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Abstract 

Precise and dependable forecasting of Particulate Matter 
2.5 (PM2.5) and PM10 levels hold significant importance for 
the public's ability to proactively mitigate exposure to air 
pollution and for informing governmental policy 
responses. Nonetheless, predicting PM2.5 and PM10 
concentrations presents considerable challenges due to 
the complex dynamics of atmospheric flows. In existing 
mainstream research, most air pollution prediction 
models presently employ a single predictor, hence limiting 
the potential for enhancing stability and accuracy. This 
study proposes a pioneering methodology for forecasting 
PM2.5 and 10 concentration levels by integrating a Modal 
Auto former system with the Sequential-to-Sequential 
predictive model. The Seq-2Seq network model leverages 
sequential learning and square transformation of Long 
Short-Term Memory (LSTM) techniques for improved 
accuracy in PM2.5and10 concentration prediction. 
Additionally, the incorporation of a Modal Auto former 
enhances the predictive capabilities by efficiently 

capturing nuanced variations in atmospheric conditions. 
The proposed Seq-2Seq LSTM network predictor is given a 
weight, and the Adaptive Beetle Feelers Optimization 
(ABFO) algorithm is utilized for weight optimization to 
attain the best prediction results. Through rigorous 
experimentation and validation, the proposed approach 
demonstrates superior performance compared to 
traditional methods using Air Quality Data in India from 
Kaggle, offering a promising avenue for precise PM2.5 and 10 
concentration forecasting with practical implications for 
air quality management and public health initiatives. The 
Proposed seq-2seq LSTM model achieved 10.211 RMSE 
for PM2.5, 10.321 RMSE for PM10, 5.641 MAE for PM2.5, 
5.764 MAE for PM10, 0.976 R2 for PM2.5, and 0.945 R2 for 
PM10. 

Keywords: Air quality, adaptive beetle feelers optimizer, 
deep learning, modal auto former, pm concentration 
forecasting 

1. Introduction 

The exponential growth of the world's economy has 
increased concerns pertaining to the issue of air pollution 
(Ahmad et al. 2024). Exhaust emissions, primarily resulting 
from the burning of fossil fuels, have significantly 
contributed to an increase in atmospheric pollutants. The 
term PM2.5 refers to particulate matter that has a 
diameter of 2.5 micrometres or less. These small, 
lightweight, and inhalable pollutants can last in the 
atmosphere for prolonged periods and provide a 
substantial risk to human health when found in 
substantial amounts. The World Health Organization 
(WHO) suggests that the average annual PM2.5 
concentrations should not surpass 5 µg/m³. The primary 
contributors of PM2.5 emissions are the combustion of 
solid waste, road vehicles, and power plants (Deep et al. 
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2022). As per the WHO, the global yearly mortality rate 
associated with air contamination is estimated to be more 
than seven million, and this rate is steadily increasing. 
WHO states that PM is a widely used proxy measure for 
air pollution. There exists substantial data supporting the 
adverse health effects linked to exposure to this 
contaminant. Sulfate, nitrates, ammonia, sodium chloride, 
black carbon, mineral dust, and water are the primary 
constituents of PM (Peraltta et al. 2022).  

The top five countries with the highest levels of pollution 
in 2023 were: 

• Bangladesh's PM2.5 concentration (79.9 µg/m3) 
exceeds the WHO PM2.5 yearly limit by more than 
15 times. Bangladesh's elevated pollution levels 
can be attributed to the country's continuous 
traffic, construction operations, and industrial 
emissions, specifically from brick kilns that 
heavily depend on coal. 

• Pakistan's PM2.5 concentration (73.7 µg/m3) 
exceeds the WHO PM2.5 yearly limit by more than 
14 times. 

• India's PM2.5 concentration (54.4 µg/m3) exceeds 
the WHO PM2.5 yearly limit by more than tenfold.  

• Tajikistan's PM2.5 concentration (49.0 µg/m3) 
exceeds the WHO PM2.5 yearly limit by more than 
9 times.  

• The PM2.5 concentration in Burkina Faso (46.6 
µg/m3) exceeds the WHO PM2.5 yearly limit by 
more than 9 times.  

Out of a total of 134 nations and regions, 124 (92.5%) 
surpassed the annual PM2.5 recommendation value of 5 
µg/m3 set by the WHO. 

1.1. Air pollution in india 

India is one of the most rapidly expanding economies 
globally; however, its rapid process of urbanization and 
industrialization has had adverse effects on the country's 
environment and the well-being of its citizens. The 
country has seen significant water pollution, soil 
degradation, and poor air quality due to human activities, 
resulting in a substantial number of premature deaths 
annually. In the year 2023, New Delhi emerged as the 
capital city with the highest level of pollution globally, as 
evidenced by its average PM2.5 concentration of 92.7 
µg/m³. Subsequently, the capital city of Bangladesh, 
Dhaka, followed. Begusarai, located in northeastern India, 
has the highest PM2.5 levels globally, with an average 
PM2.5 concentration of around 119 µg/m³. 

The monthly PM2.5 concentrations in urban areas of India 
exhibited comparable trends from 2020 to 2023, with the 
winter months consistently exhibiting the greatest 
concentrations. During the specified time frame, the city 
of Delhi had the highest mean PM2.5 concentration, 
surpassing 255 μg/m³ in November 2023. According to 
data from 2023, Delhi had the third-highest mean PM2.5 

concentration among cities in India, ranking below 
Begusarai and Guwahati.  The prevalence of severe air 
pollution in India might have adverse health 

consequences for the nation's populace. Fine particulate 
contaminants can extensively infiltrate the pulmonary 
system, leading to respiratory complications and perhaps 
leading to premature mortality. By 2022, almost 96 
percent of India's inhabitants were subjected to 
hazardous levels of atmospheric contamination as shown 
in Figure 1. 

 

Figure 1. Map View of Air Quality in India (March 2024) 

PM10 aerosols, which are PM with a size of 10 μm or less, 
are a kind of air pollutant that contributes to the decline 
in air quality. PM10 originates from a combination of 
natural and human activities, and its constituents are 
classified as primary (emitted directly) and secondary 
(produced in the atmosphere) in the natural environment. 
A considerable proportion of PM10 sources can be 
attributed to human activities. Several variables influence 
atmospheric PM10 concentrations, including local sources, 
dispersion, transportation, land-use patterns, geography, 
and meteorological conditions. The ambient air 
concentration of PM10 in Delhi, India's capital, was 
recorded at 181 micrograms per cubic meter in 2021. The 
pollutant levels remained consistently elevated for more 
than ten years. A higher quantity of particulate matter in 
the atmosphere has been linked to a wide range of 
physical, environmental, and health problems. 

Fine particulate matter (PM2.5) and Inhalable particulate 
matter (PM10), which have aerodynamical dimensions 
lower than 10 and 2.5 µm, are widely recognized as 
significant pollutants (wang et al. 2022). Increased levels 
of PM2.5 and PM10 in the environment provide substantial 
health hazards, which may result in respiratory infections 
and conditions related to cardiopulmonary dysfunction, 
hence providing serious consequences to human health 
(Chen et al. 2024). 

The precise prediction of air pollution provides significant 
early indicators and assists in the decision-making process 
for both governmental and public entities in addressing 
instances of severe pollution (Ding et al. 2021; Dun et al. 
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2022). Hence, there is a pressing requirement for reliable 
and accurate prediction of ambient PM2.5 and PM10 levels 
to improve air quality and protect public health. The 
accurate forecasting of PM levels, including PM10 and 
PM2.5, over an extended period is an essential element in 
endeavours to comprehend and address the widespread 
problem of air pollution. PM comprises microparticles 
floating in the atmosphere and originates from several 
origins including automotive emissions, industrial 
operations, construction activities, and natural 
occurrences such as dust storms and wildfires. The 
presence of these particles presents notable health 
hazards due to their ability to infiltrate the respiratory 
system, resulting in respiratory and cardiovascular 
ailments, alongside several other harmful health 
consequences. 

The significant threat posed by air pollution, particularly 
the concentrations of PM2.5 and PM10, to public health and 
environmental sustainability is acknowledged. Accurate 
forecasting of these concentrations is considered crucial 
for proactive mitigation strategies and informed policy 
responses. However, limitations in accuracy and stability 
are often encountered by existing forecasting models due 
to the complexities of atmospheric processes. It is 
observed that traditional forecasting approaches typically 
rely on single predictors, which may not adequately 
capture the intricate interactions that drive air pollution 
dynamics. Consequently, a pressing need is identified for 
novel methodologies that can improve the precision and 
reliability of PM2.5 and PM10 concentration forecasts. This 
research addresses this need by proposing a novel 
methodology that integrates a Modal Autoformer system 
with a Seq-2-Seq predictive model. This innovative 
approach is intended to overcome the shortcomings of 
traditional forecasting methods by leveraging advanced 
techniques in sequential learning and optimization. 

The novelty of this research present in the integration of a 
Modal Auto-former system with a Seq-2Seq LSTM 
network, enhanced by ABFO for weight optimization. 
Unlike traditional models that rely on single predictors, 
this approach captures complex atmospheric dynamics 
and variations in PM levels, significantly improving the 
accuracy and stability of PM2.5 and PM10 forecasting, as 
validated on Indian air quality data. By combining the 
capabilities of the Seq-2-Seq model with the nuanced 
insights provided by the Modal Autoformer, the proposed 
methodology aims to increase the accuracy and 
robustness of PM2.5 and PM10 concentration anticipation. 
Furthermore, the utilization of the ABFO algorithm for 
weight optimization is intended to further refine the 
forecasting process, enabling more precise estimations of 
air pollutant levels. Through experimentation and 
validation using real-world Air Quality Data from India, the 
research seeks to indicate the superior performances of 
the research model to the conventional approaches. By 
providing a more reliable means of forecasting PM2.5 and 
PM10 concentrations, the developed methodology has the 
potential to have significant implications for air quality 
management and public health initiatives.  

The main contributions of this work are: 

• The study proposes a novel methodology by 
integrating a Modal Autoformer system with the 
Seq-2Seq predictive model. This integration aims 
to increase the accuracy of forecasting PM2.5 and 
PM10 contamination levels. 

• Incorporating a Modal Autoformer to further 
enhance the predictive capabilities of the model 
by efficiently capturing nuanced variations in 
atmospheric conditions. This enables the model 
to capture subtle changes in atmospheric 
dynamics, leading to more accurate predictions. 

• Employing the ABFO algorithm to optimize the 
weights of the proposed predictor. This adaptive 
optimization approach dynamically adjusts the 
weights based on the model's performance, 
leading to improved forecasting results. 

• Through rigorous experimentation and validation 
using Air Quality Data from Kaggle, the proposed 
approach demonstrates superior performance 
compared to traditional methods. The improved 
accuracy of PM2.5 and PM10 concentration 
prediction offers a promising avenue for precise 
air quality management and public health 
initiatives. 

Section 2 describes the research data and methodology. 
The research methodology is evaluated and explained in 
section 3. Finally, the work is concluded.  

2. Literature review 

There are three main categories of existing approaches 
used for predicting air pollution concentrations: numerical 
models, statistical models, and artificial intelligence (AI) 
techniques. Numerical models are utilized to replicate the 
intricate differential equations that control the physical 
and chemical mechanisms of pollutants present in the 
atmosphere. Notable instances of such models encompass 
Weather Research and Forecasting coupled with 
Chemistry (WRF-Chem) and Community Multi-scale Air 
Quality (CMAQ). Nevertheless, the efficacy of these 
models is strongly dependent on comprehensive and 
frequently conflicting pollutant emission data, 
necessitating significant computational resources due to 
their intricate nature. On the other hand, statistical 
models like autoregressive integrated moving average 
(ARIMA) and autoregressive moving average (ARMA) rely 
on data and need minimal processing resources. However, 
they may encounter difficulties when dealing with 
nonlinear relationships and stationary data assumptions. 
AI models, such as artificial neural networks (ANN), 
random forest (RF), extreme gradient boosting (XGB), and 
support vector regression (SVR) have the capability to 
effectively capture intricate nonlinear relationships. 
However, these methods frequently need manual feature 
engineering and may encounter difficulties when dealing 
with extensive datasets because of data redundancy 
problems. Deep learning (DL) algorithms have recently 
gained attention as a possible method for predicting air 
pollution. This is because they possess the ability to learn 
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on their own and effectively handle intricate nonlinear 
mappings. 

Zhang et al. [8] provided a reliable prediction method that 
enables precise multi-steps forward forecasting of PM2.5 

and PM10 levels. Following this, the corrected inputs were 
modelled using the convolution neural networks (CNN) 
based on residuals and has the ability to extract features. 
Ultimately, the effectiveness of this system was 
thoroughly evaluated by using five accuracy measures and 
two extra statistical tests. The STA-ResCNN model 
demonstrated a significant reduction in root mean square 

error (RMSE), ranging from 5.595% to 15.247% and 
6.827% to 16.906%, for the average of 1- to 4-hour 
forward forecasts of PM2.5 and PM10 in three prominent 
cities, respectively. Yu et al. [9] provided a DL architecture 
called SpatioTemporal (ST)-Transformer, which utilized 
multi-head attention. The purpose of this design was to 
enhance the accuracy of spatiotemporal forecasts for 
PM2.5 concentration in areas exposed to wildfires. This 
model utilized the sparse attention method that focused 
on useful data across variable, temporal, and spatial 
dimensions. 

Table 1. Analysis of Reviewed Studies. 

Study Approach Application Advantages Disadvantages 

[8] 
Residual-based CNN with 

feature extraction 
PM10 and PM2.5 prediction 

- Improved accuracy - 

Comprehensive assessment of 

performance 

- Computational complexity - 

Reliance on detailed pollutant 

emission data 

[9] 
Multi-head attention-based 

deep learning 

Spatiotemporal predictions of PM2.5 

concentrations in wildfire-prone areas 

- Sparse attention mechanism 

for useful contextual 

information 

- Limited to specific scenarios 

- May require large datasets 

to train effectively 

[10] 3DCNN-GRU PM2.5  concentration forecasting 
- Best results compared to 

other models 
- Computational complexity 

[11] CNN-LSTM 
PM2.5 prediction based on 

spatiotemporal correlations 

- Enhanced prediction accuracy 

through spatial and temporal 

feature extraction 

- Complexity in architecture 

[12]; 

[13] 
CNN or DNN architecture PM2.5 concentration predictions 

- Incorporates temporal and 

spatial data for precise 

predictions 

- Limited to short-term 

predictions - Computational 

expense due to complex 

architectures 

[14] 
LSTM with a balanced 

sampling approach 

PM2.5 concentration prediction with 

imbalanced data 

- Addresses imbalanced data for 

improved prediction 

- Limited analysis of 

interpretability - Complexity 

in feature extraction 

[15] BiLSTM model 

Handling temporal and spatial 

correlations in data for air pollution 

prediction 

- Handles spatial and temporal 

correlations effectively 
- Computational complexity 

[16] 
PCA, attention mechanism, 

LSTM 

PM2.5 concentration prediction with 

feature extraction and attention 

mechanism 

- Incorporates principal 

component analysis for feature 

reduction - Attention 

mechanism for improved focus 

on relevant features 

- Complexity in architecture 

[17] 
LSTM recurrent network 

model 

Space-time prediction of PM2.5 

concentration considering historical air 

pollutant and meteorological data 

- Predicts PM2.5 concentrations 

at new locations using historical 

data 

- Relies on the availability of 

historical data - Limited to 

fixed monitoring station 

locations 

[18] 
Attention-based GRU and 

convolutional encoder 

Air quality prediction using adaptive 

gated activation and transfer learning 

- Utilizes attention mechanism 

and transfer learning for 

improved prediction 

- May require large datasets 

for transfer learning - 

Computational complexity 

[19]; 

[20] 
LSTM model 

Air quality prediction using LSTM neural 

networks 

- Models temporal 

dependencies effectively - 

Generalizable results due to 

experiments on multiple 

datasets 

- Limited interpretability of 

the LSTM model - Complexity 

in training and tuning 

parameters 

[21] LSTM, RF, PSO PM2.5 prediction using PSO, RF, LSTM. 

- PSO aids in fast converging to 

optimal solutions - Combined 

strengths of PSO and ESN for 

time series forecast. 

- Computational complexity 

[22] DL hybrid method 
PM2.5 prediction using SMA, PSO, and 

ANFIS 

- Novel hybrid model for PM2.5 

predictions 

- Complexity in combining 

different algorithms 

 



A NOVEL APPROACH FOR PREDICTING PARTICULATE MATTER 2.5 AND 10 CONCENTRATION USING MODAL AUTOFORMER  5 

Faraji et al., [10] introduced a model that integrated 3D 
CNN and GRU to predict the concentration of PM2.5 on an 
hourly and daily basis. The model demonstrated superior 
performance in comparison to ANN, GRU, LSTM, ARIMA, 
and SVR. Ding et al. (2011) proposed a CNN-LSTM method 
to predict PM2.5 concentrations by leveraging 
spatiotemporal correlations. The methods were utilized 
for extracting the spatial characteristics and temporal 
relationships of the inputs. The method demonstrated 
superior performances than the multilayers perceptron 
(MLP) and individual LSTM models. The accuracy of 
prediction was improved by including spatiotemporal 
correlation.  

The spatial and temporal information were gathered using 
either a CNN or DNN architecture in [12] and [13]. In brief, 
the models possessed notable capabilities in their capacity 
to integrate geographical and temporal data, hence 
enabling precise prediction of PM2.5 air quality and 
concentration. Nevertheless, the majority of the models 
exhibited limitations in terms of short-term projections, 
with many models being restricted to certain locations or 
contaminants. Moreover, certain models may incur 
significant computing costs because of their intricate 
designs. Additional investigation was required to cultivate 
more effective and precise models that can be 
implemented on a broader scope. The study [14] 
introduced a balanced methodology of sampling to 
mitigate the issue of unbalanced data to increase the 
accuracy of PM2.5 prediction. Most enhancements derived 
from the LSTM architecture mostly focussed on feature 
extraction.  

The research in [15] employed the BiLSTM method, which 
deviated from conventional LSTM by incorporating two 
distinct hidden layers to process the sequences in both 
the backward and forward directions. This approach 
effectively addressed the temporal and spatial 
correlations presented in the information and facilitated 
the modelling of intricate nonlinear associations within 
meteorological factors and air quality parameters. The 
study [16] employed a hybrid approach using principal 
component analysis (PCA), an attention mechanism, and 
long short-term memory (LSTM). Peralta et al., [17] 
provided a technique that utilized the LSTM recurrent 
network model to forecast the concentration of PM2.5 at 
any given geographical location. This method can forecast 
PM2.5 concentration for the upcoming day in a newer 
place where data were unavailable by considering air 
pollutant historical values and meteorological parameters 
(wind speed, temperature, relative humidity, and 
direction) assessed at stations fixed for monitoring.  

The research in [18] introduced the CE-AGA model, which 
integrated the attention-based GRU with the 
convolutional encoders with adaptive gated activations. 
This model was specifically designed for predicting air 
quality. Several studies have employed transfer learning 
techniques to exploit pre-trained methods for associated 
operations, hence enhancing the efficacy of prediction 
models. The LSTM model was employed by Gul et al. [19] 
and Waseem et al. [20], who employed both partial fine-

tuning of the parameters or structure. The utilization of 
the LSTM model facilitated the representation of temporal 
relationships, while the extensive array of trials conducted 
on diverse real-time monitoring of air quality data sets 
from many stations enhanced the applicability of the 
findings. Nevertheless, many research works failed to 
offer a comprehensive examination of the LSTM model’s 
interpretability or the characteristics it acquired from air 
pollutant data were crucial for predicting based on DL 
models.  

The methodology presented by Wang et al. [21] utilized 
LSTM, RF, and PSO. Particle Swarm Optimization (PSO) 
facilitated rapid convergence of the model to the optimal 
solutions, especially in search space with a high number of 
dimensions and intricate, nonlinear interactions among 
variables. The integration of PSO and ESN has the 
potential to achieve superior performance in the 
prediction of time series by capitalizing on ESN's 
proficiency in handling sequential information and PSO's 
test in conducting global search. The research in [22] 
proposed a DL hybrid approach that integrated the 
Particle Swarm Optimization and slime mould algorithm 
(SMA) into the adaptive neuro-fuzzy inferences system 
(ANFIS) for predicting PM2.5 levels. 

From the above review, Traditional methods struggle for 
capturing the complex, nonlinear relations between input 
variables and PM concentrations. LSTM can automatically 
extract relevant features from raw data, learning complex 
representations that improve prediction accuracy. 
However, LSTMs are more computationally expensive 
compared to simpler recurrent architectures like the 
Elman RNN due to their additional gating mechanisms and 
cell state management. These increased complexities 
could result in longer training period and higher resource 
demand, making them less suitable for deployment on 
resource-constrained devices or in real-time applications. 
To solve this, the seq-2seq model is introduced here to 
improve the PM concentration prediction accuracy.  

2.1. Research gap 

The research into PM2.5 and PM10 forecasting has 
predominantly concentrated on predictive modelling and 
algorithmic optimization, although it is lacking in an 
integrated combination of approaches that consider 
pollutant emission characteristics, spatial distribution 
dynamics, and real-world fuel impact analyses. Analyses 
of the morphology and nanostructure of emissions, as 
examined in studies of air pollution production, alongside 
the reduction properties of sustainable aviation fuels, may 
enhance comprehension of pollutant sources and 
variability [Chen et al. 2024; Gong et al. 2024; Meng et al. 
2023; Xu et al. 2024]. Furthermore, employing methods 
for effective small-target identification in noisy 
environments and comprehending the factors influencing 
spatial pollutant distribution could improve the precision 
of forecasting models by addressing the complexities of 
dynamic atmospheric conditions and varied pollutant 
sources. This highlights the necessity of incorporating 
advanced emission analysis, spatial dynamics, and robust 
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detection approaches into PM forecasting systems to 
effectively address these gaps. 

3. Research methodology 

The proposed model employs a Seq-2seq LSTM network 
architecture to forecast the PM2.5 and PM10 
concentrations, as seen in Figure 2. Initially, the Kaggle 
dataset is subjected to pre-processing procedures, which 
involve filling in missing values and normalizing the data. 
Subsequently, the dataset is divided into training and test 
sets to facilitate model training and assessment. During 
the training process, the Seq-2seq LSTM model is trained 
using each batch of training data for a predetermined 
number of iterations. The loss value during forward 
propagation inside the network is minimized by employing 
the Adaptive Beetle Feelers Optimization (ABFO) 
technique via backpropagation. After training, the test 
data is loaded into the seq-2seq LSTM model to get 
predicted values for PM2.5 and PM10. To acquire the actual 
expected values, the predictions are de-normalized. 
Ultimately, the efficiency of the seq-2seq LSTM model is 
assessed using diverse measures, whereby the actual 
projected values are compared with the true values. 

3.1. Dataset collection 

The dataset was obtained from the website 
https://www.kaggle.com/datasets/fedesoriano/air-
quality-data-in-india Fedesoriano (2022). Providing data 
on significant air pollutants like particle matter (PM2.5 and 
PM10), carbon monoxide (CO), sulfur dioxide (SO2), 
nitrogen dioxide (NO2), and ozone (O3), across several 
cities in India. The dataset often contains timestamps that 
correlate to the day and time of measurement, as well as 
pollutant concentrations measured in quantities such as 
micrograms per cubic meter (µg/m³). This dataset is an 
essential source for analysts and researchers to analyze 
air quality trends, investigate the impact of pollution on 
public health, develop predictive models for predicting air 
quality, and evaluate the effectiveness of air quality 
management strategies and policies. The metadata 
includes information on monitoring locations and quality 
control. The map view of monitoring stations in India is 
displayed in Figure 2. 

 

Figure 2. Seq-2seq LSTM-based PM concentration prediction 

3.2. Data pre-processing 

The proposed approach considers the prediction of PM2.5 

as a regression issue of time series, requiring continuous 
time series data as input. Still, it is frequently observed in 
practical situations that there are disruptions in the 

chronological order of data, resulting in the presence of 
data gaps. The issue pertaining to the absence of multi-
modal and multi-site air quality information can be 
classified into two distinct classes: the complete absence 
of time series recordings, and the absence of feature 
values within individual records. Missing data-filling 
software mostly uses functional design to address the two 
categories of missing data. To address missing values in 
PM concentration data, this system must calculate the 
coefficients of cubic polynomials that interpolate between 
neighbouring known data points using cubic spline 
interpolation. The polynomials are subsequently 
employed to approximate the absent values. 

The proposed approach produces cubic spline functions 
for every interval pi, pi+1 using the known data points 
specified as pi, qi, where pi indicates the time points and qi 
indicates the PM concentration values. 

( ) ( ) ( ) ( )= − + − + − +
3 2

i i i i i i iCS p w p p p p y p p z  
(1) 

The coefficients wi, xi, y, zi need to be calculated. The 
original dataset was filled with missing values and 
subsequently normalized. Min-max scaling is a method 
that adjusts the data to fit inside the predetermined level, 
usually ranging from 0 to 1. The Min-Max scaling formula 
is as follows: 

−
=

−  

min
n

max min

P P
P

P P  

(2) 

Here, P represent the initial PM concentration value, Pn 
represent the normalized value of P, and Pmax and Pmin 
indicate the highest and lowest values of P in the dataset. 
Autoformer is a transformer-based DL model. The system 
comprises an internal sequences decomposition unit, an 
enhanced decomposition structure based on the encoder-
decoder, and a self-correlation mechanism. The 
decomposition unit utilizes the sliding average concept to 
extract and deconstruct the seasonal elements of time-
series information. The primary aim of this process was to 
examine the intricate temporal patterns exhibited by a 
lengthy time series. To mitigate periodic oscillations and 
emphasize enduring trends, moving average lines are 
strategically incorporated. The incorporation of the sliding 
average effects will be accomplished by the sliding 
average window size manipulation. 

3.3. Seq-2seq LSTM Model for PM Prediction  

To acquire the time sequence attention of the multi-
variable input data, the module of time sequence 
attention was employed to examine the various time data 
steps. Next, the input should be updated, and feature 
coding should be performed based on the attention 
received for each input data. The final projected value is 
obtained by fusing the matrix of encoded features with 
the historic data of PM2.5 concentrations and inputting it 
into the decoding features for decoding. A solitary LSTM 
unit consists of a memory cell and three gates, namely the 
input gate, the output gate, and the forget gate. At these 
gates, activation functions are utilized. A higher activation 
rate at the input gate indicates the need to store the input 

https://www.kaggle.com/datasets/fedesoriano/air-quality-data-in-india
https://www.kaggle.com/datasets/fedesoriano/air-quality-data-in-india
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information in the memory. Conversely, a higher value at 
the output gate prompts the stored data release to the 
subsequent neurons. Lastly, a higher value at the forget 
gate eliminates data from the memory units. Although 
originally designed for neural machine translation, the 
Seq-2seq architecture has demonstrated its efficacy in a 
range of machine learning applications, such as time 
series prediction. The Seq-2seq model has modules, 
including the encoder, intermediate vector mechanism, 
and decoder. The input sequences are processed, and 
features are extracted in the encoder using LSTM cells. 
The context vector, which encompasses information from 
the complete input data, is derived from the final hidden 
state. The decoder consists of many LSTM units, with each 
unit performing calculations on its hidden state and 
producing output data. This paper presents a concept for 
the utilization of the Seq-2seq model in the prediction of 
PM concentration. 

3.3.1. Encoder 

In a Seq-2seq model, the encoder usually includes one or 
many LSTM modules. Every unit has responsibility for 
processing input sequences, gathering pertinent 
information, and transmitting it to the next unit. The 
mathematical expression that characterizes the 
functioning of the encoder is as outlined below: 

( )−= + +1* *hidhid hip
t t t hidhid fn wt hid wt p b  

(3) 

In this context, the variable hidt denotes the hidden state 
at time step t, pt represents the input at time step t, wthihi 
represents the weight matrix for the recurrent 
connections, wthip represents the weight matrix for the 
input connections, and fn represents the activation 
function. 

3.3.2. Intermediate vector 

In the Seq-2seq model, the decoder component utilizes 
the final hidden state generated by the encoder as its 
beginning hidden state. The intermediate vector, which 
represents the hidden state, is calculated using equation 
(8). The primary objective of the intermediate vector is to 
integrate the knowledge acquired from the complete 
source sequence, serving as the initial hidden state of the 
decoder. 

3.3.3. Decoder 

The system comprises one or many LSTM units. The 
trailing hidden state is passed to each LSTM cell, which 
then creates both the output and the current hidden 
state. The equation provided was utilized to calculate the 
hidden state at the current step t, denoted as hidt. 

( )−= 1*hidhid
t tcs fn wt cs  

(4) 

The cell state at time step t and the prior time step t-1 are 
denoted as cst and cst−1 respectively. The equation [23] 
provides the output at each time step. 

( )= *s
t tO fn wt cs  

(5) 

The Softmax function is utilized in the sequence-to-
sequence (Seq-2seq) paradigm to produce the output 
sequence. Furthermore, it is possible to employ an 
attention mechanism, such as the Bahdanau attention 
mechanism, to capture the correlation between the input 
and output sequences. This approach ensures that the 
input and output sequences are aligned and that 
important information in the input sequence is given 
proper attention throughout the decoding process by 
giving alignment values. Through the utilization of 
attention, the model may choose to concentrate on 
pertinent segments of the input sequence, hence 
enhancing its capacity to produce precise and contextually 
appropriate output sequences [24]. 

( )
=

=
1

*
T

t ti i
i

cv hid
 

(6) 

The context vector at time step t is denoted as cvt, where 
T represents the length of the input sequence. The 
alignment scores among the current decoder hidden state 
hidi and all the encoder hidden states hidi are represented 
as ζti. 

( )

( )


=

=

 1

exp

exp

ti
ti T

tkk

es

es
 

(7) 

Here, esti denotes the alignment energy score among the 
current hidden state of the decoder and the i-th hidden 
state of the encoder. 

 ( )−=  1*tanh ,T
ti t ies cv wt cs hid

 
(8) 

 ( )− −= 1 1tanh , ,t t t tcs wt cs O cv
 

(9) 

The objective of ABFO is to enhance the LSTM’s learning 
rate. To normalize, the moving average of the gradient 
square is employed. This allows for the augmentation of 
the step size under the vanishing gradient condition, as 
well as the reduction of the step size for larger gradients. 

3.4. Adaptive BFO Algorithm for Weight Optimization  

Initially, a weight selection objective function is 

established. The training dataset is denoted as  r m
trP R , 

where r is the sample size and m represents the number 
of features. The objective values that correspond to this 

are represented as  r
trQ R . The proportion among the 

fitting and validation sets is determined by the parameter 
x, which ranges from 0.3 to 0.95. The fitting model is 
assigned to the first r1 = x. r samples of Ptr, while the 
remaining r2 = r−r1 samples are utilized for validation. The 

fitting set is denoted as 1 r m
fP R , while the validation 

set is denoted as 2 r m
vaP R . The objective values for 

these sets are 1 r
fQ R  and 2 r

vQ R , respectively. It is 

crucial to acknowledge that validation plays a significant 
role in guaranteeing the model's ability to generalize 
beyond the training set. This is achieved by separating the 
fitting set Pf from the weights of the neural network W, 

which are directly derived using M (1r1) and Qf. The 
neural network predictions Qv for the validation set Pv are 
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derived using M (r1+1r) and Wt. The formula used to 
compute the mean absolute error (MAE) between the 
objective Qv and the predicted values is as follows: 

=

= −
2

12

1 ˆ
r

k k
k

MAE Q Q
r  

(10) 

The Mean Absolute Error (MAE) is frequently utilized in 
machine learning as a loss function, especially in 
regression tasks, due to its ability to quantify the average 
amount of mistakes between paired observations that 
reflect the same situation. Let us consider the vector is [x, 
v, N] T, where N denotes a vector that encompasses the 
power values of the neurons in the hidden layer, and c 
represents a vector that encompasses the indices of the 
best activation function chosen from Table 1 for each 
neuron in the hidden layer. Algorithm 1 presents the 
approach in the form of an objective function. 

The optimization technique outlined in Algorithm 1 
involves the minimization of the objective function by the 
utilization of beetle behaviour. The optimization process 
entails the minimization of the objective function in 
relation to a vector θ = [x, vT, NT] T, where x is a parameter 
and v is a vector variable consisting of integer values 1, 2, 
3, and 4, which correspond to the activation functions 
outlined in method 1. Furthermore, it should be noted 
that the vector N possesses an equivalent magnitude to 
that of v, with its elements spanning from 0 to nmax−1, 
where nmax represents the upper limit of hidden layer 
neurons as determined by the user. The power of the 
activation functions for each neuron in the hidden layer is 
represented by the nmax+ 1 values. 

In the suggested methodology, the position of the beetle, 
namely its weight value, is represented by the vector p. 
The objective function f(p) in algorithm 1 is used to 
represent the concentration of odour at position p. The 
lowest value of f(p) indicates the origin of the odour. 
Furthermore, the notation pt is employed, where t ranges 
from 1 to tmax, and t denotes the number of iterations. 
Thus, the lower bound L = [0.3, 1T, 0T], where 

( )1
1 0

+
,   maxn

R  represents the vectors all-ones and all-

zeros, respectively. The upper boundary, denoted as (U) = 

[0.3, 1T [4, 1] T nmax]. To make sure that L  p U is 
satisfied, the element-wise function provided for the 
element i = 1, …, 2nmax+1 will be employed. 

( )




=  
 

U , U

, L U

L , L

i i i

i i i

i i i

p

g p p p

p
 

(3) 

Therefore, the beetle's chaotic search route defines a 
model of searching behaviour as follows: 




=

+ '
Cs

ò  

(3) 

The expression γ  Ra2nmax+1 denotes a random vector 

consisting of 2nmax+ 1 elements, while  = 2−52. The left 
(pL) and right (pR) feeler are created using the following 
formulae to imitate the seeking behaviors of the beetle's 
feeler: 

( )( ) ( )( ) = + = −t t t t
R Lp g Ra p Cs p g Ra p Cs

 
(13) 

In this context, the sensing breadth of the feeler, denoted 
as ηt, represents the capability of the exploit at the t-th 
instant. Additionally, consider the probable optimal 
solution (i.e. weight) (px): 

( ) ( )( )( )( ) = + − signt t t
x L Rap g Ra p f p f p

 
(14) 

The notation t denotes a step size, which signifies the 
rate of convergence after an increment in t during the 
search procedure. Following this, the behaviour of 
detection may be characterized as follows: 

( ) ( )
( ) ( )

+
 

= 


1
,

,

t
x xt

t t
x

p f p f p
p

p f p f p  

(15) 

The subsequent section delineates the updating 

regulations pertaining to η and . 

   + += + =1 1   0.991 0.001,   0.991t i t i

 
(16) 

The fundamental requirements must be known for the 
aforementioned methodology are as follows: 

 = − −  + −0
max1 , 2 , .,2 1

T
p y y n y  

(17) 

Where y = Ra ((2nmax + 1)/2) 

Subsequently, the Seq-2seq LSTM method utilizes the 
whole training data set to identify and produce the 
optimal ratio x* among the fitting and validation sets, the 
ideal weight (Wt), the optimal power value (N*), and the 
optimal activation function for each neuron in the hidden 
layer (v*). The proposed algorithm's pseudocode is 
illustrated in algorithm 2, while the flowchart is presented 
in Figure 3. 

 

Figure 3. Flow chart of ABFO for weight selection 
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4. Research results analysis and discussion 

4.1. Experimental setup 

To assess the superiority and generalization of the 
method proposed seq-2seq LSTM in this paper for long-
term prediction, comparative experiments were 
conducted using several control groups, including the 
general GRU module, the informer model (known for its 
superior short-term forecasting capabilities), the 
Autoformer method, and a model combining empirical 
mode decompositions with the GRU module (modal GRU). 
The completed dataset was divided into a training dataset 
comprising 85% of the data and a test dataset comprising 
the remaining 15%. For the models using non-modal 
decomposition and those employing modal 
decomposition, automatic parameter adjustment 
functions were incorporated. The key difference lies in the 
timing of parameter adjustment: for the non-modal 
decomposition model, adjustment happens after every 
prediction process completes, whereas, for the modal 
decomposition model, modification takes place after the 
predictions of all the components. Initial settings of 
parameters were based on the features of various models 
for hyperparameter tuning. The proposed seq-2seq LSTM 
performance is evaluated and the performance is 
compared with existing STA-ResCNN [8], CNN-LSTM [11] 
and LSTM [16] schemes. In the experiment, the model 
hyperparameters are configured as follows: The training 
process comprises 1,000 iterations with a batch size of 
128 and a rejection rate set at 0.1. The model architecture 
includes GRU (Gated Recurrent Unit) layers with 64 
hidden units, and the input data incorporates sequences 
of eight long-term historical data points. Training is 
facilitated using the Adam optimizer, with the MSE serving 
as the chosen loss function. The total objective function 
aims to minimize the MSE across the training iterations, 
thus optimizing the model's predictive performance. 

( )+ + + +

=

= 
   ~ ~ ~ ~

1

1
, ( , )ˆ ˆ

Ns
t t k t t k t t k t t k

i

O X X X X
Ns  

(18) 

Where Ns was the total training samples. Three 
parameters were utilized to compute the differences 
among the actual value X̂t of PM2.5 and the projected value 
Xt. The PM2.5’s mean value was defined as X̄, which 
includes: 

( )
=

= −
2

1

1 n

t t
i

RMSE X X
n  

(19) 

=

= −
1

1 n

t t
i

MAE X X
n  

(20) 

( )

( )
=

=

−
= −

−





2

2 1
2

1

1

m

t ti
m

t ti

X X
R

X X  

(21) 

Among these metrics, MAE and RMSE were employed to 
quantify the disparity among the original and predicted 
values. RMSE indicates the model's sensitivity to huge 
errors, while MAE indicates its reliability. Smaller values of 
both RMSE and MAE signify better predictive 
performance. Additionally, R2 the predictive accuracy of 
the model relative to the actual data. A higher R2 value 
indicates a more effective forecasting outcome. 

 

Figure 4. Different Time Window Sizes Performance for PM 

Concentrations 2.5 

4.2. Comparison of different time window sizes for pm 
concentrations 2.5 and 10 

PM2.5 and PM10 concentration data are influenced by 
various relevant time series, although variations in all the 
time series values do not impact the PM2.5 concentration 
values. This indicates a lag effect, where the variable value 
at the previous moment affects the PM2.5 concentration 
values at the following moment with a lag. While the lag 
effect might be pronounced in the short period, it 
diminishes in the long term.  

A smaller window size may not provide sufficient long-
term memory input for the Seq-2seq LSTM model, while a 
larger window size may introduce irrelevant information, 
increasing unnecessary computational complexity. Hence, 
determining the optimal window size is crucial. A sliding 
window strategy was employed to create relative time 
series samples for all the records. To establish a suitable 
historical time window size, various values from the 
candidate sets [12, 16, 20, 24, 28, 32, 36, 40, 44] are 
selected. The changes in MAE, RMSE, and R2 of the 
research model were depicted in Figures 4 and 6 for 
PM2.5and10 to guide the selection process. As illustrated in 
Figure 4 and 5, if the size of the window was less than 36, 
both the MAE and RMSE evaluations decreased while the 
R2 evaluation value improves with increasing window size. 
This trend is attributed to the limited historical feature 
information inputted to the model when the window size 
is too small, resulting in lower prediction performance. 
Conversely, as the size of the window increases gradually, 
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the research model receives more historical data as input, 
enabling it to capture additional nonlinearities and 
dependencies within the sequence, thereby enhancing 
predictive ability. However, when the size of the window 
surpasses 36, the values of MAE and RMSE start to 
increase, while the evaluation value of R2 decreases 
before stabilizing. This phenomenon occurs due to the 
excessive input of unnecessary information with larger 
window sizes, leading to increased noise and interference 
with the model's performance. Consequently, in the 
experiment, the historical time window size was set to 36 
to achieve the optimal balance between capturing 
relevant historical features and mitigating noise 
interference.  

The overall performance of the proposed scheme in terms 
of RMSE, MAE and R2 are depicted in Table 2. It shows the 
performance numeric evaluation and is compared with 
the current scheme's numeric values. It shows the 
proposed seq-2seq LSTM attained better performance 
results compared to current schemes. The proposed seq-
2seq LSTM models are relatively easier to train and tune 
compared to complex convolutional architectures like 
STA-ResCNN. This simplicity in model design and training 
process may lead to faster convergence and better 

generalization performance and it’s known for their ability 
to handle noisy data and missing values effectively.  
LSTM's robustness to such noise can result in more 
reliable predictions compared to STA-ResCNN.  

 

Figure 5. Different Time Window Sizes performance comparison 

for PM concentrations 10 

 

Table 2. Overall Performance Comparison Among PM Concentration Prediction Schemes 

Methods  RMSE (µg/m3) MAE (µg/m3) R2 

PM 2.5 PM 10 PM 2.5 PM 10 PM 2.5 PM 10 

Proposed seq-2seq LSTM 10.211 10.321 5.641 5.764 0.976 0.945 

STA-ResCNN 11.971 12.232 6.938 7.24 0.828 0.834 

CNN-LSTM 12.659 12.896 7.296 7.542 0.762 0.745 

LSTM 13.536 13.876 7.781 8.122 0.668 0.675 

 

4.3. RMSE performance comparison 

Figure 6 shows the RMSE performance comparison among 
the proposed seq-2seq LSTM model and compared with 
existing PM concentration prediction schemes like STA-
ResCNN, CNN-LSTM and LSTM. It shows the RMSE of 
proposed and existing schemes for PM2.5 and PM10, and 
the results show that the proposed scheme attained less 
RMSE compared to others. The proposed seq-2seq LSTM 
is designed to handle sequential data with varying lengths 
and time lags. PM concentration prediction involves 
forecasting future values based on historical observations, 
which aligns well with the sequential nature of LSTM 
models. The model's ability to retain relevant information 
over time enables it to make accurate predictions, 
resulting in lower RMSE. As well as it has a high capacity 
to learn complex temporal patterns present in PM 
concentration data. They can capture both short-term 
fluctuations and long-term trends, allowing them to adapt 
to the dynamic nature of air quality data. This capacity to 
learn intricate patterns contributes to the model's ability 
to achieve lower RMSE. 

4.4. MAE performance comparison 

Figure 7 shows the MAE performance comparison among 
the proposed seq-2seq LSTM model and compared with 
existing PM concentration prediction schemes like STA-
ResCNN, CNN-LSTM and LSTM. It shows the MAE of 

proposed and existing schemes for PM2.5 and PM10, and 
the results show that the proposed scheme attained less 
MAE compared to others. The proposed model has a high 
capacity to learn complex relationships between input 
features and target variables. PM concentration 
prediction often involves capturing intricate relationships 
between various environmental factors, such as weather 
conditions, geographic features, and pollutant emissions. 
The LSTM's ability to learn these relationships can lead to 
more accurate predictions and hence lower MAE. As well 
as it offers interpretability by allowing analysts to 
understand the importance of different features in 
predicting PM concentrations. PM concentration data may 
have irregular time intervals between observations due to 
factors such as sensor sampling frequency or data 
collection schedules. The proposed seq-2seq LSTM model 
can handle irregular time intervals effectively, allowing 
them to maintain predictive accuracy without requiring 
interpolation or resampling of the data. 

4.5. R2 performance comparison 

Figure 8 shows the R2 performance comparison among 
proposed seq-2seq LSTM model and compared with 
existing PM concentration prediction schemes like STA-
ResCNN, CNN-LSTM and LSTM. It shows the MAE of 
proposed and existing schemes for PM2.5 and PM10, and 
the results show that the proposed scheme attained high 
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R2 compared to others. PM concentration data may have 
irregular time intervals between observations due to 
factors such as sensor sampling frequency or data 
collection schedules. The proposed model can handle 
irregular time intervals effectively, allowing them to 
maintain predictive accuracy without requiring 
interpolation or resampling of the data. This flexibility in 
handling irregular time intervals contributes to higher R2 
values. As well as it is known for its capability for 
generalizing well to unknown data. By capturing initial 
data patterns, it can make predictions accurately even on 
data points not seen during training, leading to R2 values 
on test or validation datasets. For the above reasons, the 
proposed scheme attained better performances 
compared to others. 

 

Figure 6. RMSE performance comparison among PM 

concentration schemes 

 

Figure 7. MAE performance comparison among PM 

concentration schemes 

The proposed model offers significant advantages in air 
pollutant concentration prediction, exhibiting improved 
accuracy and strong predictive capability compared to 
existing models. By integrating advanced techniques such 
as Modal Autoformer and Seq-2Seq LSTM, the model 
achieves comprehensive forecasting by capturing detailed 
variations in atmospheric conditions. However, 
computational complexity and potential challenges in 
model interpretability may limit its scalability and utility in 
decision-making processes. The limitation of the research 

is its dependence on the Indian air quality dataset, which 
could limit the model's generalizability to regions with 
different atmospheric conditions and pollutant sources. 
As compared to the current models results, the developed 
research model has gained lower RMSE and MAE, and 
better R2 results. However, there is potential to improve 
the results by capturing variations in concentrations of 
PM. The obtained results indicate that the research 
model's predictive capability could slightly reduce in 
highly or extreme dynamic weather conditions. 
Additionally, the computational complexity of integrating 
Modal Auto-former and Seq-2Seq LSTM networks, along 
with ABFO optimization, could pose challenges for real-
time applications in resource-constrained environments. 
Additionally, the model's performance could be 
perceptive to the quality and integrity of input data, 
requiring robust preprocessing and handling of missing 
values for accurate predictions. Addressing these 
limitations through further research and refinement could 
enhance the model's applicability in real-world air quality 
forecasting scenarios. 

 

Figure 8. R2 Performance comparison among PM concentration 

schemes 

5. Conclusion 

This research presented a novel system for predicting 
PM2.5 and PM10 concentration levels by combining a 
Modal Autoformer with the Seq-2Seq predictive model. 
The Seq-2Seq model employed sequential learning and 
square transformation methods to improve accuracy in 
concentration prediction, while the integration of a Modal 
Autoformer capture subtle variations in atmospheric 
conditions. The developed model optimized by the ABFO 
algorithm exhibited enhanced performance relative to 
conventional techniques. The optimized research model 
was validated through extensive testing with Air Quality 
Data from Kaggle repository. The results demonstrated 
the model's potential for accurate forecasting of PM2.5 and 
PM10 concentrations with significant implications for air 
quality management and public health activities. The 
Proposed seq-2seq LSTM model achieved 10.211 RMSE 
for PM2.5, 10.321 RMSE for PM10, 5.641 MAE for PM2.5, 
5.764 MAE for PM10, 0.976 R2 for PM2.5, and 0.945 R2 for 
PM10. The achieved results demonstrated the proposed 
model's superiority in PM2.5 and PM10 concentration 
prediction compared to existing methods. This was 
evidenced by lower RMSE and MAE values, alongside 
higher R² scores, signifying enhanced accuracy and 
predictive power.  
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In future, the research will investigate additional 
enhancements to the predictive model, such as 
incorporating attention mechanisms or exploring 
alternative deep learning architectures to capture 
complex patterns in the data more effectively. The 
research will focus on improving the generalizability by 
evaluating various datasets with different atmospheric 
conditions. Further the research will address the data 
quality issues with advanced preprocessing methods and 
the model can be optimized with advanced optimization 
technique for enhancing overall prediction accuracy. 
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