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Abstract 

 Marine pollution introduces harmful substances into the ocean, affecting ecosystems, 

marine life, coastal communities, and the global economy. Classifying these pollutants is 

essential for identifying their sources and assessing their ecological impact. Computer vision 

techniques are used to automate analysis and enhance the accuracy of detecting and 

classifying marine pollutants as visual identification results in underreporting of pollutants. 

Sentinel-2 Multispectral images have very low visibility of pollutants. The proposed method 

uses (i)High quality Sentinel-2 multispectral thermal images generated by Stable Diffusion 

Thermal Image Generator highlights temperature variations for better classification (ii) 

Transverse Dyadic Wavelet Transform (TxDyWT) to pre-process the thermal images as it 

retains structural details for classifying pollutants.(iii) Denoising Convolutional Neural 

Network (DnCNN) optimized with Hippopotamus Optimization Algorithm enhances images 

and Vision transformer (ViT) is employed to classify as microplastics, sediments and oil 

spills by identifying subtle patterns in pollutants. The proposed methodology identifies 

fragments of microplastics as small as 0.5 mm, large-scale oil spills, and hydrogenous 

sediments. The detection accuracy for microplastics, oil spills, and sediments is 

approximately 95%. 
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1. Introduction 

  

 Ocean pollution is an environmental issue and it is caused by the addition of harmful 

substances into the ocean. Ocean Pollution also known as marine pollution occurs in various 

forms like chemicals, plastic substances, organic waste. It affects the marine ecosystem and 

human health. Around 80% of ocean pollutants are land-based sources like sewage, industrial 

waste that enters the ocean through rivers and storm water [1].  Plastics like bags and bottles 

dumped into ocean creates ocean pollution and chemicals like fertilizers, pesticides and 

heavy metals also cause ocean contamination. Oil spills from marine transportation and 

marine activities such as deep-sea mining and fishing also cause pollution and has a huge 

impact on marine ecosystem [2]. 

 

Marine ecosystem is affected by various types of pollutions. Marine animals die and 

get injured because of the ingestion of plastic debris caused by Plastic pollution. It also leads 

to accumulation of toxins affecting the food web. Nutrient pollution causes toxic algal 

blooms affecting the growth and overall health of marine life. Coral reefs struggle to survive 

as they depend on clean water for reproduction, and this creates loss in biodiversity. Marine 

species are affected by diseases caused by pathogens and pollution changes the temperature, 
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salinity and pH affecting the survival of marine species.  [3].  Pollution in the marine 

ecosystem also affects the human health. 

 

 Ocean pollution is a threat to the health and well-being of humans. Consumption of 

contaminated seafood causes the marine pollutants to enter to human food chain. Humans are 

exposed to harmful mercury pollution, microplastics and chemicals present in the seafood. 

The Pollutants like mercury causes autism, dementia. Chemical mixtures damage the nervous 

system, cardiovascular and metabolic disease and even cause death to human beings. Effect 

of microplastics on human health needs to be explored more and it can be done by improved 

monitoring of ocean pollution. Studies on the effect of ocean pollutants on human health is 

required [4] and the first step is to detect. 

  

Detection of ocean pollution is required to protect human health, maintain marine 

ecosystem and to manage the sustainable resources. Monitoring ocean pollution helps to 

identify and reduce exposure to contaminated seafood as the mercury and algal bloom 

contains toxins that affect the human health. Public health policies can be implemented by 

understanding the correlation between ocean pollution and occurrence of diseases. It can be 

done by monitoring the ocean pollution and it also helps in finding the sources and impacts 

caused by pollution. Sustainable development Goals to conserve marine resources can be 

achieved by tracking pollution levels. Overfishing can be avoided and detecting and taking 

preventive measures to reduce pollution provides clean water, enhancing tourism and 

supporting local economies [5]. 

 

  Smaller plastic particles are called as microplastics. Microplastics are formed due to 

the degradation of larger plastic items.  Microplastics disrupt the marine ecosystems. They 

are ingested by many organisms due to smaller size and it results in bioaccumulation and 

toxicity. Microplastics increase the effect of other pollutants and the toxicity in marine 

ecosystem intensifies. They resist to degrade and undergo transformation that enhances their 

toxicity [6]. Marine species needs to be protected from microplastics and other pollutant 

 

Marine life should be protected to support biodiversity and to maintain ecosystem. 

Healthy marine ecosystem is essential for human well-being, climate regulation and clean 

water supply. Protecting marine life also ensures sustainable fisheries and tourism creating 

source of income and employment. Overfishing and pollution can be reduced by establishing 

Marine Protected Areas (MPAs). Biodiversity hotspots are protected by restricting human 

activities in the particular zone. Sustainable fisheries management can be implemented to set 

catch limits and to promote fishing methods to reduce bycatch. Effective management 

strategies like restoration projects and global collaboration can improve ecosystem [7]. 

Marine life is linked with human health and it shows the need to protect ocean ecosystem.  

 

Humans are exposed to microplastics by ingestion, inhalation and through direct 

contact. Ingestion occurs through contaminated seafood, salt and water. Airborne 

microplastics enters the human body through inhalation and direct contact with products 

containing microplastics leads to exposure. Microplastics affect the human metabolism and 

immune system causing stress and DNA damage. Chronic pulmonary diseases and 

respiratory complications are caused by inhalation of microplastics and they also affect 

gastrointestinal tract leading to various digestive issues. Chemicals released from 

microplastics can cause cancer with their carcinogenic properties [8]. Continuous monitoring 

and research can reduce their impact on human health. 
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Sediments carry pollutants and affect the water quality and marine ecosystems. 

Sediments affect aquatic life, damages food webs and biodiversity. Run off from agricultural 

land, urban development, and natural erosion are the sources of sediments. Sediment impact 

can be reduced by the implementation of certain management practices. Pollutants can be 

filtered before entering the marine systems by establishing buffer zones. It reduces sediment 

run off. Wetlands can be created and restored to improve water quality. Conservation 

techniques can be used to reduce soil erosion and prevent their addition to water bodies [9]. 

 

Sediments contribute to the ecosystem through various ecological processes like 

nutrient cycling, water filtration and providing habitat to various organisms. Sediments help 

in food production through nutrient delivery and also helps in flood regulation. Accumulation 

of sediments determines the tree density and forest structure. Sediments deposited from storm 

surges recovers eroded areas and support ecosystem recovery. Regular sediment supply from 

rivers maintains healthy coastal areas. Health monitoring systems and policies can be 

developed to assess sediments [10]. 

 

Oil spills affect marine ecosystem, disrupts habitats and endangers various species. 

International agreement called MARPOL (Marine Pollution) convention regulates ship 

operations to reduce spills. Improvement in ship design, increased surveillance and strict 

enforcement of regulations can minimize oil spills [11]. Skimmers recover oil from water 

surface minimizing its impact on marine life. Wildlife rehabilitation centers can be 

established to treat animals affected by oil spills. Biodiversity recovery can be achieved by 

implementing projects to rehabilitate affected ecosystems like coral reefs and mangroves 

[12]. 

 

Oil spills affect the aquatic life and coastal habitats with the consequences like 

contamination of water, soil. Better governance framework regarding oil extraction, 

environmental protection and community welfare needs to be implemented. Integrated 

Coastal Zone Management should be implemented to protect the coastal communities. Strict 

enforcement of regulation should be done to mitigate the impact of oil spills on coastal and 

marine ecosystems. Compensation and benefit -sharing is essential to address the social and 

economic impacts of oil activities on coastal communities [13]. 

 

Detection of oil spills is essential for timely responsive measures. Recent 

developments in image processing techniques particularly in Computer Vision Approaches, 

Synthetic Aperture Radar (SAR) and Machine Learning Techniques have improved the 

ability to detect oil spills.  DeepLAb3+ is used to enhance accuracy in noisy SAR images. 

Deep learning method is used as it enhances detection accuracy and handles complex SAR 

images. It is suitable for small and large oil spills and it has efficient detection with no human 

intervention [14].  

 

Unarmed Vehicle and IR camera are used to detect oil spills. Convolutional Neural 

Network is used as it automatically extracts features from Thermal infrared images and 

classifies. Machine learning technique is used as the process of oil spill detection is 

automated and it increases the detection rate and reduces cost to clean oil spill. It has higher 

accuracy and can process large infrared images in real-time, adapts to other data sources [15]. 

 

Automated detection of oil spills and estimation of oil concentration from satellite 

images is done by using Machine Learning approach. Synthetic Aperture Radar (SAR) 

imagery is used as it can capture images in different weather conditions and lighting. Optical 
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and multispectral imagery is used to obtain additional information about oil spell for 

estimating concentration. Various machine learning algorithms are used to classify and detect 

oil spills. Automated detection minimizes environmental damage, cost effective and can be 

used to monitor other pollutions [16]. The author has used Canny edge detection Algorithm 

to determine the size, shape and type of microplastics [17]. In [18] Crude oil spills are 

detected by using Convolutional Neural Network(CNN) from the images obtained unmanned 

areal vehicles (UAV) and a thermal infrared (IR) camera images. 

 

1.2 Research Gap 

 

Microplastics presence in the surface and subsurface waters are detected using 

Polarised Light Microscopy, Ramn Spectrometry and Micro-Fourier Transform Infrared 

Spectrometry [19]. Microplastics in other layers of ocean were not considered and the 

existing FTIR method analyses only larger particles of sample, visual identification leads to 

underreporting of pollutants present. Oil spills on the sea surface are detected by Bilateral 

Segmentation Network (BiSeNet), Convolutional Neural Network and Synthetic Data 

Generation [20]. Complexity of the BiSeNet network affects the overall accuracy and the 

network’s performance is sensitive to variations in input leading to inconsistent detection. Oil 

spills on the shorelines and sediments need to be detected. Sediments are captured using 

UAV and are classified using U-Net Architecture [21]. Inaccuracy in boundaries are caused 

by over-lap strategy used in U-Net architecture and the sediment types maybe be classified 

accurately without trained datasets. Figure 1 shows the presence of microplastics, oil spills 

and sediments on ocean. 

 

 
Figure 1 Microplastics, Oil spills, Sediments in Ocean 

 

1.3 Contribution 

 

The study focuses on an advanced methodology for generating and processing 

thermal images to classify marine pollutants with high accuracy. Sentinel-2 multispectral 

thermal images, highlighting temperature variations, are generated using a Stable Diffusion 

Thermal Image Generator. This model enhances contrast and emphasizes spatial and channel-

wise features, ensuring precise pollutant representation for classification. Pre-processing 

employs the Transverse Dyadic Wavelet Transform (TxDyWT), which utilizes multi-

resolution decomposition to preserve structural details such as edges and corners. This 

enables the accurate identification of pollutants of varying sizes, shapes, and distributions. 

 

Noise removal and image quality enhancement are achieved using the DnCNN technique, 

optimized by the Hippopotamus Optimization Algorithm (DnCNN-HOA). The HOA fine-

tunes DnCNN parameters to address diverse image noise conditions, producing cleaner 

images suitable for classification. The Vision Transformer (ViT) is employed for pollutant 

classification, leveraging its self-attention mechanism to identify subtle patterns and 
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distinguish complex pollutant types. Section 2 of this paper provides a comprehensive 

literature survey. Section 3 outlines the detailed methodology, while Section 4 presents the 

results and discussion. This systematic approach ensures effective classification of marine 

pollutants and contributes to environmental monitoring advancements 

 

2. Literature Survey 

 

Author has discussed the presence of microplastics in ocean [22]. Fourier transform 

Infrared Microscopy is used to detect the microplastics present in the halo and thermoclines 

region of the ocean. It was observed that water column has more microplastics but there are 

limitations in sampling and uncertainty in measurements. In [23] author presents Statistical 

models with regression analysis to detect the oil spills and microplastics in the ocean surface. 

However varying environmental conditions, different sized microplastics are not considered. 

Microplastics in the subsurface water are detected using micro–Fourier Transform Infrared 

method [24]. But, microplastics of smaller size are not studied and filtering process affects 

the nature of microplastics. In [25] microplastics present in the surface, middle region, 

bottom of seawater column and sediments were detected. Fourier Transform Infrared 

Spectroscopy was used but the research has not included the variations in distribution of 

microplastics due to seasonal change and depth stratification. Author has detected the 

presence of microplastics in surface water, middle water, bottom water, sea bottom sediment 

and intertidal sediment [26]. FTIR and µ-FTIR methods are used. However, the sampling 

sites are limited and microplastics of small size are not focused.  

 

Author has identified the contamination of sea food by sensory and chemical analysis 

caused by the oil spills in ocean [27]. Sea food contamination in particular area is alone 

considered and other effects of oil spills in the marine ecosystem are not studied. In [28] 

author identifies the oil spills in the surface water and coast using advanced technique called 

SisMOM. Source of the oil spills are found in the surface of water and coastal areas is 

tracked. Short-term data is used for analysis and a particular region is focused. Effects of oil 

spills on other areas are not studied. Fingerprinting method is used by the author to identify 

oil spills in ocean [29]. Oil spills are found in the shoreline and research is done to find the 

source of it. Spill trajectory model used to track the source uses limited data and it affects the 

accuracy of detection. Field collection, sampling and taxonomic survey are done by the 

author to detect the oil spills in ocean [30].  

 

Oil spills are found on the surface water and the research is done in limited region and 

is not applied in environment with different weather conditions. The methods used are simple 

and is not suitable for the complex original conditions. In [31] author detects the oil spills in 

coastal areas by Synthetic aperture radar and image processing techniques. Detection 

accuracy is affected by the environmental factors and needs more processing time which is a 

drawback when used in real time applications. Bubble curtain method is used to detect the oil 

spills in surface water of ocean [32]. Bubble curtains prevent the spread of oil and its 

interaction with marine organisms. This method cannot be used in marine environment with 

strong waves and it not applicable to large scale oil spills. 

 

In [33] author detects the presence of microplastics in water surface by using a tidal 

tank setup and statistical analysis. Microplastics of different size and shape are not included 

in the study. Varying tidal conditions are not considered making it difficult to be applied in 

real time detection. Author detects the microplastics present in floating and sinking sea ice 

[34]. Microcosm setup, micro-Raman and fluorescence microscopy is used. Controlled 
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environment is used in the research and results may vary in real time.  Testing was done with 

the sample of high concentration than the real microplastic. In [35] author uses deep learning 

methods to detect the microplastics present in beach sediment. The results depend on the 

training dataset which may vary in real time and differentiating the microplastics by this 

method is complex. Microplastics in the surface water and sediments are detected by the 

author in [36]. Photoacoustic imaging and deep learning methods are used. However, 

implementation is complex and models are not trained for different environmental 

conditions[37].   

 

             

                            

 3. Methodology 

 

Here, table 1 shows the existing methodology its drawbacks in detecting marine 

pollutants such as microplastics, oil spills and sediments in ocean. 

 

Table.1 Comparison of Existing methods in detecting marine pollutants using image 

processing techniques. 

 

Ref.No Pollutant Method Distribution of 

pollutants 

Drawback 

[22] Microplastics Fourier 

Transform 

Infrared (FTIR) 

1.Halo and 

thermoclines 

2.water column has 

more microplastics 

 

Limitations in 

sampling and 

uncertainty in 

measurements 

[23] Microplastics 

and oil spills 

(MOADs) 

Statistical 

models with 

regression 

analysis 

surface Oil spills in varying 

environmental 

conditions are not 

considered. Effect of 

different sized 

microplastics is not 

discussed. 

[24] Microplastics µ-FT-IR Subsurface water Smaller size 

microplastics were not 

considered. Filtering 

can affect the 

microplastics. 

[25] Microplastics Fourier 

transform 

Infrared 

Spectroscopy 

Seawater column 

(surface, middle, 

bottom), sediment 

Variations in 

distribution of 

microplastics due to 

seasonal change and 

depth stratification is 

not considered. 

[26] Microplastics FTIR and µ-

FTIR 

 surface 

water (SW), 

middle water 

(MW), bottom 

water (BW), sea 

bottom sediment 

Limited sampling 

sites. Smaller particles 

are not focused. 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/surface-water
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/surface-water
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(SS), and intertidal 

sediment (IS). 

[27] Oil Spills Sensory and 

Chemical 

analysis 

Seafood Limited regions are 

studied. Other effects 

of oil spill are not 

studied.  

[28] Oil spills SisMOM Surface water, 

coast 

Study is done with 

short-term data, 

focuses on specific 

region not considering 

other areas with oil 

spills 

[29] Oil spills Fingerprinting Shoreline Spill trajectory models 

use limited data. 

[30] Oil spills Field collection, 

sampling, 

Taxonomic 

survey 

Surface water Limited region 

coverage and use of 

simple models 

[31] Oil spills Synthetic 

Aperture Radar, 

image 

processing 

techniques 

Coastal areas Detection accuracy is 

affected by 

environmental factors. 

Requires more 

processing time. 

[32] Oil spills Bubble curtain Surface water Cannot be used in 

environment with 

strong waves and 

can’t be used in large 

scale oil spills.  

[33] Microplastics Tidal tank setup, 

statistical 

analyses 

Water surface Various range of 

microplastics and 

varying tidal 

conditions were not 

considered. 

[34] Microplastics Microcosm 

setup, µ-Raman 

and fluorescence 

microscopy 

Sea ice-floating, 

sinking 

Results may vary in 

real time as controlled 

environment is used to 

study. High 

concentration of 

microplastics is used 

than real sample. 

[35] Microplastics Deep learning 

methods R-CNN 

Beach sediment Results depend on the 

training dataset, 

differentiating 

microplastics is 

complex. 

[36] Microplastics Photoacoustic 

imaging and 

deep learning 

Surface water, 

sediments 

Implementation is 

complex. Models are 

not trained for 

different conditions. 

Proposed Microplastics, Thermal Images, Surface layer,  
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Overall architecture of the proposed methodology is shown in figure 2. Microplastics, 

oil spills and sediments are present in the ocean because of various human activities and 

natural processes. Multispectral images of sediments, oil spills and microplastics present in 

the ocean layers are converted to thermal image with stable Diffusion Thermal image 

generator due to the low visibility of pollutants.  

 

Underwater images are colour distorted and are processed with Discrete Wavelet 

Transform (DWT) and Transverse Dyadic Wavelet Transform to differentiate from 

background. Thermal images of microplastics, oil spills, sediments are denoised using Deep 

Convolutional Neural Networks (DnCNN). Vision Transformer model is used to detect and 

identify the pollutants in ocean water. Microplastics, oil spills and sediments are classified 

based on the analysis of model. Process involved in the proposed methodology is explained 

in the flowchart given in figure 3. 

 

 

 

 
Figure 2 Block diagram of overall methodology 

 

 

 

 

 

 

 

 

 

method Oil spills and 

sediments 

DAGAN, 

TxDyWT, 

DNCNN-HOA, 

ViT 

midwater layer, 

deep-sea and deep 

sea 
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Figure 3. Workflow of overall methodology 

 

3.1Sentinel-2 Multispectral Image Data 

 

Microplastics are present in the ocean because of domestic run off and improper 

waste disposal. Oil spills into the ocean by accidents in tankers, pipelines and storage 

facilities. Sediments are formed due to the deposit of insoluble materials in the ocean.           

A sentinel-2 satellite with Multispectral Instrument (MSI) captures the sediments, oil spills 

and microplastics present in various ocean layers. The images are of high-resolution imagery 

across 13 spectral bands covering the visible, near-infrared and shortwave infrared regions. 

Spatial resolution of microplastics, oil spills, sediments images present in various layers of 

ocean varies from 10 to 60 meters allowing detailed analysis. Short wave Infrared (SWIR) 

and Near Infrared (NIR) effectively highlights the characteristics of pollutants. Visibility of 

smaller microplastics, thin oil slicks are low in sentinel-2 multispectral image and are 

converted to thermal image with Stable diffusion image generator. 
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3.2 Stable Diffusion Image Generator 

 

The stable diffusion generator model converts the sentinel-2 multispectral color image 

into thermal image through guided text generation and sentinel-2 multispectral color image. 

The conversion of sentinel-2 multispectral color image to thermal image is shown in the 

equation (1). 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑖𝑚𝑎𝑔𝑒(𝑦)
= 𝑅𝐺𝐵 𝑖𝑚𝑎𝑔𝑒
+ 𝑤(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑖𝑚𝑎𝑔𝑒 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑝𝑟𝑜𝑚𝑝𝑡 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑖𝑛𝑔
− 𝑅𝐺𝐵 𝑖𝑚𝑎𝑔𝑒)                                         (1). 

In equation (1), w is the guidance factor, which provides the balance between sentinel 

2 multispectral colour images and generated thermal image. Therefore ‘w’ provides classifier 

free guidance for converting sentinel-2 multispectral colour image into thermal image. 

Hence, the stable diffusion thermal image generator model generates the thermal image from 

the text and sentinel-2 multispectral colour image. The classifier model acts as an image 

classifier and classifies the generated samples based on desired input text such as “High 

Resolution Thermal Image”. Figure 4 shows the generated images of microplastics, oil spills, 

sediments. 

 

 
(a) Microplastics                 (b) Oil Spills                            (c) Sediments 

Figure 4 Generated images of Microplastics, Oil spills and sediments using Stable Diffusion 

Image Generator model 

 

3.3 Perspective Projection 

 

Thermal images of microplastics, oil-spills, sediments are pre-processed with DWT 

and TxDyWT techniques as the underwater images are low contrast, colour distorted and 

with noise due to the scattering and absorption of light. 

 

3.3.1 Discrete Wavelet Transform (DWT)  

 

DWT is used for the identification of smaller particles in complex backgrounds and it 

helps to distinguish microplastics from natural substances. Images are decomposed into 

various frequency bands for feature analysis in DWT, large oil spills and smaller 

microplastics are detected using this technique. DWT enhances edges and boundaries within 

the images which segments extent of oil spills and the boundaries of sediment layers. DWT 



 

11 
 

extracts texture information from images, this helps to identify different types of sediments, 

texture variation in oil slicks and physical properties of materials present in sediments.  

Images of microplastics, oil spills, sediments obtained from ocean are processed through 

Continuous Wavelet Transform (CWT) using the formula  

                      𝑊𝑓 (𝑎, 𝑏) =
1

√𝑎
∫ 𝑓(𝑡)𝜑(𝑡 − 𝑏|𝑎)

∞

−∞
𝑑𝑡                                                    (2) 

Where, 

          Wf(a,b) are the wavelet coefficients, 

a is the scale parameter, 

b is the translation parameter, 

ψ(t) is the wavelet function. 

 

The wavelet coefficients Wf (a, b) identifies and isolates microplastics from 

background and other contaminants. The wavelet function 𝜑(𝑡 −
𝑏

𝑎
)  highlights the 

boundaries and spreading patterns of oil slicks and it helps to assess the extent, behaviour oil 

spills. Normalization factor 
1

√𝑎
 reduces noise in the processed images of microplastics, oil 

spills, sediments by maintaining consistent energy at different scales. 

Images are reconstructed from wavelet coefficients 𝑊𝑓(𝑎𝑗 , 𝑏𝑘)  by inverse transform using 

the equation given below  

 

𝑓(𝑡) = ∑ ∑ 𝑊𝑓𝑘𝑗 (𝑎𝑗, 𝑏𝑘)𝜑𝑗,𝑘(𝑡)                                              (3) 

 

Where 𝜑𝑗,𝑘(𝑡) are the scaled and translated versions of wavelet function. Reconstruction is 

used for visualizing and assessing the level of contamination caused by microplastics, 

sediments, oil spills in ocean.  Figure 5 shows the reconstructed image of microplastics, oil 

spills, sediments using DWT. 

 

 
                   (a) Microplastics            (b) Oil Spills                      (c) Sediments 

 

Figure 5 Reconstructed images of pollutants using DWT. 

 

Underwater images of microplastics, sediments, oil spills with high noise cannot be 

processed with DWT. Energy from noise distorts and masks the features of pollutants leading 

to poor identification of smaller size, irregular shaped microplastics and variations in oil 

slicks. High noise in images creates loss of important information like texture, boundaries 

required for analysis. High noise levels decrease Signal-to-Noise Ratio (SNR), lowering the 

effectiveness of DWT. It leads to inaccurate reconstruction of images. Transverse Dyadic 

Wavelet Transform (TxDyWT) technique is used in pre-processing of underwater images to 

overcome the drawbacks of DWT. 
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3.3.2Transverse Dyadic Wavelet Transform (TxDyWT) 

 

Transverse Dyadic Wavelet Transform (TxDyWT) is used to pre-process thermal 

images of marine pollutants. Images of microplastics, oil spill, sediments are decomposed 

into different frequency components by TxDyWT improving the visibility and enabling the 

differentiation of pollutants from background noise and other sediment materials. TxDyWT 

extracts features like size, shape and distribution patterns of microplastics to determine the 

quantity of microplastics present in ocean sediments. TxDyWT analyses the texture of oil 

spills to differentiate oil spills and water surface to assess the extent of contamination. 

Thermal images of pollutants are analysed in multiple resolution to monitor changes over 

time. TxDyWT analyses the frequency components of sediment images and identifies 

different sediment types and their composition. TxDyWT estimates the abundance and 

distribution of pollutants by processing the sediment images. 

 

𝑊𝑓(𝑗, 𝑘) = ∑ 𝑓[𝑛]. 𝜑𝑗,𝑘[𝑛]                                                             (4)

𝑛

 

where: 

Wf (j,k) are the wavelet coefficients, 

f[n] is the input signal or image, 

ψj,k[n] are the wavelet basis functions at scale j and position k. 

Thermal images of marine pollutants are represented as signal by f[n] and the signal is 

decomposed into different frequency components by TxDyWT to isolate specific features of 

microplastics, oil spills, sediments. 

Wavelet coefficients Wf ( j, k) identifies distinct patterns corresponding to pollutants to 

differentiate from natural sediment backgrounds. 

 

TxDyWT provides edge detection through multi-resolution analysis to highlight the 

boundaries of oil slicks in water surface. 

Formula for image pre-processing is given below 

𝐼(𝑥,𝑦) = 𝐴 +  𝐷𝐻 + 𝐷𝑉  +  𝐷𝐷                                                 (5) 

Where, 

             A   is the approximation, 

             𝐷𝐻 , 𝐷𝑉 , 𝐷𝐷   are the horizontal, vertical, and diagonal detail coefficients 

respectively.Constant A corrects the background noise and light variations in thermal 

images of sediments. The directional derivatives 𝐷𝐻 , 𝐷𝑉 , 𝐷𝐷  enhances the edges and 

contours of microplastics in the sediment images. 

 

Images are reconstructed from wavelet coefficents with inverse TxDyWT, and the equation is 

given below 

 𝐼(𝑥,𝑦) = ∑ 𝑊𝑓(𝑗, 𝑘). 𝜑𝑗,𝑘𝑗,𝑘 [n]                                                           (6) 

 

Where, 

I( x, y)  represents processed image intensity at pixel coordinates(x,y), 

Wf(j,k) are wavelet coefficients, 

Φj,k[n] are wavelet basis functions. 

 

The wavelet coefficients Wf (j,k) captures the essential features of microplastics, oil 

spills, sediments within the thermal images. The coefficients are summed and multiplied by 

their corresponding wavelet basis functions φj,k [n] and the images are reconstructed. Figure 6 
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shows the reconstructed images of microplastics, oil spills, sediments by using TxDyWT. 

Comparison of Pre-processing of images using CWT, MODWT, DWT and proposed 

TxDyWT is shown in table 2. 

 

(a)Microplastics                                (b) Oil spills                               (c) Sediments 

Figure 6 Reconstructed images of (a) microplastics, (b) oil spills, (c) sediments using 

TxDyWT. 

 

Table 2 Comparison of Pre-processing of images using CWT, MODWT, DWT and proposed 

TxDyWT 

Performance Metrics CWT MODWT DWT TxDyWT 

Mean 0.05 0.04 0.763 6.281 

Standard deviation 0.10 0.09 0.39 2.11 

Entropy 0.15 0.14 2.23 8.87 

Energy 0.02 0.01 6.778 2.926 

Contrast 0.03 0.02 0.152 4.462 

 

Comparison of Pre-processing of images using CWT, MODWT, DWT and proposed 

TxDyWT in table 2 shows TxDyWT with a higher mean indicating brighter images, 

enhancing the differentiation between microplastics, sediments and oil spills. TxDyWT has 

higher standard deviation indicating more variability which enables the identification of 

regions with various pollutants, aiding accurate classification. DWT has lower value which 

indicates uniform area. Higher entropy in TxDyWT shows the presence of various types of 

contaminants enabling their classification. TxDyWT has higher contrast value which enables 

to identify boundaries for accurate classification of pollutants. Figure 7 Shows the 

comparison of DWT and TxDyWT based on performance metrics. Pre-processed images are 

denoised using DnCNN techniques. DWT and TxDyWT are chosen to transform multicolour 

pixel data of microplastics, oil spills and sediments into low pixel colour space to retain their 

essential characteristics. By applying DWT and TxDyWT microplastic distribution, 

behaviour of oil spill, sediments over time can be distinguished.  DWT and TxDyWT are 

used for preprocessing microplastics, oil spills, and sediments for the multi-resolution 

analysis, noise reduction, data compression, and enhanced feature extraction. 
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Figure 7 Comparison of Pre-processing of images using CWT, MODWT, DWT and proposed 

TxDyWT 

 

3.4 Denoising 

 

Thermal images of microplastics, oil spills, sediments are noisy due to various factors 

like sample preparation and imaging conditions. It is important to denoise the images for 

accurate detection and segmentation of marine pollutants. 

 

3.4.1 Denoising Convolutional Neural Network - DnCNN 

 

DnCNN uses deep learning techniques to denoise image. DnCNN enhances the 

quality of thermal images for better detection and classification of marine debris and 

pollutants. DnCNN preserves important features of marine pollutants when reducing 

noise.DnCNN enhances the visibility of small particles against complex backgrounds 

providing clear images as clear images are required to assess the type and concentration of 

pollutants in ocean. Denoised images of oil spills help to understand the distribution and 

behaviour of oil-mineral aggregates in marine environments. DnCNN is integrated with 

Pelican Optimization Algorithm to enhance its denoising capabilities by optimizing 

parameters. 

 

3.4.2 Pelican Optimization Algorithm (POA) 

 

Pelican Optimization Algorithm is a nature-inspired optimization algorithm that is 

based on the hunting behaviour of pelicans. POA operates through two main phases 

exploration and exploitation phase allowing the algorithm to explore potential solutions and 

to refine the search on solutions to find optimal outcome.  

 

Pelican Optimization Algorithm is used with DnCNN technique to minimize noise in 

the images of microplastics, oil spills, and sediments. POA optimizes hyper parameters of the 

DnCNN model to achieve optimal denoising. Exploration and exploitation phases of POA are 

used to optimize the Peak-Signal to Noise Ratio (PSNR) parameter, which is used as 

evaluation metric to assess the quality of denoised images.  
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POA is used to optimize the parameters of DnCNN as it is essential to achieve better 

denoising improving the accuracy and efficiency of the model. Dynamic nature of POA 

adaptively adjust the learning rates resulting in faster convergence and improved denoising. 

Pelican optimization algorithm maintains a balance between exploration – searching new 

areas of solution space and exploitation -refining good solutions finding new configurations 

for DnCNN and enhancing its ability to handle different types of noise in the images. POA as 

a meta-optimizer improves the denoising capabilities of DnCNN with extensive manual 

tuning. 

 

Pseudo-code of POA 

Start POA 

1. Input the noisy image. (microplastics, sediments, oil spills) 

2. Determine POA population size (N) and number of iterations (T). 

3. Initialize positions of pelicans (denoising parameters). 

4. For t = 1:T 

5. Generate random position of the prey (ideal denoised image). 

6. For I = 1:N 

7.  // Phase 1: Moving towards prey (exploration phase) 

8.  For j = 1:m   // m = number of parameters/dimensions 

9.   // Calculate new status of the jth dimension (denoising parameter) using the given  

equation 𝑦𝑢,𝑣
𝑃1 = {

𝑦𝑢,𝑣 + 𝑟𝑎𝑛𝑑. (𝑝𝑣 − 𝐼. 𝑦𝑢,𝑣),     𝑂𝑝 < 𝑂𝑢,

𝑦𝑢,𝑣 + 𝑟𝑎𝑛𝑑. (𝑝𝑣 − 𝐼. 𝑦𝑢,𝑣),        𝑒𝑙𝑠𝑒,
                                    (7) 

 

10.  NewParameter[j] = CurrentParameter[j] + RandomAdjustment 

11. End. 

12. // Apply DnCNN or other denoising method with updated parameters 

13.  DenoisedImage = ApplyDenoisingMethod(NoisyImage, NewParameter) 

14.  // Calculate objective function value (PSNR) 

15. ObjectiveValue = CalculateObjectiveFunction(DenoisedImage, ReferenceImage) 

16.  End. 

17. End 

Output best candidate solution based on lowest objective function value. 

End Exploration Phase. 

POA integrated with DnCNN results in increased computational demands leading to 

longer training times, making it difficult to be used in real-time applications. POA 

complicates and adds complexity to the training process of DnCNN. Managing two distinct 

algorithms introduces challenges in maintaining the system. Hippopotamus Optimization 

Algorithm is used to overcome the mentioned drawbacks. 

 

3.4.3 Hippopotamus Optimization Algorithm (HOA) 

 

Hippopotamus optimization algorithm is a trinary-phase model reflecting the natural 

behaviour of hippopotamuses, focusing on their aquatic movement and social interactions. 

HO balances exploration (searching new areas) and exploitation (refining known good 

solutions) to solve complex optimization problems. It incorporates mathematical formulation 

that simulate the behaviours to update positions of candidate solutions in optimization space. 

HOA is integrated with DnCNN to optimize the parameters of model to improve denoising. 

HOA trains DnCNN on a dataset with the images of microplastics, oil spills and sediments 

with noise to enhance the convergence speed and accuracy of the model. HOA adjusts the 
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hyperparameter Peak Signal-to-Noise Ratio (PSNR) during training and the performance of 

the integrated model is evaluated after training to access the effectiveness of denoising. The 

combined approach removes noise and preserves important details in the images. Integration 

adapts to different types of noise. 

 

Algorithm 2 Pseudocode of HOA 

Start Image Denoising HO Algorithm  

1. Define an image denoising optimization problem 

2. Set the maximum number of iterations (T) and number of candidate solutions (N) 

3. Generate the initial population of candidate solutions (images) based on equation  

𝐼𝑢: 𝑖𝑢𝑣 = 𝑙𝑏𝑣 + 𝑟 . (ℎ𝑏𝑣 − 𝑙𝑏𝑣), 𝑢 = 1,2, … 𝑁, 𝑣 = 1,2, … . 𝑚                (8)  

and evaluate their quality using an objective function Peak Signal- to- Noise Ratio 

(PSNR) 

4. For t= 1 to T 

5. Update dominant candidate solution based on objective function value criterion 

6. Phase :1 Candidate solution update in the image domain (Exploration phase) 

7. For i= 1 to N 

8. Apply Gaussian filter to the i-th candidate image: 

-Let G be the Gaussian kernel 

-Denoised_Image[i]= Convolve (Candidate_ Image[i], G) 

9. Evaluate the quality of the denoised image using the objective function 

10. End for 

11. Save the best denoised image found so far 

12. End for 

13. Output the best denoised image solution found by IDO 

End Image Denoising HO Algorithm 

Candidate solutions are updated through Gaussian filtering approach. In step 8, each 

candidate image is convolved with a Gaussian kernel to reduce noise. Each denoised image’s 

quality is evaluated after applying the filter enabling comparison and selection of best result. 

Comparison of DnCNN optimized by Pelican Optimization Algorithm and Hippopotamus 

optimization algorithm is given in table 3. 

 

             Table 3 Comparison of Denoising methods using DnCNN and Optimized DnCNN 

Metrics DnCNN DnCNN-POA DnCNN-HOA 

PSNR 25 31 35.2 

Convergence Time(s) 150 120 90 

Training epochs 60 50 40 

Robustness score 0.60 0.75 0.85 

No. of layers 30 20 17 

 

The Deep Denoised Convolutional Neural Network (DnCNN) has 20 convolutional 

layers that are used to remove thermal noise patterns from Sentinel-2 marine pollutant images 

and enhance the perspective projection of fragmented pixel regions of microplastics, 

sediments, and oil spills. However, the large number of convolutional layers reduces the 

convergence of DnCNN. To improve the convergence speed of DnCNN, the number of 

convolutional layers is optimized through the HOA and POA optimization algorithms. From 

Table 3, HOA optimization has a higher PSNR (Peak Signal-to-Noise Ratio) value, which 
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indicates better image quality. The convergence rate of DnCNN-HOA is lower compared to 

DnCNN-POA due to the exploration and exploitation capabilities of the Hippopotamus 

Optimizer compared to the Pelican Optimizer. Thus, DnCNN-HOA reduces computational 

complexity with an optimum number of convolutional layers set at 17. Figure 8 Shows the 

comparison of performance metrics of DnCNN optimized by HOA And POA and 

Convergence analysis of POA and HOA is shown in figure 9. 

 
 

Figure 8 Comparison of performance metrics of DnCNN optimized with POA and HOA  

 

                                

Figure 9 Convergence Analysis of DnCNN optimization techniques POA and HOA 

 

Convergence analysis of POA and HOA is shown in figure 8. Hippopotamus 

Optimization Algorithm has higher values across all iterations. Both the algorithms show an 

increasing trend but POA converges to higher PSNR values more rapidly than HOA, 

indicating it is more efficient in optimizing solutions for pollutant detection. 
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3.4.4 Vision Transformer Model (ViT) 

 

Vision Transformer Model is a neural network that applies principles from 

transformer model. ViT uses self-attention mechanism to differentiate various types of 

pollutants. Architecture of Vision Transformer Model is given in below in Figure 10. 

 

 
Figure 10 Architecture of Vison Transformer (reference: [38]) 

 

Vit architecture alters the processing of images by treating them as sequence of 

patches. Processing involves input Images of microplastics, oil spills and sediments are 

divided into fixed-size patches in image patching. Each patch is flattened into one -

dimensional vector in flattening, enabling the model to process the pixel values linearly. 

Flattened patches are projected into a higher-dimensional space through a linear 

transformation, creating embeddings for each patch. The embeddings capture essential 

features of the patches. Positional encoding is added to each patch to retain spatial 

information lost during flattening and to understand the relative positions of patches in the 

original images of microplastics, sediments and oil spills. 

 

Sequence of patch embedding is fed into a standard transformer encoder. ViT base 

architecture has of 12 transformer layers, each layer contains layer normalization stabilizes 

training before attention mechanism. Multi-Head Self-Attention weighs the importance of 

each patch and generates attention scores to focus on relevant areas within the image to 

identify the features of microplastics, sediments and oil spills. Feed-Forward Neural Network 

is a multi-layer perceptron (MLP) with two linear transformations and a non-linear activation 

function to process the output. 

 

Self-attention mechanism computes attention weights for each patch relating to other 

patches. It helps the model to differentiate subtle sediment types and dispersed microplastics. 

Classification head process the output corresponding to classification head after passing 

through all the transformer layers. It generates class predictions based on the based on the 

transformer encoder. SoftMax activation function converts the predictions into probabilities 

for each class microplastics, sediments and oil spills. ViT model is pre-trained with large 

datasets to learn general image features before being fine-tuned on specific datasets that 

include examples of microplastics, oil spills and sediments. Fine tuning adjusts the model’s 

weights to improve its accuracy in classifying microplastics, sediments and oil spills. Figure 

11 shows the Loss and Accuracy curves of proposed ViT. 
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(a) Loss Curve                                              (b) Accuracy Curve 

Figure 11 (a) Loss Curve (b) Accuracy Curve of proposed vision transformer Model 

 

Accuracy and Loss curves of Vision Transformer used to classify the microplastics, 

sediments and oil spills is shown in Figure 11. The curves show the performance of Vision 

transformer in classifying the pollutants. Steady decrease in training and validation loss curve 

shows effective learning. Training and Validation Accuracy curve increases indicating ViT’s 

improved classification performance.  

 

4. Results and Discussion 

 

4.1 MADOS dataset 

 

Sentinel-2 Multispectral Image Data forms the MADOS dataset [39]. The Remote 

sensing data focuses on marine litter and spills. Images from 174 scenes and 47 tiles each 

corresponding to a unique Sentinel-2(S2) scene are present in the dataset and the data are 

annotated. The images are of different spatial resolution 10m,20m and 60m. 80% of the data 

is used for training and 20% is used for testing. The study was conducted in Amazon River in 

South America, Arabian sea in Asia, Mediterranean Sea in Europe-Sentinel images. 

 

Thermal images of microplastics, oil spills and sediments pre-processed with Discrete 

Wavelet transform and denoised with DnCNN optimized using pelican optimization 

algorithm. Vision transformer is used to classify the images. Performance metrics the 

methods used are measured using the given formulas. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
                                               (9) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
                                     (10) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
                                             (11) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
                                              (12) 
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𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                                                                   (13) 

 

Table 4 shows the comparison of performance metrics of Sentinel-2 thermal image, 

DWT pre-processing technique, DnCNN optimized with POA and Vision Transformer model 

in the classification of pollutants.  

 

Comparison of performance metrics of Sentinel-2 Thermal image, DWT, DnCNN- 

POA and ViT is shown in table 4. Low sensitivity affects the detection of microplastics, oil 

and sediments. Low specificity leads to the incorrect identification of clean areas as 

contaminated. Comparison of performance metrics of Sentinel-2 thermal image, DWT, 

DnCNN optimized with POA and Vision Transformer is shown in figure 12.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12 Comparison of Sentinel-2 Thermal image, DWT, DnCNN-POA, ViT performance 

metrics. 

 

Table 4 Comparison of performance metrics of Sentinel-2 Thermal image, DWT, DnCNN- 

POA and ViT. 

 

 

Training accuracy values ranging from 10-23 shows the low performance of the 

model in studying the underlying patterns of the data. Validation loss curve with high values 

indicates low prediction of the model. The model fails to capture the patterns required to 

classify pollutants. DnCNN optimized with Hippopotamus Optimization Algorithm is used to 

improve the performance of the model and the performance metrics are analysed. Table 5 

Shows the comparison of metrics of Sentinel -2 thermal image, Discrete Wavelet Transform, 

DnCNN optimized using HOA and Vision Transformer Model.  

 

 

 Performance metrics Sensitivity Specificity Precision Accuracy F1 Score AUC 

 Microplastics 0.10 0.15 0.12 0.13 0.11 0.20 

 Oil spills 0.08 0.18 0.10 0.12 0.09 0.15 

 Sediments 0.05 0.20 0.07 0.09 0.06 0.10 



 

21 
 

Table 5 Comparison of performance metrics of Sentinel-2 Thermal image, DWT, DnCNN 

optimized with HOA and ViT 

Environmental 

Issue 

Sensitivity Specificity Precision Accuracy F1 Score AUC 

Microplastics 0.4 0.5 0.45 0.48 0.42 0.55 

Oil Spills 0.35 0.55 0.4 0.45 0.37 0.52 

Sediments 0.3 0.6 0.35 0.4 0.32 0.5 

 

Comparison of performance metrics of Sentinel-2 Thermal image, DWT, DnCNN 

optimized with HOA and ViT is shown in table 5. Values of specificity, precision, recall, 

accuracy and F1 Score are low indicating low performance in the classification of pollutants. 

Low precision shows that the prediction of system is incorrect and leads to poor decision 

making. Low accuracy reflects the combined effects of sensitivity and specificity issues. Low 

accuracy also indicates the poor performance of overall system in classifying microplastics, 

sediments and oil spills. Figure 13 shows the comparison of performance metrics of Sentinel-

2 thermal image, DWT, DnCNN optimized by HOA, Vision Transformer. 

 

 
Figure 13 Comparison of performance metrics of Sentinel-2 Thermal image, DWT, DnCNN 

and Vision Transformer. 

 

Comparison of performance metrics of Sentinel-2 Thermal image, DWT, DnCNN and 

Vision Transformer in figure 13 shows validation low accuracy and high validation loss. 

Values indicate low performance of the model in the classification of pollutants. Transverse 

Dyadic Wavelet Transform is used to improve the pre-processing of microplastics, sediments 

and oil spills images. Comparison of performance metrics of Sentinel-2 thermal image, 

TxDyWT, DnCNN-POA, ViT is shown in table 6. 

 

Table 6 Comparison of performance metrics of Sentinel-2 thermal image, TxDyWT, 

DnCNN-POA, ViT. 
Performance 

Metrics Sensitivity Specificity Precision 

 

Accuracy 

F1 

Score AUC 

Microplastics 0.85 0.8 0.82  0.83 0.83 0.9 

Oil Spills 0.78 0.85 0.8  0.82 0.79 0.88 

Sediments 0.75 0.82 0.76  0.78 0.75 0.85 
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Performance metrics of methods shown in table 6 has low specificity indicating that 

the model incorrectly classifies clean areas as contaminated. Low precision shows the 

incorrect identification of pollutants. Microplastics, oil spills and sediments can remain 

undetected with low recall. Low accuracy reflects the misclassification of pollutants. Values 

of the performance metrics are low and the comparison of performance metrics of Sentinel-2 

thermal image, TxDyWT pre-processing technique, DnCNN-HOA and Vision Transformer is 

given in figure 14. 

 

Figure 14 Comparison of performance metrices of Sentinel-2 Thermal image, TxDyWT, 

DnCNN-HOA and Vision Transformer. 

 

Comparison of performance metrices of Sentinel-2 Thermal image, TxDyWT, 

DnCNN-HOA and Vision Transformer in figure 13 shows higher accuracy reflecting 

effectiveness in classifying pollutants and low loss values indicates a well-functioning model. 

Thermal images are pre-processed with Transverse Dyadic Wavelet Transform and denoised 

with DNCNN optimized with HOA to improve the performance of the system. Table 7 shows 

the comparison of performance metrics of Sentinel-2 Thermal image, TxDyWt pre-

processing technique, DnCNN optimized by HOA and Vision transformer. 

 

Table 7 Comparison of performance metrics of Sentinel-2 thermal image, TxDyWT, 

DnCNN-HOA, Vision transformer. 

 

Performance 

Metrics 

Sensitivity Specificity Precision Accuracy F1 

Score 

AUC 

Microplastics 0.9 0.85 0.88 0.89 0.89 0.95 

Oil Spills 0.85 0.9 0.87 0.88 0.86 0.93 

Sediments 0.8 0.88 0.82 0.84 0.81 0.91 

 

High specificity indicates the effectiveness of model in correctly identifying the 

polluted areas. High precision shows that system’s detection of microplastics, oil spills and 

sediments are accurate. Pollutants are correctly identified by the model with high recall. High 

accuracy indicates that the overall performance of the system is reliable with correct 

classifications. 
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Figure 15 shows the comparison of performance metrics of Sentinel-2 thermal image pre-

processed with TxDyWT, denoised using DnCNN optimized with HOA and images 

classified using Vision Transformer. 

 

 
Figure 15 Comparison of Performance Metrics of Sentinel-2 thermal image, TxDyWT pre-

processing technique, DnCNN optimized by HOA and Vision transformer. 

 

Comparison of Performance Metrics of Sentinel-2 thermal image, TxDyWT pre-processing 

technique, DnCNN optimized by HOA and Vision transformer in figure 14 shows high 

accuracy and low loss values indicating effective differentiation of microplastics, oil spills 

and sediments. 

 

4.2 Seawater test bed for Microplastics, Oil spill and Sediment detection 

 

Methods used to pre-process, denoise and classify the thermal images of 

microplastics, sediments and oil spills are tested with the image of sea water with pollutants. 

Image sea water with pollutants in a tank is pre-processed with Transverse Dyadic Wavelet 

Transform and DnCNN optimized with HOA is used to denoise the image. Figure 16 Shows 

the thermal image of seawater test bed pre-processed with DWT and TxDyWT.  

 

 

 

 

Figure 16 Thermal Image of seawater test bed pre-processed with DWT and TxDyWT. 
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Performance analysis on classification of Marine pollutants using optimized DnCNN with 

Vision Transformer model and existing methods is shown in table 8 and figure 17 shows 

Comparison of Performance Metrics of existing classification methods with proposed ViT 

 

Table 8 Performance analysis- Classification of Marine pollutants using optimized DnCNN 

with Vision Transformer model and existing methods 

 

Metrics 
[40] 

Microplastics 

[41] Oil 

Spills 

[42] 

Sediments 
Proposed Method 

Specificity 0.65 0.70 0.60 0.98 

Precision 0.70 0.65 0.75 0.93 

Recall 0.60 0.75 0.55 0.92 

Accuracy 0.68 0.70 0.65 0.95 

F1Score 0.65 0.70 0.64 0.93 

AUC 0.75 0.78 0.77 0.90 

 

 

 

                 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17 Comparison of Performance Metrics of existing classification methods with 

proposed ViT 

 

Comparison of Performance Metrics of existing classification methods with proposed 

method shown in figure 17 has high values of specificity indicate the effectiveness of model 

in correctly identifying clean areas. Correct prediction of pollution by the model is shown by 

high precision. High recall indicates successful identification of majority of pollutants with 

the model. Reliability of the model is enhanced by high accuracy reflecting the correct 

prediction of the model. F1 score reflects the balance between precision and recall indicating 

the effectiveness of the model in detecting pollutants. Figure 18 shows the images of 

microplastics, oil spills and sediments present in the seawater tested. 
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(a)  Microplastics                             (b) Oil Spills                 ( c) Sediments 

                    Figure 18 (a) Microplastics (b) Sediments (c) Oil Spills in Seawater testbed 

 

4.3 Ablation Study 

 

Denoising technique plays an important role in increasing the accuracy and to 

enhance the classification of pollutants. Effective denoising is essential for distinguishing 

pollutants and is validated with the findings of proposed work on MODAS dataset. Table 9 

shows the metrics values for MODAS Dataset with Sentinel-2RGB image pre-processed with 

Discrete Wavelet Transform (DWR), denoised with DnCNN without optimization algorithm 

and with HOA, POA. The integrated methods have low accuracy of 79%and low PSNR 

values. Sentinel-2 thermal images pre-processed with Transverse Dyadic Wavelet Transform 

(TxDyWT) and denoised DnCNN optimized with Pelican Optimization Algorithm has the 

accuracy values of 81% and are subjected to Vision Transformer (ViT) for classification. 

DnCNN optimized with Hippopotamus Optimization algorithm denoising the sentinel-2 

thermal images pre-processed with Transverse Dyadic Wavelet Transform (TxDyWT)has the 

accuracy of 95%. Vision Transformers are used to classify the images. The proposed method 

is superior in terms of accuracy, recall, specificity, precision, F1 score and PSNR (db). 

DnCNN optimized with HOA is overall superior compared to DnCNN and DnCNN-POA. 

 

                                                  Table 9 Ablation Study 

Methodology PSNR(dB) Recall Specificity Precision Accuracy F1 Score  

Sentinel-2RGB image,DWT, 

DnCNN(Without optimization 

algorithm)ViT 

20.50 0.78 0.80 0.79 0.79 0.785 

 

Sentinel-2 Thermal image, 

TxDyWT,DnCNN-POA,ViT (reduced 

computational cost, overfitting) 

30.85 0.80 0.83 0.81 0.81 0.805 

 

Sentinel-2 Thermal Image, 

TxDyWT,DnCNN-HOA, ViT (High 

PSNR, faster convergence) 

34.00 0.88 0.95 0.93 0.95 0.925 

 

 

4.4 Discussion 

 

Harmful substances are introduced into marine environment due to human activities 

and natural processes. The substance introduced in the ocean harms ecosystems, disrupts 

biodiversity and affects the health of marine organisms and the human beings who depend on 
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marine ecosystems. It is important to classify the pollutants to trace back to their origin like 

industrial waste, agricultural runoff and marine activities. Classification of pollutants enables 

targeted action to reduce pollution at its source. Thermal images are used for the 

classification of pollutants as the temperature variations helps to identify various substances. 

Thermal images enhance detection and improve classification. Stable Diffusion Thermal 

Image Generator is used to generate high-quality thermal images. The stable diffusion 

generator model converts the sentinel-2 multispectral color image into thermal image through 

guided text generation and sentinel-2 multispectral color image. It generates images with 

realistic thermal texture and accurate temperature distribution making it easier for 

classification. 

 

Transverse Dyadic Wavelet Transform (TxDyWT) is used to pre-process the images 

of pollutants. TxDyWT adapts dyadic structure enabling finer analysis of the image by 

capturing subtle variations and detecting edges. It captures detailed spatial, frequency and 

directional information enhancing the classification process. Denoising Convolutional Neural 

Network (DnCNN) is used to remove noise from the images, enhancing image quality for 

better classification. DnCNN is optimized with Hippopotamus Optimization Algorithm to 

achieve higher denoising accuracy and improved PSNR metrics in denoised images. HO 

Algorithm optimizes DnCNN to handle various noise levels and types and leads to faster 

convergence. 

 

Vision Transformers (ViT) is used to classify the marine pollutants. ViT identifies the 

pollutants dispersed in larger area by capturing long-range dependencies and global context 

within the images. Self-attention mechanism weighs importance of various parts of an image 

to classify the pollutants.  Vision transformers handle images with varying dimensions unlike 

other CNN techniques and demonstrate superior performance in classification task. 

TxDyWT, DnCNN-HOA, Vision transformers are integrated classify the pollutants. Table 10 

shows the advantages of using proposed Sentinel-2 image based Vision Transformer model. 

  

Table 10. Advantages of using proposed Sentinel-2 image based Vision Transformer model 

 

Methods Characteristics Comparison 

Pre-processing: DWT Retains structural details of 

microplastics, oil spills and 

sediments essential for 

pollutant classification. 

TxDyWT is an advanced 

version of DWT that 

provides better results. 

Pre-processing: TxDyWT Provides improved frequency 

localization and better 

handling of noise, enhancing 

image quality of 

Microplastics, oil spills and 

sediments. 

TxDyWT outperforms DWT 

by maintaining more relevant 

details for classifying 

microplastics, oil spills and 

sediments. 

Denoising: DnCNN Reduces noise in images of 

microplastics, oil spills and 

sediments, improving the 

clarity and quality of data for 

further analysis. 

Accurate classification of 

subtle pollutant patterns. 

Denoising: Optimized by 

POA 

Provides efficient 

optimization, leading to 

faster convergence and better 

POA is effective but not as 

robust as HOA in certain 

scenarios 
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performance in denoising 

images of microplastics, oil 

spills and sediments. 

Denoising: Optimized by 

HOA 

Achieves superior 

optimization results, leading 

to enhanced denoising 

capabilities 

HOA is considered the best 

optimization algorithm due to 

its adaptability and 

efficiency. 

Classification: Vision 

Transformer 

Captures intricate patterns in 

microplastics, oil 

spills,sediments making it 

ideal for classifying complex 

pollutants. 

ViT's architecture allows for 

better performance compared 

to traditional CNNs in 

recognizing subtle 

differences among pollutants. 

 

  

5. Conclusion 

 

The proposed methodology integrates advanced techniques to effectively classify 

microplastics, sediments, and oil spills. It combines Stable , Transverse Dyadic Wavelet 

Transform (TxDyWT), and Denoising Convolutional Neural Network (DnCNN) optimized 

using the Hippopotamus Optimization Algorithm, along with a Vision Transformer for 

pollutant classification. The evaluation of this approach utilizes the MADOS dataset, which is 

derived from remote sensing data. In the pre-processing phase, TxDyWT demonstrates 

superior performance compared to the traditional Discrete Wavelet Transform (DWT). 

During the denoising stage, the DnCNN optimized by the Hippopotamus Optimization 

Algorithm shows enhanced effectiveness. Finally, the Vision Transformer successfully 

classifies the various pollutants. The practical application of this method was tested in a 

controlled environment using a Seawater test bed containing pollutants, achieved an accuracy 

of 95%. Future research will focus on applying this method to diverse datasets and exploring 

strategies to reduce further ocean contamination caused by microplastics, oil spills, and 

sediments. 
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