electricity produced from wind speed and solar radiation. 

Renewable Energy Resources (RES) are challenging to plan, operate, and regulate the electrical 

networks with respect to the inherent volatility of their production. To deal with them, sophisticated 

tools for in-depth preparation and precise operation timing are required (Niu, You et al. 2021). 

In order to find and fix the EED problems, many optimization strategies have been used. These 

strategies range from more classic mathematical programming to heuristics, meta-heuristics, and 

hybrid algorithms. Newton Raphson (Chen and Chen 2003), lambda iteration (Zhan, Wu et al. 2014), 

the interior point technique (Bishe, Rahimi-Kian et al. 2011), and quadratic programming (Ji-Yuan 

and Lan 1998) are some examples of classic approaches to EED problems. The flower pollination 

algorithm (Abdelaziz, Ali et al. 2016), improved harmony search algorithm (Rezaie, Kazemi-Rahbar 
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et al. 2019), crow search algorithm (Divya, Paramathma et al. 2021), hybridization of the firefly and 

bat algorithms (Gherbi, Bouzeboudja et al. 2016), hybridization of the genetic algorithm, whale 

optimization algorithm (Edwin Selva Rex, Marsaline Beno et al. 2019), and the particle swarm 

optimization (Hemanth Kumar, Thotakura et al. 2019) were just a few of the metaheuristics and 

hybrid optimization techniques that were used to solve EED problems. 

Research has primarily concentrated on enhancing EED through the integration of renewable energy, 

a strategy that has undergone rigorous testing using various optimization techniques, yielding 

promising outcomes. The authors demonstrated the effectiveness of the whale optimization method 

through two separate statistical analysis tests: an analysis of variance and a Wilcoxon rank-sum test. 

Furthermore, by sizing the DER in a manner that enhances both fuel cost reduction and pollutant 

limitation, we might use a multi-objective method to accomplish EED optimization. The power 

demand can be met, the limitations can be relaxed, and the pollution rate can be lowered by 

penetrating renewables (Dey, Roy et al. 2019).  

Using the roulette selection process (Chen, Zeng et al. 2019) can enhance the efficiency of the unique 

HS algorithm, as demonstrated by the Modified Harmony Search (MHS) algorithm (Elattar 2018). 

The authors designed a microgrid model with several situations to demonstrate the superiority and 

efficiency of the proposed MHS algorithm. EED is analyzed in each situation and compared our 

findings to those of other published approaches used to tackle the 24-hour challenge. To determine 

the Pareto optimum solution, the author (Biswas, Suganthan et al. 2018) looked into an economic-

environmental power dispatch issue that included stochastic wind, solar, and minor hydropower. 

Also, multi-objective algorithms designed for optimization problems with no constraints can easily 

include the superiority of feasible solutions (SF), which is a good way to handle constraints. To do 

this, we use the hypervolume (HV) indicator to look closely at the Pareto front and compare the 

results of several experiments that used differential evolution algorithms such as MOEA/D-SF and 

SMODE-SF. 
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To address the Dynamic Economic Emission Dispatch (DEED) issue, researchers provided an 

Enhanced Multi-Objective Differential Evolution Method (EMODE) (Bai, Wu et al. 2021), 

combining the advantages of SF and Non-Dominated Sorting (NDS) to advance the optimization 

process. The recommended approach integrates total constraint violation with a penalty function, 

since different constraint techniques may be useful at different points in the search process. Using 

this technique may increase the chances of survival for each person on the Pareto Front (PF). The 

study's findings (Basu 2019) support this claim. We also used the Strength Pareto Evolutionary 

Algorithm Version 2 to compare the results (SPEA 2). 

Saravanan et al. explored using lemon peel oil, blended with gasoline, in spark ignition engines 

(Saravanan, Varuvel et al. 2024). It explained that a 10% lemon peel oil blend enhances thermal 

efficiency and reduces emissions, with a coated piston improving performance further. Haiter Lenin 

Allasi et al. optimized the injector nozzle design for dual-fuel engine operations using a combination 

of diesel and biodiesel blends (Allasi, Rajalingam et al. 2022). It identified the optimal nozzle 

configuration for improved efficiency and reduced NOx emissions. Rajesh et al. investigated adding 

cerium oxide nanoparticles to neem oil biodiesel, finding that it enhances combustion efficiency and 

reduces emissions, demonstrating the potential for improving biofuel performance with additives 

(Rajesh, Retnam et al. 2022). Rajesh et al. examined biodiesel derived from polyethylene waste, 

finding that it can reduce specific fuel consumption and exhaust emissions, offering a renewable 

energy solution while addressing plastic waste (Rajesh, Retnam et al. 2022). 

To confront the challenge of balancing power generation between wind and thermal sources in power 

systems, innovative strategies and solutions are required (Basu 2006). The EED problem necessitates 

a new viewpoint on the efficient integration of these sources into the grid, with the aim of minimizing 

costs and maximizing reliability. We have developed Gravitational Particle Swarm Optimization 

(GPSO) as a hybrid optimization of GSA and PSO, also considering wind power availability. The 

important parameter determined the particles' velocities, while the decision variable determined the 

method's optimal fitness value, as demonstrated in (Khan, Awan et al. 2015), an example of a Multiple 
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Integer Optimization Algorithm (MIOP). The authors (Khan, Sidhu et al. 2016) improved the mixed 

integer binary programming technique by redefining the local and global best persons, which led to 

substantial progress. 

In order to determine the most efficient blend of the nearest node and the top-performing solution, 

researchers have explored two techniques (Shilaja and Ravi 2017). Researchers utilized the present 

and prior populations in a Backtracking Search Algorithm (BSA), and employed a random mutation 

approach with a single mutation per person. Compared to individual performance, the BSA method 

delivers much better results for addressing economic load dispatch issues with or without solar 

integration and wind power (Tyagi, Dubey et al. 2016). The authors developed the Decomposition-

based multi-objective cross-entropy (Wang, Zha et al. 2020) to apply the cross-entropy technique to 

the specified optimization problem, thereby lowering the computational cost of decomposition. 

Due to their inherent unpredictability and volatility, evolving sources of unexpected energy have 

introduced new difficulties in improving power system dispatch. Incorporating wind and solar energy, 

this article uses the Black Widow Optimization (BWO) method to address the EED problem. 

This work introduces a novel approach to solving EED issues using a modified version of BWO that 

takes into account the availability of clean energy. As a first step, a self-adaptive operator replaces 

static analysis with an updated calculation approach that involves smoothing parameters. We propose 

an innovative updating strategy that eliminates the need for hard-coded constants in the algorithm, 

enhancing its implementation ease and stability over time. Secondly, the crossover operator enhances 

the global search process and creates space for large-scale test systems in both the current population 

and the external archive. Third, as mentioned in [19], BWO uses a number of different parameter 

evolutionary methods to broaden the scope of possible solutions and speed up convergence. These 

techniques calculate the mean and standard deviation of the current generation. 

This study also presents three examples of EED challenges, each with a unique size and set of 

renewable energy resources to utilize. We test the problem in a 10-unit generator, an IEEE 30 bus 

system, and a 62 bus IUS, integrating wind and solar power production while considering heat, 
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emissions, and economic dispatch issues. Since the proposed algorithm itself is robust, it smooth the 

fluctuations by introducing the uncertainties and constraints associated with wind and PV under 

varying operating conditions. 

The structure of the paper is as follows: Section 2 includes mathematical formulation, analysis of 

wind and solar characteristics. Section 3 discusses black widow optimization; section 4 provides 

results and discussion; and section 5 concludes and provides recommendations for future work. 

2. Mathematical Formulation 

Scheduling generator outputs to meet load requirements at the lowest fuel costs possible, regardless 

of emissions, is a primary goal of electric power systems. As the necessity for safeguarding the natural 

world grows, so does the urgency with which we must find new ways of running power plants that 

produce less pollution emissions, and fuel costs are treated as competing objectives in the 

environmentally restricted economic dispatch issue, which must be met concurrently in light of 

system restrictions. Briefly, the problem may be stated as follows (Qu, Zhu et al. 2018): 

2.1. Targeted Fuel Expenses 

 The total cost in dollars per hour for generator fuel may be expressed as (Rezaie, Kazemi-Rahbar et 

al. 2019), which is a quadratic representation of the cost function, 

𝑀𝑖𝑛 𝐹𝐶 = ∑ (𝑘𝑖𝐺𝑝𝑖
2 + 𝑙𝑖𝐺𝑝𝑖

𝑁
𝑖=1 + 𝑚𝑖)                    (1) 

Valve-point loading should be investigated so that a much more realistic model of the cost function 

of thermal power plants may be developed. In the context of valve-point loadings, the fuel cost 

function may be expressed as (Güvenç, Sönmez et al. 2012; Wood, Wollenberg et al. 2013), 

𝑀𝑖𝑛 𝐹𝐶 = ∑ (𝑘𝑖𝐺𝑝𝑖
2 + 𝑙𝑖𝐺𝑝𝑖

𝑁
𝑖=1 + 𝑚𝑖 + |𝑛𝑖 × sin (𝑜𝑖 × (Gpi

min − G𝑝i))|)  (2)   

where, FC is Fuel Cost, ki, li, and mi are the cost coefficients for the ith generator and G𝑝i is the output 

power of ith generator. 

2.2. Environmental Constrained Dispatch Goal 

Consider the following quadratic function as an additional example, which illustrates the pollution 

that thermal power plants cause. There was a widespread belief that implementing environmentally 
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restricted dispatch was an optimization task aimed at reducing total emissions, as stated by (Güvenç, 

Sönmez et al. 2012), 

𝑀𝑖𝑛 𝑃 = ∑ (𝑞𝑖 𝐺𝑝𝑖
2 + 𝑟𝑖

𝑁
𝑖=1 𝐺𝑝𝑖 + 𝑠𝑖 + 𝑡𝑖 exp (𝑢𝑖 × 𝐺𝑝𝑖))    (3) 

where, P= Total Pollution, t & u are applicable only whether valve point effect is considered, G𝑝i is 

the output power of ith generator and qi, ri & si is the emission coefficient of ith unit. 

2.3. System Constraints 

In practical applications, the total amount of power produced must be equivalent to the combined 

total of power consumed and dissipated. This limitation on the power balance may be expressed 

mathematically as (Wood, Wollenberg et al. 2013), 

 𝐺𝑝𝑖 = 𝑃𝐷 + 𝑃𝐿         (4) 

where, PD is power demand and PL is power loss. 

Lower and upper limitations, also known as problem boundaries, are set on the actual power output 

of each generator to ensure their consistent operation. This limit on generator capacity may be stated 

mathematically as (Wood, Wollenberg et al. 2013), 

𝐺𝑝𝑖
𝑚𝑖𝑛 ≤ 𝐺𝑝𝑖 ≤ 𝐺𝑝𝑖

𝑚𝑎𝑥        (5) 

2.4. Combination of Economic and Emission Dispatch (EED) Formulation 

To achieve this, an approach that decreases both fuel expenses and pollution levels in tandem needs 

to be developed. An important factor in constructing a unified objective function is the Price Penalty 

Factor (PPF), and by integrating equations (1) and (2), this can be accomplished (Dey, Bhattacharyya 

et al. 2021), 

  𝐹𝑇 = ∑ (𝑀𝑖𝑛 𝐹𝐶 + 𝑃𝑃𝐹(𝑀𝑖𝑛 𝑃))𝑁
𝑖=1       (6) 

 𝐹𝑇 = ∑ .24
𝑡 ∑ [(𝑘𝑖𝐺𝑝𝑖

2 + 𝑙𝑖𝐺𝑝𝑖
𝑁
𝑖=1 + 𝑚𝑖) +   𝑃𝑃𝐹(𝑞𝑖𝐺𝑝𝑖

2 + 𝑟𝑖𝐺𝑝𝑖 + 𝑠𝑖)]  (7) 

where, i=1,2…. With t representing the hour, we can calculate the overall cost for 24 hours as well 

as the total number of generator units (N). 

2.5. Analysis of Wind Power Characteristics 
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Given the inherent randomness of RES, we can evaluate its reliability using the following set of 

equations: The optimization process for the EED that integrates wind energy entails meeting system 

constraints and distributing power generation between fossil fuel power plants and wind farms. 

Because wind speeds can be unpredictable, the amount of electricity produced by wind turbines can 

vary significantly. The Rayleigh PDF represents wind speed uncertainty. The following definition 

transforms a Weibull PDF into a Rayleigh PDF by increasing the profile index to 2 (Mazidi, 

Zakariazadeh et al. 2014; Rezaie, Kazemi-Rahbar et al. 2019). 

If the average wind speed at a certain place is known, we can calculate the scale index as follows. 

2

2

2
( ) expw

v v
f v

c c

    
= −    
     

                                (8) 

( )wf v , c and v denotes Rayleigh PDF, scale index and wind speed respectively (Mazidi, 

Zakariazadeh et al. 2014). 

2

2

0 0

2
( ) expm w

v v
v f v dv

c c

      
= = −    

     
              (9) 

2
dv c


=            ( 1.1128 )mc v                  (10) 

vm represents the mean value of wind speed (Mazidi, Zakariazadeh et al. 2014). 

0 0

( )

( )

0

aw ci

aw ci
rated ci aw r

r ci
W

rated r aw co

co aw

for v v

v v
P for v v v

v v
P v

P for v v v

for v v

 


−   
 −

= 
  





                                                  (11) 

vci, vr, vaw and vco represent the cut-in speed, rated speed, average wind speed and cut-off speed 

respectively of the wind turbine. 

2.6. Analysis of Solar Power Characteristics 
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PV cell power generation is dependent on the surrounding environment, such as temperature and the 

amount of light. Variations in these factors impact the output power levels of the cells (Sheik 

Mohammed, Devaraj et al. 2016). Power system dispatch optimization methods converge on a 

minimum solution for thermal and PV plants in EED problems. PV generator output is mostly 

determined by solar radiation and temperature. When two uni-modal distributions of sun irradiation 

are added together, a bi-modal distribution results (Rezaie, Kazemi-Rahbar et al. 2019). 

Each uni-modal is modeled by the Beta PDF, as seen in the following equation. 

( 1) 1( )
(1 )

( ) ( )

( ) 0 1, 0, 0

0

b

si si for

f si si

otherwise

  

 

 

− − +
  − 


=    




      (12) 

The symbol (α, β) implies beta distribution function whereas si is solar irradiance.  

2

(1 )
(1 ) 1

 
 



 + 
= −  − 

 
        (13) 

1

 





=

−
          (14) 

The irradiation distribution and the irradiation to power conversion function given below can be 

used to compute the solar power distribution. 

( ) PV PV

pvP si S si=           (15) 

 Ppv(si) stands for the power output of PV irradiance si ,
PV represents the efficiency, PVS is the 

total area of PV. 

3. Black Widow Optimization  

Its name comes from the fact that the BWO algorithm is based on the black widow spider's 

evolutionary history. Typically, the female black widow, a nocturnal spider, would use pheromone 

deposits at strategic points on her web to entice male black spiders to her creation. This fragrance 

attracts male black widow spiders, and they eventually join the web. During or after mating, the 

female black widow spider consumes the male spider. After mating, black widow spider females laid 
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their eggs and socks on the net. The newborn spiders begin cannibalizing their siblings after 11 days 

of emerging from their eggs. The adult spider periodically consumes the spiderlings for a brief period 

while they are still in their mother's web. We identify the best juvenile spiders on the web based on 

this idea, and develop an optimization strategy for black widows (Hayyolalam and Pourhaji Kazem 

2020; Premkumar, Vishnupriya et al. 2020).  

3.1. Initial Population 

Black widow spider males and females live together in a colony to continue the species. This is how 

the starting number of black widow spiders is determined. 

  𝑋𝑁,𝑑 = (
𝑥1,1   𝑥1,2 …..  𝑥1,𝑑

....
𝑥𝑁,1   𝑥𝑁,2…..  𝑥𝑁,𝑑

)                                       (16) 

𝑙𝑏 ≤ 𝑋𝑖 ≤ 𝑢𝑏 

where, XN,d is the spiders’ population, d is the number of choice variables, N is the population size, 

𝑙𝑏 is the boundary range which is the lower one, 𝑢𝑏  is the upper one (Premkumar, Vishnupriya et al. 

2020). 

Fitness function = f(XN,d) 

3.2. Procreate 

The creation of new spiders through mating between male and female spiders is the next step in the 

black widow optimization process. Occasionally, female spiders may consume males after they have 

finished mating. Only the healthiest and most compatible individuals mate and produce offspring, as 

spiders select mating pairs at random. This equation describes the way in which black widow 

optimization reproduces, 

𝑌𝑖,𝑑 = 𝛽 × 𝑋𝑖,𝑑 + (1 − 𝛽) × 𝑋𝑗,𝑑                           (17) 

𝑌𝑗,𝑑 = 𝛽 × 𝑋𝑗,𝑑 + (1 − 𝛽) × 𝑋𝑖,𝑑                           (18) 

where, Yi,d and Yj,d are spider offspring from breeding, i and j are statistically independent ranging 

from 1 to N, and 𝛽 a random number ranging from 0 to 1. The reproduction step is repeated d/2 times 

in order to avoid randomized identical pairs. 
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3.3. Cannibalism 

We are now evaluating three distinct cannibalization strategies throughout the optimization phase. 

One type of sexual cannibalism is when female spiders eat male spiders before, during, or after 

mating. This strategy allows for the use of the reproductive success of both sexes as an indicator of 

the overall health of a spider population. The second kind of cannibalism occurs when larger, stronger 

juvenile spiders eat smaller, weaker juveniles. We put this theory into practice by using the 

cannibalism rate, which allows only the healthiest offspring in the population to thrive while the rest 

perish. This allows for the testing and confirmation of the theory. Cannibalism culminates in the 

ritualized eating of one's own mother by one's own kids. The implementation of this concept involves 

monitoring the health of both adult spiders and their offspring.  

3.4. Mutation 

The black widow optimization procedure then progresses to mutation. The technique for selecting 

juvenile spiders for mutation is detailed in equation (19). 

𝑍𝑘,𝑑 = 𝑌𝑘,𝑑 + 𝛼                                                        (19) 

where, Zk,d represents the mutated spider population, Yk,d represents randomly picked infants, k 

represents a random number, and the random mutation value is α. 

3.5. Convergence 

When compared to other optimization techniques, there are a few possible termination conditions 

taken into account, namely: a predetermined number of iterations; the observation of a plateau in the 

best widow's objective function value after a significant number of iterations; and the attainment of 

the required accuracy. 

3.6. Parameter Setting 

This black widow optimization strategy takes into account RP, CP, and Mutagenic Rates (MR). By 

adjusting its reproductive rate, the spider population may expand its search area and chances of 

finding a better solution. Cannibalism reduces the reproductive success of less healthy populations 
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within a generation, ensuring that only the strongest survivors pass on to the next. The rate of mutation 

directly determines how genetically distinct one generation is from the next. 

4. Results and Discussion 

4.1. Case 1: 10-unit Generator 

The suggested algorithm proved to be an ideal option for both economic and emission dispatch when 

considering renewable energy sources. We ran it using the MATLAB R2021b platform. We adjusted 

the population sizes of all optimization methods, experimenting with values between 60 and 80 for a 

total of 50 iterations. Figure 1 graphically illustrates the fast convergence of BWO to the optimal 

compromise solution for EED. Experts compared it to other evolving algorithms and found it to have 

the fastest convergence. Maximum demand is set at 2000 MW with a price penalty factor of 52.03 

(i.e., maximum generating power = 1923 MW; wind power = 29.5238 MW; solar power = 47.5 MW; 

total demand = 2000.0238 MW). The values of 0.6, 0.4, and 0.44 are used as input parameters in 

BWO for the crossover, mutation, and cannibalism percentages, respectively. 

Table 1. Parameters used in the simulation 

Control Parameter Value 

Population Size 100 

Number of iterations 100 

Decision variables 10 

Random variable 0 to 1 
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Figure 1. Convergence Curve Characteristics for estimating EED on a 10-unit generating system 

using Black Widow Optimization. 

We have taken a 10-unit generating system as a test case to evaluate the optimal solution for EED, to 

see if the suggested optimization strategy works as expected. We extracted the parameters of cost 

coefficients, emission coefficients, and min-max limits from the following tables. 

Table 2. Performance metrics on a system consisting of three generating units. 

Outputs ABC BSOA CSA GWO MSA BWO 

P1(MW) 207.70 207.61 209.04 209.08 207.67 207.60 

P2(MW) 87.40 87.29 86.00 85.92 87.28 87.29 

P3(MW) 15.00 15.00 15.42 15.03 15.02 15.00 

PL(MW) 10.08 9.92 10.41 9.98 9.93 9.92 

Total Power 310.1 309.91 310.41 309.90 309.91 309.90 

Total Cost ($/MW) 3622.01 3620.42 3624.32 3622.03 3620.87 3620.13 

CPU (s) 2.54 3.40 1.40 3.20 4.50 4.19 

 

This case study examines a thermal system consisting of three units for power generation. References 

(Abdelaziz, Ali et al. 2016) provide the coefficients for fuel cost, generator constraints, and 

transmission loss. Table 2 presents the summarized results for the three-generator system, obtained 
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through the proposed BWO, for a load demand of 300 MW. We compare the results with various 

optimization algorithms through a maximum of 100 iterations. Table 2 clearly demonstrates that the 

BWO algorithm outperforms other algorithms in terms of minimum cost, computational time, and 

power losses while still satisfying the generator's output constraints. The convergence rates of BWO 

are shown in Figure 2, where the total cost reaches its minimum value after two iterations.  

 

Figure 2. Convergence graph for three generating system with BWO 

The anticipated day-ahead load demand profile, which includes both residential and commercial loads 

taken from (Dey, Basak et al. 2021). Figure 3 shows the 24-hour output of load, PV, and wind power. 

 

Figure 3. Hourly output of Load, PV, and Wind power 

Table 3. Performance metrics of 10-Unit generating system 
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Units BWO 

P1(MW 27.1517 

P2(MW) 76.3467 

P3(MW) 94.4949 

P4(MW) 96.9065 

P5(MW) 101.6318 

P6(MW) 165.8688 

P7(MW) 293.4862 

P8(MW) 288.0449 

P9(MW) 433.912 

P10(MW) 338.5897 

Psolar(MW) 47.5 

Pwind(MW) 29.5238 

Total Demand (MW) 2000 

Power Losses (MW) 70.529 

Fuel Cost ($/hr) × 105 1.04 

Emission (Kg/hr) ×103 3.24 

EED ($/kg) × 105 3.30 

CPU (sec) 2.35 

Fuel cost is the total price of fuel for wholly participating power generators in thermal units. The term 

emission cost measures the emissions from thermal power units. The cost of the emission equivalent, 

calculated using the penalty power factor (PPF) and fuel cost, equals the EED. Table 3 displays the 

final outcome of the proposed algorithm, demonstrating accuracy and the quickest computation time 

(2.35 seconds) in comparison to previous studies. The key objective was to reduce fuel costs and 

emissions using the black widow optimization technique. In comparison to other literature, the BWO 

technique demonstrated superior performance. Figure 4 illustrates the optimal cost and pollution 
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emission rates achieved by the proposed BWO algorithm. It is evident that the BWO technique 

outperformed the other approaches, yielding superior results. 

 

Figure 5. EED with and without RES 

Table 4. Comparison with Existing Algorithm based on Emission and Economic Dispatch 

 EP 

(Basu 

2006) 

SA (Basu 

2006) 

PSO 

(Basu 

2019) 

BWO 

Best Cost  46777 Not Assigned 47852 1.04 

Best Emission 35676 24756 22405 3.24 

Corresponding cost  17966 Not Assigned 19094 1.04 

Optimized cost 48628 Not Assigned 53086 1.04 

Optimized Emission 21154 21188 20163 3.24 

 

Table 4 presents the proposed method and results of identifying the ideal compromise solution. We 

contrasted the simulation outcomes produced by the used techniques with those found in the 

published literature. The proposed approach provides the EED with highly efficient fuel utilization, 

minimal emissions, and a favourable trade-off between fuel cost and emission levels. Table 4 presents 

a comprehensive comparison of the results with existing algorithms. To conduct this statistical study, 
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20 separate runs were performed using each of the aforementioned techniques. In all scenarios, the 

connection between the two datasets may be reflected by this non-parametric test.  

 

Figure 6. CDF of proposed optimization technique 

This concept is predicated on the Wilcoxon rank sum test. We hypothesized, and the data supports it, 

that most BWO with EED results are subpar compared to those produced by other means. The 

Wilcoxon rank-sum test provides a probability value that reveals the frequency with which MFO, 

PSO, and ALO scores are lower than BWO values. Based on the probability value, it is very unlikely 

that any other scenario would have a cost lower than BWO for scenario 1.  

 

Figure 7. PDF of proposed optimization technique 
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The better performance of BWO in scenario 2 over MFO, PSO, and ALO suggests a greater likelihood 

of improved outcomes at the expense of a larger standard deviation and volatility. We put all four 

methods through their paces in a series of trials and examine their respective outcomes. Probability 

density functions (PDFs) and cumulative density functions (CDFs), shown in Figures 6 and 7, 

illustrate the range of possible outcomes for the data. Figure 6 demonstrates that BWO generates the 

tallest peak in both scenarios, while CDF displays the most scattered data. We maintain reliability by 

considering CDF and PDF, two statistical multi-objective performance measures. 

The data confirms the authors' hypothesis that EED output is often inferior to that obtained by other 

methods. You can use the Wilcoxon rank-sum test to determine the probability of an MFO, PSO, or 

ALO score being lower than a BWO score. Table 5 shows that the likelihood of any other scenario 

having a cost lower than BWO for scenario 1 is very low. In scenario 2, BWO outperforms MFO, 

PSO, and ALO, which suggests improved outcomes are possible, but at the expense of more 

variability and standard deviation.  

4.2. Case 2: IEEE 30-bus system 

We also evaluated the optimal solution for economic emission dispatch (EED), including RES, using 

a test case of the IEEE 30 bus system to assess the performance of the suggested optimization strategy. 

We selected this test case to assess the optimization strategy's performance against our expectations. 

The BWO algorithm formulates the OPF problem in this case, taking into account fuel cost reduction, 

emissions minimization, line loss reduction, and voltage profile improvement. Power generation, 

losses, and costs all show remarkable consistency across the board. On 100 iterations, BWO produces 

highly competitive and trustworthy outcomes in under 1.601492 seconds. It provides the lowest fuel 

cost and emissions. Its objective function value, 858.001 $/h, is also the lowest. The technique 

exhibits excellent convergence characteristics, and the solution converges within 100 iterations. This 

system's voltage profile indicates that there are no voltage violations. Table 6 shows the end result of 

the suggested algorithm, which yielded better performance. Table 7 shows the comparative analysis 

of existing algorithms. Pg1(MW) represents the power load consumption; Pg2(MW) represents the 
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power load at various iterations 1; Pg5(MW) represents the power load at various iterations 2 to 

Pg13(MW) represents the power load at various iterations 13. V1(pu) represents the voltage 

representation at every iteration to V13(pu)  represents the voltage representation at iteration 13. Time 

duration of every iteration is represented from Ts11(6−9) to Ts36(28−27). FC($/h) represents the fuel 

cost; EC represents the Economic Cost calculation;  Ploss(MW) represents the power loss in the 

system; Qc10(MVAr) to Qc 29(MVAr) represents the Mean output of every cases. 

Overall (TVD) of load buses (PQ) from the nominal value of 1.0 p.u. Bus voltage is known as the 

most significant and important safety and service quality indices [26].The expression of the 

cumulative TVD is presented as follows: 

𝑇𝑉𝐷 = ∑  𝑁
𝑖=1 |𝑉𝑖 − 1.0|              (20) 

Thus, the objective function which represents the sum of the total fuel cost and improves the total 

TVD can be given as follows: 

𝑉𝑑𝑒𝑣 = (∑𝑖=1
𝑁  𝑎𝑖 + 𝑏𝑖𝑃𝐺𝑖

+ 𝑐𝑖𝑃𝐶𝑖

2 ) + 𝑤𝑉𝐷 ∗𝑇𝑉𝐷           (21) 

where 𝑤𝑣𝑛 is a suitable weighting factor for balancing target function values and preventing the 

dominance of an objective over another. In this study 𝑤𝑉𝐷 is selected as 100. 

Table 5. Performance metrics of IEEE 30 Bus system 

Variables BWO 

Pg1(MW) 114.71 

Pg2(MW) 47.96 

Pg5(MW) 29.29 

Pg8(MW) 32.59 

Pg11(MW) 20.97 

Pg13(MW) 17.04 

V1(pu) 1 

V2(pu) 1.02 



 

21 

 

V5(pu) 0.99 

V8(pu) 1.03 

V11(pu) 1 

V13(pu) 1.03 

Ts11(6-9) 0.95 

Ts12(6-10) 0.96 

Ts15(4-12) 1 

Ts36(28-27) 0.99 

Qc10(MVAr) 2.21 

Qc12(MVAr) 1.98 

Qc15(MVAr) 4.36 

Qc17(MVAr) 2.56 

Qc20(MVAr) 3.87 

Qc21(MVAr) 4.09 

Qc23(MVAr) 4.33 

Qc24(MVAr) 4.34 

Qc29(MVAr) 3.23 

Fuel Cost ($/hr) 832.97 

Emission (kg/hr) 0.2 

Ploss 5.21 

Vdev 0.12 

Objective (Sh)function 858 

 

Figure 8 presents the cost-function comparison using various algorithms, showcasing the 

performance of each approach. The outcomes highlighted the efficiency and efficacy of the suggested 
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approach in achieving cost optimization. Moving on to Figure 9, the EED results depict both the 

exclusion and inclusion of renewable energy sources (RES). This comparison demonstrates the 

positive impact of integrating RES into the system, leading to a more sustainable and environmentally 

friendly solution. Additionally, Figure 10 displays the power loss results obtained from employing 

different algorithms. The graph illustrates the superior performance of the suggested algorithm in 

minimizing power losses, further reinforcing its effectiveness in enhancing system efficiency. 

 

Figure 8. Cost function with various algorithms 

 

Figure 9. EED with and without RES 
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Figure 10. Power loss with various algorithms 

Table 6. Performance Metrics of 40 Generator system with valve point effect. 

Power Generation ABC BSOA CSA GWO MSA BWO 

P1(MW) 112.01 111.21 113.04 111.25 111.21 72.51 

P2(MW) 112.21 111.25 112.87 111.02 111.87 103.55 

P3(MW) 97.47 97.45 97.41 97.44 97.55 83.37 

P4(MW) 180.68 180.45 180.23 180.56 180.35 182.52 

P5(MW) 91.77 88.21 87.90 87.84 88.02 76.24 

P6(MW) 140.25 140.24 140.85 140.58 140.86 126.65 

P7(MW) 300.52 260.55 260.55 260.48 260.14 259.84 

P8(MW) 300.52 285.66 285.42 285.78 285.45 297.21 

P9(MW) 285.45 285.26 285.75 285.55 285.85 291.51 

P10(MW) 130.48 130.45 130.42 130.35 130.54 275.04 

P11MW) 169.02 169.21 169.32 169.30 169.41 357.30 

P12(MW) 94.04 94.03 169.01 169.22 94.01 124.20 

P13(MW) 215.21 215.20 215.08 215.27 215.89 493.20 

P14(MW) 394.84 394.02 394.07 394.85 394.85 345.32 
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P15(MW) 305.20 305.27 305.58 305.52 394.30 372.27 

P16(MW) 305.23 394.27 394.58 394.23 394.56 345.23 

P17(MW) 489.28 489.77 489.37 489.95 489.68 423.36 

P18(MW) 489.32 489.23 489.85 489.65 489.56 434.65 

P19(MW) 511.35 511.36 511.78 511.55 511.30 461.32 

P20(MW) 511.22 511.58 511.65 511.24 511.33 434.23 

P21(MW) 523.23 523.32 523.08 523.25 523.58 545.08 

P22(MW) 523.07 523.28 523.58 523.25 523.08 490.54 

P23(MW) 523.20 523.27 523.85 523.47 523.58 506.28 

P24(MW) 523.36 523.28 523.58 523.02 523.37 467.74 

P25(MW) 523.35 523.36 523.55 523.27 523.87 488.95 

P26(MW) 523.38 5.23.35 523.58 523.05 523.56 487.36 

P27(MW) 10.07 10.05 10.06 10.01 10.07 16.80 

P28(MW) 10.01 10.07 10.05 10.04 10.09 39.30 

P29(MW) 10.04 10.07 10.02 10.04 10.08 23.61 

P30(MW) 90.31 96.21 88.92 92.74 97.00 86.35 

P31(MW) 190.35 190.32 190.25 190.78 190.27 166.56 

P32(MW) 190.65 190.56 190.68 190.69 190.38 175.22 

P33(MW) 190.32 190.58 190.65 190.36 190.36 184.37 

P34(MW) 200.02 165.2 165.25 165.87 165.68 194.36 

P35(MW) 200.12 200.04 165.35 165.27 200.33 192.44 

P36(MW) 200.33 200.08 165.12 165.21 200.33 196.62 

P37(MW) 110.02 110.33 110.84 110.58 100.52 90.02 

P38(MW) 110.23 110.56 110.33 110.58 110.78 37.50 

P39(MW) 110.32 110.45 110.48 110.45 110.12 89.46 
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P40(MW) 511.32 511.02 511.22 511.82 511.30 471.22 

Total Cost × 105 ($) 1.2174 1.2141 1.2142 1.2141 1.2142 1.2107 

 

This study examines the performance of BWO compared to other algorithms in optimizing a large-

scale power system consisting of 40 generator units. The analysis takes into account the impact of the 

valve loading point. You can find the system data in Reference (Abdelaziz, Ali et al. 2016). Table 6 

presents the outputs of each unit for a 10,500 MW load demand, along with the cost for each 

algorithm. It is evident that BWO achieves a lower cost compared to other algorithms while satisfying 

generation constraints. This suggests that the other algorithms might find themselves trapped in local 

minimum solutions. In terms of fuel cost, BWO outperforms these algorithms, even for a large-scale 

power system with the valve loading effect. Table 7 provides a statistical comparison between BWO 

and different algorithms such as ABC, BSOA, CSA, GWO, and MSA in terms of best, mean, worst 

cost, and CPU time over 50 calculation trials. It is evident that the total cost obtained by BWO is 

superior to that of other algorithms. Fig. 11 displays the convergence rate of the objective function, 

indicating that the function stabilizes after 9 iterations. The average CPU time for BWO is also the 

shortest. 

Table 7. Comparison of Statistical data on proposed BWO with different algorithms. 

Algorithm  

Best Cost × 

105 ($/MW) 

Mean Cost × 

105 ($/MW) 

Worst Cost × 

105 ($/MW) 

Time (s) 

ABC 1.2142 1.2142 1.2142 62 

BSOA 1.2140 1.2145 1.2154 48 

CSA 1.2142 1.2153 1.2170 18 

GWO 1.2166 1.2221 1.2298 52 

MSA 1.2141 1.2146 1.2152 86 

BWO 1.2142 1.2142 1.2143 44 
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Figure 12. Convergence graph for fuel cost of the 40-generator system with BWO 

4.3. Case 3: 62 Bus Indian Utility Bus System 

The Indian utility's sixty-two bus system comprises nineteen generators and 33 load buses. The 

system's load is 2908 MW. Table 8 provides the results of 62 bus IUSs. Figure 13 illustrates the 

convergence characteristics of the total cost.  

Table 8. Results of 62 bus IUS after integration of RES 

Power Generation 

DE (Balamurugan, 

Muralisachithnndam 

et al. 2014) 

BWO 

P1(MW) 213.40 211.25 

P2(MW) 423.99 415.48 

P3(MW) 190.93 187.25 

P4(MW) 17.09 18.02 

P5(MW) 55.67 54.25 

P6(MW) 195.63 196.87 

P7(MW) 58.26 59.25 
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P8(MW) 276.43 281.52 

P9(MW) 319.64 325.02 

P10(MW) 27.54 22.36 

P11MW) 104.51 100.25 

P12(MW) 57.10 61.15 

P13(MW) 53.46 50.14 

P14(MW) 41.14 39.98 

P15(MW) 188.54 179.12 

P16(MW) 66.16 66.80 

P17(MW) 35.87 41.22 

P18(MW) 184.06 174.28 

P19(MW) 427.87 423.69 

Total Cost × 104 ($/hr) 1.9733 1.9637 

Emission (kg/hr) 18282.12 17935.23 

Ploss (MW) 20.94 18.95 

 

 

Figure 13. Convergence characteristics of the total cost 
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In most cases, the black widow optimization-based tuning in the bus system gives better results. As 

a general rule, we can conclude that the suggested method yielded optimal or nearly optimal answers. 

The results for the specific test system explain and verify some facts, such as the close relationship 

between the BWO method and the indicated methodologies in the acquired findings. 

5. Conclusion and Future Work 

In terms of both exploitation and exploration, BWO can keep things in check. That is to say, BWO 

can search a broad region for the optimum global solution, making it a strong contender for a variety 

of optimization issues when several locally optimal solutions exist. Conventional approaches to 

power dispatch issues ignore the inherent flaws and uncertainties in real power system operations, 

assuming all variables to be deterministic. In this thesis, we approach the EED issue as a stochastic 

optimization problem in which we must simultaneously reduce fuel cost and emissions while 

fulfilling constraints like producing capabilities and power flow balance. We formulate the power 

balance constraint with transmission line losses included. We also account for nonlinearities like the 

valve-point effect, the point of zero return, and the ramp rate limit. Accounting for these nonlinearities 

improves accuracy. The nonlinear and non-convex nature of the EED issue drives several local 

extrema solutions, making the search for a global solution challenging. This study uses CDF and PDF 

as performance metrics to assess the proposed approach's performance in comparison to existing 

algorithms. The results of this assessment are highly encouraging. The outcomes surpass those of the 

aforementioned cutting-edge algorithms. This demonstrates that the suggested approach is highly 

optimized and scalable. The suggested technique increases time complexity, resulting in a relatively 

high average running time. There is still potential for development in the algorithm. From now on, 

we will prioritize the following tasks: We shall theoretically demonstrate the Improved Weighted 

Boolean Optimization Algorithm's (IWBOA) convergence and stability. We will use the Improved 

Weighted Boolean Optimization Algorithm (IWBOA) to determine how much electricity the wind 

will generate. 
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