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ABSTRACT 

 The Chennai region's meteorological conditions are causing floods in many districts to occur 

more frequently and with greater intensity. Therefore, anticipating and planning for floods 

under severe weather conditions is essential for making decisions and handling impending 

calamities. These days, deep learning (DL) methods are crucial for supporting meteorological 

applications and successfully preventing natural hazards. The use of climatological data to 

enhance flood prediction is covered in this manuscript. By examining the effects of rainfall 

changes in several Chennai regions, the current study attempts to provide an accurate estimate 

of flood risks. Pre-processing and flood forecasting are the two stages that are completed for 



 

 

the proposed framework. The MaxAbsScaler (MAS) approach, which could be used to 

eliminate unwanted missing values from the database, is described in the preparation step. In 

order to predict the flood in various Chennai regions, the Extended Elman Spiking Neural 

Network (ExESNN) technique is then suggested. In order to avoid network problems during 

the training phase, the derived model's parameters are tuned using the Chaotic Artificial 

Hummingbird Optimizer (Ch-AHO). The Python platform is utilized to process the built 

framework, and the experimentation process makes use of the real-time flood prediction 

database gathered between 2000 and 2023. Numerous computational metrics are assessed and 

differentiated from various research, including R2, mean absolute error (MAE), Kling-Gupta 

Efficiency (KGE), Nash-Sutcliffe Efficiency (NSE), root mean square error (RMSE), and 

calculation time. In comparison to several traditional research on rainfall forecasting in various 

parts of Chennai, the developed technique yields an overall R2 of 0.994, RMSE of 0.851, KGE 

of 0.968, NSE of 0.991, MAE of 0.50, and overall CT of 63.33s.  

 

Keywords: Flood Prediction, Deep Learning, Extended Elman Spiking Neural Network, 

Chaotic Artificial Hummingbird Optimizer.  

1. Introduction 

 Flood prediction is an important study in disaster management, more so because of the high 

intensities and increased frequencies of climatic events. Dtissibe et al (2024) found amongst 

the worst disasters that can strike a community include floods, which result in massive losses 

in lives and population displacements alongside damage to infrastructure.  Surendran et al. 

(2023) said wind speed based one of the highly susceptible regions in India, has been heavily 

hit by floods in 2015. Zhong et al (2023) and Adnan et al. (2023) across the ancient era, Chennai 

has seen an upsurge in the number of generous rain days, unresolved the thresholds set at 95% 

and 99% of the typical precipitation from 1910 to 2022. Conventional methods in flood 



 

 

forecasting widely used by hydrologists largely bank on manual methods, historical 

hydrological information analysis, and simple statistical devices. Alotaibi Y et al (2024) 

introduced these general methods are the basic foundation in flood prediction but to come 

packed with some striking limitations. Rahman et al. (2023) implements the inaccuracy residue 

on the use of manual techniques is inevitable since they fail to capture complex, often non-

linear relationships between meteorological variables and flood events. Ouma et al. (2023) 

executed largely depend on analogues incapable of fully representing unprecedented conditions 

of meteorological extremes and changes in land use. 

 More to that, such techniques have shortcomings related to the quality and quantity of data. In 

the cases of sparse or otherwise irregular data, reliable predictions are unlikely to be generated. 

He et al. (2023) and Lin et al. (2023) developed a manual perusal of voluminous data is quite 

tiring; thus, delays could most likely lead to an inefficient flood warning system apart from 

human errors. In addition, manual models tend to be static and, therefore, not able to adapt 

dynamically to new input data presented with changing environmental circumstances. Xu et al. 

(2023) and Nguyen et al. (2023) established the addition of machine learning has brought in 

data-driven flood prediction. Alotaibi Y et al. (2024) provide a ML models work in a way that 

the algorithms detect a pattern and make forecasts based on huge piles of data. In this regard, 

although machine learning models improve the results with respect to traditional methods, there 

lie several challenges one faces. Farahmand et al. (2023) and Zhong et al. (2024) handled the 

quality of the predictions made by the ML model mostly depends on the quality of the data 

with which it has been trained. Incomplete, noisy, or biased data may undermine the 

performance of the model. Aydin et al. (2023) added some ML models are at large risk of 

overfitting, such that a model might perform well on training data but poorly on new data; this 

tends to make flood forecasts less reliable. Dehghani et al. (2023) compiled many ML models 



 

 

are black boxes, and their decision-making processes are generally unclear. Such non-

transparency hampers practical applications and acceptance.  

Wu et al. (2023) and Lin et al. (2024) established advanced ML models also place a high 

demand on computation resources and expertise, which remains out of reach for many 

organizations, especially in resource-limited settings. Shikhteymour et al. (2023 implements a 

Deep learning (DL), a subset of machine learning (ML), has emerged as a promising solution 

for such challenges. DL, using multi-layer neural networks, captures complex non-linear data 

patterns for learning and generalization from large volumes of diversified sources. Surendran 

R et al. (2023) executed this is what makes it very effective to actually make flood predictions, 

since it can analyze the many inputs coming from satellite imagery, weather forecasts, and 

hydrological data in much more detail. DL therefore provides the large jump necessary to 

improve accuracy while increasing the adaptability of flood forecasting by several folds, and 

considered quite significant. It comes as a major advancement in this field, as it provides much 

better precision and responsiveness in flood risk management. DL heralds an exciting new 

phase in the evolution of flood prediction, with promise for more effective and efficient disaster 

preparedness and response. 

Motivation: Chennai, being one of the southernmost region of India, stands a particular chance 

of being inundated as a result of climatic conditions. Indeed, the region is subject to furious 

rains during the Great Floods, which may result in catastrophic floods, especially when the 

rainfall is heavy or there are extreme weather events. Such floods happen and affect millions 

of dwellers, destroying infrastructure and property, with many lives being lost. In the past 

years, Chennai has been hit by some really bad floods—2015 and 2019 floods that hit, after 

which the need was felt more than any time before to have better flood prediction and 

management systems. This need becomes apparent against the kind of traditional methods 

available for flood prediction used in Chennai—manual hydrological models and basic 



 

 

statistical approaches—these methods will rarely stand up against the increasing frequency and 

intensity of flood events. These methods normally rely on historical information and 

rudimentary analyses, perhaps not necessarily reflecting the complexity of the meteorological 

and hydrological dynamics in the region. The shortcomings of these ideas are in accuracy, 

sluggishness of response, and incapability to manage changes in conditions that become rapidly 

changing. DL provides transformations for these challenges. DL models, built with the help of 

advanced neural network architectures, have the capability to process voluminous data coming 

in from different sources like satellite imagery, weather predictions, or real-time hydrological 

data.  

The main aim of the developed framework is to propose an innovative optimized deep learning 

(DL) model for forecasting the rainfall across various regions in India. 

The Objectives are encompassed as follows: 

• To introduce a MaxAbsScaler (MAS) technique to eliminate unwanted missing values 

present in the flood data.  

• To elucidate an extended Elman spiking neural network (ExESNN) technique to 

forecast the flood that occurs in various regions in Chennai state.  

The scope of the proposed work in to test the performance of the developed model with 

different evaluation measures of performance assessment, including R2, RMSE, Kling-Gupta 

Efficiency (KGE), Nash-Sutcliffe Efficiency (NGE), mean absolute error (MAE), and 

computation time, with reference to various conventional studies. 

2. Related Works 

Moon et al. (2023) established the prediction of urban floods using combined DL models. In 

this study, runoff from the precipitation model with a DL model was introduced to create an 

integrated modeling technique that served as the foundation for a flood forecasting model. 

Additionally, a technique was emphasized that makes use of many representative rainfall 



 

 

characteristics for determining the likelihood of flooding. The research concentrated on 

metropolitan streams, overall precipitation totals, time span, and Time-dependent distribution 

to generate precipitation situations virtually. Furthermore, the runoff from the precipitation 

model's projected findings was utilized as input information to predict when floods occur 

during periods of heavy rain. With a strong association, the anticipated results showed a high 

accuracy, NSE and correlation. However, this method reduces the interpretability while 

processing new or complex time-series data.  

Zhou et al. (2023) defined the DL-based time-series data model for determining the flood 

conditions using spatial and temporal attributes. To create a DL-based information-driven 

model for forecasting floods in both temporal and geographical aspects. The model's 

effectiveness was tested using an actual scenario in northern China. The findings 

unambiguously show that the model can forecast elevated water elevations and overflow 

intervals for a variety of hyetograph sources with significant energy savings. The model 

outperformed the real-world-based hydrological model in the prediction of flood maps, 19 585 

times better. However, the long-term dependency problems were high while training with 

larger data.  

Wang et al. (2023) presented the rapid urban overflow forecasts based on clustering and 

optimized DL model. In this work, a KM cluster and Bayesian optimal DL algorithm-based 

metropolitan flooding forecast framework were emphasized. Based on variables associated 

with a disaster-bearing setting, the examined area was divided into several clusters related to 

flooding causes using the KM cluster process. To create an estimate model for the locations 

experiencing identical inundation causes, the gradient boosting DT (GBDT) technique was 

used. Additionally, the study looked into using the Bayesian approach to adjust the critical 

parameters of the GBDT model to increase model accuracy. China's Haikou region served as 

the model's verification site. The study region was divided into three clusters utilizing the KM 



 

 

cluster based on the following disaster-bearing environment factors: altitude, gradient, tube 

infrastructure thickness, proximity to the stream, and bending. However, the gradient 

insufficiency problems were high while training with larger data. 

Windheuser, L., R et al. (2023) put forth the DL based end-end model for determining the flood 

forecasts effectively. In this study, a completely computerized throughout its entirety image 

detection procedure was considered to use DNN for forecasting flood level statistics between 

two USGS metering points in Georgia, USA: Columbus and Sweetwater Creek.The USGS live 

river web cams, which were placed thoughtfully close to the observation points and were 

updated approximately every 30 seconds, provided the photographs. In order to reduce the 

amount of photos required for training, a U-Net-CNN (U-Net CNN) was initially layered on 

top of a segmentation procedure for distortion and feature elimination to determine the 

overwhelming stage. The catastrophe stage historical data was subsequently trained to be 

predicted in almost real-time using an LSTM, a CNN, and an intensive model. However, the 

error was high when larger database was utilized for the execution process.  

       Zhang et al. (2023) pointed out the effective temporal urban flood forecasting based on 

combined DL model. This paper suggested an attention-based LSTM-DW with a weighted 

MSE (WMSE) loss function and double-time sliding windows (DTSW). In Shenzhen, China, 

three flood-prone metro areas were subjected to the ALSTM-DW paradigm and 

several comparison tests were used to confirm its efficacy. The findings suggest that the model 

under consideration performs well with a maximum flow error smaller than 0.85 and a 

coefficient of determination bigger than 0.85, less than 0.015 m, with an average duration to 

peak inaccuracy during testing of less than 2 min, and reduce excessive swings in hydrograph 

forecasts brought on by a disproportionate response to precipitation. However, attention 

mechanisms can introduce additional hyper parameters that need to be tuned, potentially 

leading to increased complexity and overfitting. 



 

 

 Surendran R., et al. (2021) introduced the interpretable integrated DL model for determine the 

flood conditions using real-time data. Here, AGRS-LSTM-Transformer, an interpretable 

combination model was utilized for anticipating flooding that combines the strengths of 

the Transformer, LSTM, and Adaptive Random Search Algorithm (AGRS). By using flood 

statistics from the Jingle watershed from 1971 to 2013, this study examines the predicted 

efficacy of the combined approach and evaluates it against other schemes. However, the 

utilized transformer model maximizes the time consumption and labor-costs.  

 Weng et al. (2023) determined the model for forecasting the flood susceptibility using 

ensemble techniques. The study involves selecting a case study, in Dingnan County in the 

Jiangxi Province of China. Single flood event points and random sampling methods were 

employed to produce flood and non-flood data. Next, the frequency proportion was used to 

evaluate the connection between every factor that impacts the probability of floods. The results 

indicate that there is no convergence between the impacting factors; a possible ten of them have 

contributed to the event of floods, and all of them are used to create the connection model. 

Finally, vulnerability to flooding maps were created using the DL, FC-DL, RF-DL, and RSS-

DL. However, these models were computationally expensive and resource-intensive 

Babu T et al. (2024) defined the time series DL model for automatic flood forecasting. Two of 

the most recent generative adversarial network (GAN) variations, TimeGAN and Real-world 

RTSGAN, were used to create synthetic flood time series while taking into account the rarity 

of flooding incidents and the substantial dimension of overflow time series. Results 

demonstrate that time-series GANs may effectively and reliably simulate the topographical 

relationships between flood series from various locations in an instance assessment of the 

Xijiang River Basin in southern China. RTSGAN surpasses TimeGAN, particularly when the 

intervals of periods are long. In addition, realistic patterns and a further number of simulated 

segments were used to train the flood projection algorithms for GBRT, LSTM, and QRLSTM. 



 

 

However, GAN models can be sensitive to hyper parameters and training data, leading to 

variability in performance.  

2.1. Problem Statement  

 Geographically, Chennai lies in a region highly prone to severe floods, coupled with intense 

monsoon rainfall and complicated river systems. It has witnessed severe flood events in the 

recent past, causing vast infrastructure damage, disruption of life, and massive economic loss. 

Traditional methods of flood prediction using manual hydrological models and simple 

statistical techniques are inadequate to meet up with the challenges in tackling such extreme 

weather events. Most of these methods are normally restricted in terms of accuracy and 

response time and can barely capture the dynamic and nonlinear relationships between 

meteorological conditions and flood occurrences. In fact, the crux of the matter is none other 

than that the existing flood prediction system in Chennai cannot provide timely, accurate, and 

reliable forecasts for effectively supporting flood management and disaster preparedness. 

Currently, methods are based on historical data and simplistic models that might be incapable 

of fully capturing the complexity of real-time weather patterns, land use changes, and 

hydrological conditions. Ultimately, this flood prediction would not be very accurate and thus, 

in general, it leads to poor preparation and response, which places the community at greater 

risk, adding to the cost in economic and human terms.  

3. Developed Methodology 

 In this paper, the application of climatological data in the improvement of flood prediction is 

discussed. The present work aims at making an exact estimation of flood risks by studying the 

impact of rainfall variations in different regions of Chennai. The developed framework 

undergoes two phases: pre-processing and flood forecasting. The preprocessing stage outlines 

the MaxAbsScaler (MAS) technique that could be used to remove unsolicited missing values 

from the database. Afterwards, the Extended Elman Spiking Neural Network (ExESNN) 

technique is proposed in order to envisage the flood in different regions of Chennai. Figure 1 

indicates the flow of the developed Framework 
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Figure 1. The flow of the developed Framework 

3.1. Preprocessing Stage 

 The raw data is initially fed into the Max Abs-Scaler normalization (MAS) technique to 

remove irrelevant and discontinuous data points. Arun Mozhi Selvi Sundarapandi, at al. (2024) 

shared the given dataset contains high ambiguity and volatility, data normalization is performed 

using the MAS technique and it is scaled to the highest value ranging from -1 to 1. It separates 

every observation using the highest possible variables and it can be formulated in equation (1),  

( )max
scaled

z
z

z
=

                                                       (1) 



 

 

 The out-dated transformation determines the disperses within the values ranges between -1 to 

1.  

3.2. Chennai Flood Prediction using ExESNN Technique 

 After pre-processing, flood forecasting are undertaken to minimize economic loss and attempt 

to reduce the exposure level of urbanized areas. Nowadays, the DL technique plays an integral 

role in predicting weather conditions with minimal time complexity. This study proposes a 

novel Extended Elman Spiking Neural Network (ExESNN) to forecast the flood conditions in 

various regions of Chennai. The proposed ExESNN technique is the extended form of the 

fundamental Elman network model, which is part of the recurrent spiking network model. The 

developed architecture contains four layers namely the input layer, the context layer, the hidden 

layer, and the outcome layer. The extended architecture contains self-feedback with differential 

gain in the context layer, in which the feedback from the hidden layer to the context layer has 

feedback weights, hcw
which are enhanced during the execution process. The spiking function 

increases the training process with the use of active nodes by updating the threshold values. 

The dynamicity of the ExESNN can be mathematically formulated as,  

                               
( ) ( ) ( )( ),zc c zuZ x f w Z x w V x=

                                                                (2) 

                              
( ) ( ) ( ) ( )1 1c c hcZ x x Z x w Z x= − + −

                                                        (3) 

                                        
( ) ( )1m uzP x w Z x+ =

                                                                       (4) 

 Here, 
( )mP x

and 
( )V x

indicates the input and output of ExESNN respectively. The parameter 

( )cZ x
and 

( )Z x
deliberates the vector states of context and hidden layers respectively. The 

parameter zuw
, zcw

, and pxw
signifies the vector weights between hidden and input layers, 

between context and hidden layers, and between hidden and outcome layers respectively. 

Moreover, 
( ).f

represents the nonlinear attribute which indicates the ExESNN performance. 

The self-feedback  in the context layer is enhanced in the developed model it attains the 

accurate value. The internal neurons in the ExESNN technique indicate the single synaptic 

lethal between them. The neuron j is not permissible to spike via the remaining time interval 



 

 

K when the threshold exceeds a specific sample jk
and recovers again in 

x

jk c+
. Every single 

link between the layers in ExESNN is comprised of a set with a similar number of synaptic 

linkages. Each sub-link is connected with varying weights and latency. The changes between 

the time of presynaptic neurons j and postsynaptic neurons are determined based on synaptic 

linkages. At this time, the postsynaptic neurons start to increase and cause synapse series in the 

links. Each synapse weight affects the spike function 


indicating the neuron activation 

function. Figure 2 encompasses the Architecture of ExESNN Technique.  
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Figure 2.  Architecture of ExESNN Technique  

 In the ExESNN technique, the training process is altered and weights are updated. The 

parameters 
( )yp x

, 
( )R x

indicates the outcome and reference data, while the parameters 

( )E x
and 

( )E x
indicates the error and differential error respectively. The parameters of the 

ExESNN technique are learned according to the time series data in a closed-loop format. The 

parameter r indicates the error changes. The single-layered ExESNN has dual input neurons, 

a single output layer, six hidden layers, and a context layer. The error is considered the inputs 

and error changes with seven synapses for each link. The initial weights of the ExESNN 

technique are created arbitrarily within the range 
 0.5,0.5−

and learning rate and self-feedback 

are started at 0.01 and 0.5 respectively for training 100 epochs. At the time of input data 



 

 

synthesis of the ExESNN technique, the error and the differential error are altered into different 

spikes.  

The outcome data of ExESNN is also synthesized with the spike time, which is modified into 

an actual value as input. The proposed ExESNN works based on the negative gradient descent 

scheme to reduce the difference between the actual and forecasted outcomes. Various 

parameters like weights, sub-links, or synaptic latencies and thresholds. Combining the ENN 

with the SNN is chosen to determine the efficacy of the developed model. The hidden layers 

minimize the training speed and maximize the system complexities. The number of sub-links 

between input and hidden layers is updated along with the outcome and hidden layers. At the 

initial stage, weights are arbitrarily selected and iterated continuously with a particular learning 

rate.  

The response is initially encoded into different spike times and it can be mathematically 

formulated as,  

                                    

( )( )( )

( )
min min max min

max

max min

f

i

k Rf k Rf k k
k k

Rf Rf

 − −
= −  

−                                  (5) 

Here, maxRf
and minRf

indicates the maximum and minimum actual response, maxk
and mink

indicates the maximum and minimum interval time respectively. The decoding part of real 

response can be mathematically formulated as,  

                              

( )
( )( )

( )
max min max min

min

max min

i

i

k k k Rf Rf
Rf k Rf

k k

− − −
= +

−
                                 (6) 

There are totally two phases namely feed-forward (FF) phases in which each spike neurons at 

every time interval K only once and this arises when the threshold value is increased by the 

potential membrane n . The FF phase starts from the hidden layer and the neuron is trained 

continuously to verify whether it is spiked or not. The ExESNN technique utilizes the 

upcoming neurons when the existing neurons have been spiked. The potential membrane 
( )jn k

is evaluated by the training mechanism based on the subsequent equation using the input spikes 

f

ik
at the input layer of the neuron can be mathematically formulated as,  



 

 

( ) ( ) ( )
1 1 1 1

1
nh del nh del

t f t t t

j zu i zc hi

i t i t

n k W k k q W Rf k 
= = = =

= − − +  − 
                                                     (7) 

 The parameter 
( )1t

hiRf k −
indicates the existing output from the hidden layer and the current 

input. The function 
( )f t

ik k q − −
can be mathematically formulated as,  

                                           

( )
( )

exp

f t

if t

i

k k q
k k q 



 − − −
 − − = − 
 
                                   (8) 

The sub-link weights are updated when the FF mode is completed. In contradiction to FF, back-

propagation starts from the outcome layer and returns to the hidden layer. The sub-link outcome 

is updated and it can be mathematically formulated as,  

                                           
( ) ( ) ( )1t t t

pz pz pzw k w k w k+ = −
                                                     (9) 

 Here, 
( )t

pz i tw k Z =
. The error between the final spike time of the outcome neuron and its 

real firing time can be formulated as,  

                                                  
( )q f

i iE K k= −
                                                                      (10) 

The parameter i  can be mathematically formulated as,  

                                              1 1

i tnh del
jt

zp

i t

E

Z
W

k



= =

=



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                                                                    (11) 

The sub-links of the hidden layer are updated using the mathematical formulation depicted 

below:  

                                             
( ) ( ) ( )1t t t

zu zu zuw k w k w k+ = −
                                                     (12) 

Here, 
( ) t

jj

t

zu Xkw =
whereas, j

can be mathematically formulated as,  
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                                                        (13) 

The context layer weights are updated and it can be mathematically formulated as,  

                                                    
( ) ( ) ( )kwkwkw t

zc

t

zc

t

zc −=+1
                                             (14) 

The updation of sub-link latency and neuron threshold can be mathematically formulated as,  

                                                   ( )
( )

1

fNH
jt i

del d f t
j i j

X kkE

k X k del


=


 =
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

                                         (15) 
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=
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 Here, jn
indicates the potential membrane of the neuron j , 

t

pzw
indicates the sub-link weights 

of the outcome layer, 
t

pzw
indicates the sub-link weights of the hidden layer, 

t

zuw
 indicates the 

sub-link weights of the input layer, t indicates the step time, 


deliberates the learning rate, 

del indicates the sub-link-latencies, 
q

iK
indicates the target outcome of neuron spike time, 

f

ik

signifies the real outcome of neuron spike time, 
tq
denotes the connection delay, NH

deliberates the total neurons in hidden layer, nh deliberates the total neurons in hidden layer, 

ni  deliberates the total neurons in input layer,  deliberates the constant ranges between 0 to 

1, K indicates the time, d signifies the sub-link latency learning rate,  represents the sub-

link threshold learning rate, k encompasses the time duration,  encompasses the threshold 

parameter, 

signifies the constant time, and i represents the delta parameter.  

3.3. Parameter Tuning using Ch-AHO Technique  

         The proposed ExESNN technique causes high complexity while training with larger data. 

It may lead to the loss of essential features and be prone to increased error. In this approach, 

parameters like batch size, learning rate, epochs, and dropout rates are tuned before providing 

the data into the proposed network model. To perform this, metaheuristic-aided artificial 



 

 

hummingbird optimizer are utilized to update the model parameters with a globally optimal 

solution. Hummingbirds (HBs) select feeding sources based on nectar quantity, quality, and 

replenishing mechanisms. Hummingbirds have exceptional maneuvering abilities and 

accuracy, which are inspired by hunting for food sources, and are unique in their pursuit of 

range variation compared to previous techniques. The method's diverse soaring trajectories 

enhance its mining and exploring capabilities. The visit table simulates a HB's reminiscence 

for locating sustenance sources. HBs use three hunting tactics and three hovering talents to 

gather sustenance from various resources. The trio various hovering scenarios such as 

omnidirectional, oblique, and axial are encompassed to perform the migration, territorial 

foraging, and guided foraging respectively.  

Step 1: Chebyshev Chaos Initialization Phase  

 Chebyshev Chaos is a phenomenon that, when its initial phase is slightly altered, can show 

non-linear behavior variations. It can be thought of as a source of randomness and is defined 

analytically as the unpredictable feature of a basic flexible stochastic system. It is non-

repetitive and ergodic, which means that it will search more quickly than arbitrary searches, 

which heavily rely on coincidence. Hence, the swarm of m HBs are chaotically deliberated to 

m food resources and it can be mathematically formulated as,  

                 
( ) mwxxchoaschebyshevxu lbubklbx ,....,1_ =−+=

                                    (17) 

  Here, lbx
and ubx

indicates the lower and upper boundaries of 
thd dimension problem, 

( )( )kk ykchoaschebyshev 1coscos_ −=
 and the position of 

thx food sources determines the 

solution of the specific fitness using xu
. The food source with the visit table (VT) can be 

mathematically formulated as,  

                                                   
,

1,......,

0 1,......,
x e

null if x e e m

if x e e m


= =
= 

 =                                       (18) 

 If 
x e=

, the VT value ,x e
attains null shows that the HB is choosing its food from the specific 

source. In addition to this, when x e  the ,x e
value attains null which signifies the 

the food 

resources where 
thx  HB recently searched at the present iteration.  



 

 

Step 2: Random Generation 

 After initiating, arbitrarily choose the most appropriate resolution from the set of input 

parameters.  

Step 3: Fitness Function (FF) 

 The AH optimizer utilized FF for analyzing the optimality of the proposed classifier model 

and it is formulated as,   

                                             
( ) ( )2max,min RMAEf =

                                                   (19) 

Step 4: Guided Searching  

 Each HB has its common ability to search for food sources within the nectar volume, which 

determines the accurate source must maximumly replenish the nectar rate and lengthy time 

period in the absence of any visit. The three various flying scenarios such as omnidirectional, 

oblique, and axile are encompassed using deliberating the route switch variable during food 

searching. This vector is defined to blemish one or several 
thd dimension within the search 

space. Multiple birds can fly omnidirectionally, but HBs can perform axial glide and diagonal 

flight. The axile glide can be mathematically formulated as,  

                            

( )  ( )1, 1, 1,......,

,

x if x randk d x d
Z

null otherwise

 = =
= 
                                     (20) 

The oblique flight can be mathematically formulated in the equation (21), 
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otherwise x d


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

=
= 

   − +    
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The formulation for omnidirectional travel can be expressed as given below:  



 

 

                                           
( ) 1 1,....,
x

Z j d= =
                                                                 (22) 

Here, 
( )x

Z indicates the random integer ranges between 1 and d  returns randk . The random 

permutation integer sequence between 1 and knowledge percentage (KP) is obtained using 

( )randperm 
.Moreover, 1r indicates the arbitrary value ranges between 0 and 1. Hence, the 

food resources are enhanced based on final food resources which are recognized from the 

present resources. Finally, iterative directed searching can be mathematically formulated in 

equation (23),  

                                             
( ) ( ) ( )( ), ,x x Tar p x p x Tar pVP z t b Z z t z t= +   −

                                 (23) 

Here, 
( )x pz t

signifies the site of 
thx sustenance resource at the present iteration, 

( ),x Tar pz t

symbolizes the position of food source that 
thx HB determined to eat and indicated the normal 

distribution with zero mean value and SD of 1. The above equation (23) makes every current 

resource change its position concerning the target food resources and iterates the guided 

searching in HBs by different flying patterns. The position of 
thx food resources can be 

mathematically formulated in equation (24),  

                         

( )
( ) ( )( ) ( )( )
( ) ( )( ) ( )( )

1
1

1 1

x p x p x p

x p

x p x p x p

z t if f z t VP t
z t

u t if f z t VP t

  +
+ = 

+  +                              (24) 

 Here, f indicates the FF. The VT is the essential element of the AHO technique that recovers 

the data about the food source visits. The VT stores the undiscovered time interval of every 

food resource which deliberates the maximum visit degree.  

Step 5: Territorial Searching  

 If the flower nectar has been fatigued, the HBs elucidate the new food resources when 

compared to the visit of other present food resources. Hence, the HBs easily travel to a nearby 

location in their own area, where the updated food resources are determined. The territorial 

searching of HBs can be mathematically formulated in equation (25),  

                               
( ) ( ) ( ) ( )1 ~ 0,1x p x p p x p pz t z t B Z z t B N+ = +  

                               (25) 



 

 

The parameter pB
indicates the territorial searching that has the mean zero and SD of 1 and 

defines the normal distribution.  

Step 6: Migration Searching  

When the present iteration diminishes the existing mentioned migration coefficient parameter, 

the bird at the sustenance resource with the minimum replenishment nectar rate will randomly 

define the new food resources within the territory. The migratory behavior of HBs can be 

mathematically formulated in equation (26),  

                                           
( ) ( )1wor pz t lb rand ub lb+ = + −

                                               (26) 

 Here, worz
signifies the food resources with a minimal replenishment nectar rate. The migration 

coefficient pt
according to the m population size can be formulated in equation (27),  

                                                                  
2pt m=

                                                               (27) 

 Based on equation (21), the starting stages of repetition, the substantial distance between 

resources of foods is accomplished in the exploration phase. However, when the repetition 

increases, distance minimizes and hence, more priority is given to the exploitation phase.  

Step 7: Return the Best Optimal Solution 

Step 8: Termination 

Algorithm 1: Pseudocode of Ch-AHO technique 

Define sizePopulationmM pop ==  

Define max,iterM  

Define maximum and minimum population bounds 

Initialize population based on chebyshev chaos using equation (17),  

While max,iterp Mt    

          for every population evaluate switch direction vector Z  

          if 3/1rand  

          Track oblique flight using equation (21),  

           else if 3/2rand  

           Track oblique flight using equation (22), 

          else Track axial fight using equation (20),  



 

 

           end if 

           end for 

                         for every population, the foraging behaviour is updated  

                         if 5.0rand  

                          Track guided searching using equations (20) to (26),  

                          else if Track territorial searching using equations (27),  

                          end if 

                          if 2pt m=  

                          Track migration searching using equation (28), 

                          end if 

                          end for 

Improve locations 

Return the best optimal solution  

1+= pp tt              

end while 

 

4. Results and Discussion 

The developed framework is processed and experimented with via the Python platform. The 

Chennai Floods dataset on Kaggle contains data regarding the deluge that hit the Indian state 

of Chennai in December 2020. The dataset contains details of the relief camps involved, areas 

affected, rainfall data, and resources required related to this flood crisis. This dataset will be 

very instrumental in the analysis and research for understanding the effects of the floods and 

areas for improvement on disaster response and management, besides the predictive models of 

future preparedness. Both Kling-Gupta Efficiency (KGE) and Nash-Sutcliffe Efficiency (NSE) 

are statistical metrics used to evaluate the performance of models, particularly in hydrology, 

environmental sciences, and machine learning applications related to time-series predictions. 

Suresh Subramanian et al. (2024) 80% and 20% of the data are considered for the training and 

testing process respectively in the ratio of 8:2.  

4.1. Computational Metrics 

 Assessment measurements like R2, RMSE, KGE, NSE, and MAE are inspected to 

comprehend the developed method effectiveness. 

4.1.1. KGE Analysis  



 

 

 It is demarcated as the degree to which the effectiveness that has been yielded by the developed 

model is determined between forecasted and modeled hydrological data points. This can be 

expressed by Venkatraman, M et al (2024),   

                                                
( ) ( ) ( )

2 2 2
1 1 1 1KGE i  = − − − −

                                        (29) 

 Here,  signifies the standard deviation of predicted and actual values, 


signifies the ratio 

of the mean of predicted and actual values, and i indicates the correlation coefficient between 

forecasted and modeled data.  

4.1.2. MAE Analysis 

It is demarcated as the measure of the average absolute difference between actual and 

forecasted values and this can be formulated as depicted below:  

                                                                     

1

u

i i

i

v v

MAE
u

=

−

=


                                             (30) 

Here, u indicates the total data points.  

4.1.3. NSE Analysis 

 It is the degree used in hydrological modeling to evaluate the efficacy of the developed model 

similar to the observed value. It can be formulated as,  
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v v
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−




                                                   (31) 

4.1.4. R2 Analysis  

It measures the amount of variance of a dependent variable accounted for by an independent 

variable in a regression model. This is mathematically expressed as: 

( )( )

( )( ) ( )

2 1

2 2

1 1

u

i i

x

u u

i i

i i

v v x x

R

v v x x

=

= =

 − −

=

 − −



 
                                               (32) 

4.1.5. RMSE Analysis  



 

 

 It is the average of the sum of squares of the differences between observed and forecasted 

values. Mathematically, it can be expressed as follows:  

( )
2

1

u

i i

i

v v

RMSE
u

=

−

=


                                                   (33) 

      Here, iv~
represents the mean of all the values, iv

indicates the predicted value, and iv

indicates the actual values.  

4.2. Computational Analysis of Developed Scheme over Conventional Studies 

In this section, the performance evaluation of the proposed method is presented through 

graphical representation. This has been evaluated against several traditional methodologies, 

namely ENN, GWO-SNN, AHO-ESNN, PSO-LSTM, and some other previously proposed 

existing methodologies. Results are elaborated and discussed as follows. 

 

Figure 3.  Accuracy and Loss analysis by altering epochs 

 Figure 3 signifies Accuracy and Loss as a function of epochs. The graphical illustration shows 

performance on train data and test data for 300 epochs. For 300 epochs, training accuracy was 

99.3 percent and testing accuracy was 98.74 percent. The training loss was about 0.02 and 

testing loss was around 0.045 percent. 



 

 

 

Figure 4.  Actual and Predicted Rainfall for varying months, (a) November, (b) December 

and (c) January 

 Figures 4(a-c) represent the real and the predicted flooded conditions for three months ((a) 

November, (b) December and (c) January) for all years over the Chennai state. The 

performance of the Ch-AHO-ExESNN technique is discussed in the analysis below. From these 

graphs, it can be noticed that the model very finely fits with the actual data, hence proving to 

be efficient in flood prediction. The developed method becomes efficient and works well when 

trained with huge data pertaining to floods. 

 



 

 

 

Figure 5.  Actual and Predicted flood for varying years, (a) November 

 

Figure 5.  Actual and Predicted flood for varying years (b) December 

 



 

 

 

Figure 5.  Actual and Predicted flood for varying years (c) January 

Figures 5(a-c) illustrate the actual versus predicted flood conditions for different years in  (a) 

November, (b) December and (c) January. This analysis assesses the performance of the Ch-

AHO-ExESNN technique. The graphs demonstrate that the model closely aligns with the actual 

data, indicating its effectiveness in flood prediction. The developed method shows strong 

performance, even when trained on extensive flood datasets.  

 

Figure 6.  KGE, NSE, and R2 analysis under different traditional frameworks 



 

 

Figures 6(a-c) present the analysis of KGE, NSE, and R² metrics across various traditional 

frameworks. The graphical results indicate that the Ch-AHO-ExESNN technique achieves 

minimal error and superior performance compared to conventional methods, demonstrating its 

suitability for future weather prediction tasks. Specifically, for KGE, the values obtained were 

0.75 for ENN, 0.812 for GWO-SNN, 0.873 for AHO-ESNN, 0.913 for PSO-LSTM, and 0.968 

for the Ch-AHO-ExESNN technique. For NSE, the values were 0.83 for ENN, 0.85 for GWO-

SNN, 0.87 for AHO-ESNN, 0.91 for PSO-LSTM, and 0.991 for the Ch-AHO-ExESNN 

technique. For R², the values were 0.805 for ENN, 0.834 for GWO-SNN, 0.877 for AHO-

ESNN, 0.969 for PSO-LSTM, and 0.994 for the Ch-AHO-ExESNN technique. These results 

highlight that the Ch-AHO-ExESNN model is well-suited to support future real-time weather 

prediction applications. 

 

Figure 7.  MAE and RMSE analysis under different traditional frameworks 

 Figure 7 displays the analysis of MAE and RMSE across different traditional frameworks. The 

results demonstrate that the CResAtt-GCU technique achieves minimal error compared to 

conventional methods, indicating its potential for future weather prediction applications. 

Specifically, for MAE, the values were 1.3 for ENN, 1.2737 for GWO-SNN, 1.0516 for AHO-

ESNN, 0.8059 for PSO-LSTM, and 0.50132 for the CResAtt-GCU technique. For RMSE, the 

values were 1.62 for ENN, 1.55 for GWO-SNN, 1.36 for AHO-ESNN, 1.207 for PSO-LSTM, 

and 0.815 for the CResAtt-GCU technique. These results highlight the superior performance 

of the CResAtt-GCU model in minimizing error for weather prediction processes. 



 

 

 

Figure 8.  Computational Time analysis by altering epochs 

 Figure 8 illustrates the time complexity analysis for varying epochs across different 

techniques. The graph shows that the developed method achieves lower time complexity 

compared to traditional approaches. Conventional techniques tend to consume more time when 

training with complex flood data, which can increase model error due to challenges with data 

distribution. In contrast, the developed method addresses these issues effectively, delivering 

accurate results with reduced training time. For 300 epochs, the time taken by existing 

techniques was 119.54s for ENN, 99.18s for GWO-SNN, 78.70s for AHO-ESNN, 84.25s for 

PSO-LSTM, and 63.33s for the Ch-AHO-ExESNN technique. For 50 epochs, the times 

recorded were 106.20s for ENN, 97.12s for GWO-SNN, 90.15s for AHO-ESNN, 86.87s for 

PSO-LSTM, and 79.10s for the CResAtt-GCU technique. 

5. Conclusion 

In this framework, a new chaotic artificial hummingbird optimizer (Ch-AHO) was proposed 

and examined along with the extended Elman Spiking neural network (ExESNN) technique in 

the flood prediction problem in various regions of Chennai. The proposed optimizer proved to 

be very effective in tuning the model parameters with less computational time and more 

enhanced global optimal solutions. Besides, the ExESNN technique gives an effective flood 

prediction with a minimal computational complication by using the adaptive optimal feature 

learning mechanism. Another technique that is introduced is MAxAbsScaler (MAS) for 

normalizing the flood data by removing unwanted missing values to make the effectiveness 



 

 

and classification process of flood prediction more effective. In this work, the proposed 

framework is tested on the Python platform and real-time flood data dissemination datasets are 

collected and processed. Various computational measures like R2, RMSE, KGE, NSE, MAE, 

and CT have been considered, and the proposed efficacy has been proved with different 

conventional frameworks. It returns an overall R2 of 0.994, RMSE of 0.851, KGE of 0.968, 

and NSE of 0.991 with a MAE of 0.50 and an overall CT of 63.33s for the developed technique 

against various conventional studies on flood forecasting in different regions of Chennai.  

However, the developed framework relies significantly on historical climatological data, which 

may not always accurately reflect current weather patterns due to the impacts of climate 

change. The accuracy of flood forecasts can also be influenced by unforeseen weather events 

or alterations in local environmental conditions. Future research will extend this work by 

integrating additional environmental factors, such as humidity and wind patterns, to better 

understand their effects on flood dynamics in various regions. Moreover, upcoming studies 

will include exploring different urban areas or countries to gain a more comprehensive 

understanding of how temperature variations and other factors interact to influence flood 

conditions. 

Data Availability Statement 

1. https://data.opencity.in/dataset/chennai-floods-2020-data 

2. https://data.opencity.in/dataset/resettled-in-the-paths-of-floods  December 2023 

3. https://www.kaggle.com/datasets/monkeyddonut/chennai-urban-flood-map-2015-

raster-tif 

References 

Adnan, Mohammed Sarfaraz Gani, Zakaria Shams Siam, Irfat Kabir, Zobaidul Kabir, M. Razu 

Ahmed, Quazi K. Hassan, Rashedur M. Rahman, and Ashraf Dewan. "A novel framework 

for addressing uncertainties in machine learning-based geospatial approaches for flood 

prediction." Journal of Environmental Management 326 (2023): 116813. 

Alotaibi Y., Deepa R., Shankar K. and Rajendran S. (2024), Inverse chi-square-based flamingo 

search optimization with machine learning-based security solution for Internet of Things 

edge devices. AIMS Math, 9, 22-37.  

https://data.opencity.in/dataset/chennai-floods-2020-data
https://data.opencity.in/dataset/resettled-in-the-paths-of-floods


 

 

Alotaibi Y., Rajendran B., and Rajendran S. (2024), Dipper throated optimization with deep 

convolutional neural network-based crop classification for remote sensing image analysis. 

PeerJ Computer Science, 10, 1828. 

Arun Mozhi Selvi Sundarapandi, Sundara Rajulu Navaneethakrishnan, Hemlathadhevi A, 

Surendran Rajendran, (2024) “A Light weighted Dense and Tree structured simple 

recurrent unit (LDTSRU) for flood prediction using meteorological variables”, Global 

NEST Journal. Available at: https://doi.org/10.30955/gnj.06242. 

Aydin, Halit Enes, and Muzaffer Can Iban. "Predicting and analyzing flood susceptibility using 

boosting-based ensemble machine learning algorithms with SHapley Additive 

exPlanations." Natural Hazards 116, no. 3 (2023): 2957-2991. 

Babu T, Raveena Selvanarayanan, Tamilvizhi Thanarajan and Surendran Rajendran* (2024) 

“Integrated Early Flood Prediction using Sentinel-2 Imagery with VANET-MARL-based 

Deep Neural RNN”, Global NEST Journal, 26(10). https://doi.org/10.30955/gnj.06554 

Dehghani, Adnan, Hamza Mohammad Zakir Hiyat Moazam, Fatemehsadat Mortazavizadeh, 

Vahid Ranjbar, Majid Mirzaei, Saber Mortezavi, Jing Lin Ng, and Amin Dehghani. 

"Comparative evaluation of LSTM, CNN, and ConvLSTM for hourly short-term 

streamflow forecasting using deep learning approaches." Ecological Informatics 75 

(2023): 102119. 

Dtissibe, Francis Yongwa, Ado Adamou Abba Ari, Hamadjam Abboubakar, Arouna Ndam 

Njoya, Alidou Mohamadou, and Ousmane Thiare. "A comparative study of Machine 

Learning and Deep Learning methods for flood forecasting in the Far-North region, 

Cameroon." Scientific African 23 (2024): e02053. 

https://doi.org/10.30955/gnj.06242
https://doi.org/10.30955/gnj.06554


 

 

Farahmand, Hamed, Yuanchang Xu, and Ali Mostafavi. "A spatial–temporal graph deep 

learning model for urban flood nowcasting leveraging heterogeneous community 

features." Scientific Reports 13, no. 1 (2023): 6768. 

He, Jian, Limin Zhang, Te Xiao, Haojie Wang, and Hongyu Luo. "Deep learning enables super-

resolution hydrodynamic flooding process modeling under spatiotemporally varying 

rainstorms." Water Research 239 (2023): 120057. 

Li, Wenzhong, Chengshuai Liu, Yingying Xu, Chaojie Niu, Runxi Li, Ming Li, Caihong Hu, 

and Lu Tian. "An interpretable hybrid deep learning model for flood forecasting based on 

Transformer and LSTM." Journal of Hydrology: Regional Studies 54 (2024): 101873. 

Lin, Chu-Hsuan Abraham, Chen-Yu Liu, and Kuan-Cheng Chen. "Quantum-Train Long Short-

Term Memory: Application on Flood Prediction Problem." arXiv preprint 

arXiv:2407.08617 (2024). 

Lin, Lin, Chaoqing Tang, Qiuhua Liang, Zening Wu, Xinling Wang, and Shan Zhao. "Rapid 

urban flood risk mapping for data-scarce environments using social sensing and region-

stable deep neural network." Journal of Hydrology 617 (2023): 128758. 

Moon, Hyeontae, Sunkwon Yoon, and Youngil Moon. "Urban flood forecasting using a hybrid 

modeling approach based on a deep learning technique." Journal of Hydroinformatics 25, 

no. 2 (2023): 593-610. 

Nguyen, Huu Duy, Chien Pham Van, and Anh Duc Do. "Application of hybrid model-based 

deep learning and swarm‐based optimizers for flood susceptibility prediction in Binh Dinh 

province, Vietnam." Earth Science Informatics 16, no. 2 (2023): 1173-1193. 

Ouma, Yashon O., and Lawrence Omai. "Flood Susceptibility Mapping Using Image‐Based 

2D‐CNN Deep Learning: Overview and Case Study Application Using Multiparametric 



 

 

Spatial Data in Data‐Scarce Urban Environments." International Journal of Intelligent 

Systems 2023, no. 1 (2023): 5672401. 

Rahman, Tanvir, Miah Mohammad Asif Syeed, Maisha Farzana, Ishadie Namir, Ipshita Ishrar, 

Meherin Hossain Nushra, and Bhoktear Mahbub Khan. "Flood prediction using ensemble 

machine learning model." In 2023 5th International congress on human-computer 

interaction, Optimization and Robotic Applications (HORA), pp. 1-6. IEEE, 2023. 

Shikhteymour, Sharareh Rashidi, Moslem Borji, Mehdi Bagheri-Gavkosh, Ehsan Azimi, and 

Timothy W. Collins. "A novel approach for assessing flood risk with machine learning and 

multi-criteria decision-making methods." Applied geography 158 (2023): 103035. 

Surendran R., Alotaibi Y. and Subahi, A.F. (2023), Lens-Oppositional Wild Geese 

Optimization Based Clustering Scheme for Wireless Sensor Networks Assists Real Time 

Disaster Management. Comput. Syst. Sci. Eng., 46, 835-851. 

Surendran R., Tamilvizhi T., and Lakshmi, S. (2021), Integrating the Meteorological Data into 

a Smart City Service Using Cloud of Things (CoT). In Emerging Technologies in 

Computing: 4th EAI/IAER International Conference, iCETiC 2021, Virtual Event, August 

18–19, 2021, Springer International Publishing, 4,  94-111. 

Suresh Subramanian, Geetha Rani K, Maheswari Madhavan, Surendran Rajendran . (2024) 

“An Automatic Data-Driven Long-term Rainfall Prediction using Humboldt Squid 

Optimized Convolutional Residual Attentive Gated Circulation Model in India”. Global 

NEST Journal, Vol 26, No 10, 06421. 

Surendran, R., Alotaibi, Y. and Subahi, A.F. (2023). Wind Speed Prediction Using Chicken 

Swarm Optimization with Deep Learning Model. Computer Systems Science & 

Engineering, 46, 3-20. 



 

 

Venkatraman, M., Surendran R., Senduru Srinivasulu, Vijayakumar K. (2024) “Water quality 

prediction and classification using Attention based Deep Differential RecurFlowNet with 

Logistic Giant Armadillo Optimization”, Global NEST Journal. 

https://doi.org/10.30955/gnj.0679. 

Wang, Huiliang, Shanlun Xu, Hongshi Xu, Zening Wu, Tianye Wang, and Chao Ma. "Rapid 

prediction of urban flood based on disaster-breeding environment clustering and Bayesian 

optimized deep learning model in the coastal city." Sustainable Cities and Society 99 

(2023): 104898. 

Weng, Peiyao, Yu Tian, Yingfei Liu, and Ying Zheng. "Time-series generative adversarial 

networks for flood forecasting." Journal of Hydrology 622 (2023): 129702. 

Windheuser, L., R. Karanjit, R. Pally, S. Samadi, and N. C. Hubig. "An end‐to‐end flood stage 

prediction system using deep neural networks." Earth and Space Science 10, no. 1 (2023): 

e2022EA002385. 

Wu, Junhao, Zhaocai Wang, Jinghan Dong, Xuefei Cui, Sen Tao, and Xi Chen. "Robust runoff 

prediction with explainable artificial intelligence and meteorological variables from deep 

learning ensemble model." Water Resources Research 59, no. 9 (2023): e2023WR035676. 

Xu, Chengjing, Pingan Zhong, Feilin Zhu, Luhua Yang, Sen Wang, and Yiwen Wang. "Real-

time error correction for flood forecasting based on machine learning ensemble method 

and its uncertainty assessment." Stochastic Environmental Research and Risk 

Assessment 37, no. 4 (2023): 1557-1577. 

Zhong, Pengcheng, Yueyi Liu, Hang Zheng, and Jianshi Zhao. "Detection of urban flood 

inundation from traffic images using deep learning methods." Water Resources 

Management 38, no. 1 (2024): 287-301. 

https://doi.org/10.30955/gnj.0679


 

 

Zhong, Ming, Hongrui Zhang, Tao Jiang, Jun Guo, Jinxin Zhu, Dagang Wang, and Xiaohong 

Chen. "A hybrid model combining the Cama-Flood Model and Deep Learning methods 

for Streamflow Prediction." Water Resources Management 37, no. 12 (2023): 4841-4859. 

Zhou, Qianqian, Shuai Teng, Zuxiang Situ, Xiaoting Liao, Junman Feng, Gongfa Chen, 

Jianliang Zhang, and Zonglei Lu. "A deep-learning-technique-based data-driven model for 

accurate and rapid flood predictions in temporal and spatial dimensions." Hydrology and 

Earth System Sciences 27, no. 9 (2023): 1791-1808. 

Zhang, Lin, Huapeng Qin, Junqi Mao, Xiaoyan Cao, and Guangtao Fu. "High temporal 

resolution urban flood prediction using attention-based LSTM models." Journal of 

Hydrology 620 (2023): 129499. 


