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Graphical abstract 

 

Abstract 

The primary issue related to applications of smart cities is 
Solid Waste Management (SWM), which may be harmful to 
public health and the environment. Management of waste 
includes the disposal of trash through recycling and 
landfilling. SWM is a significant and challenging issue for 
ecosystems globally. Consequently, it is essential to 
develop an effective methodology to eradicate these 
problems or, mitigate them to a minimal extent. This paper 
introduces smart bins that are equipped with IoT-based 
sensors for the monitoring of waste level and classification, 
a feature that lacks in conventional methods, in contrast to 
previous techniques. This study develops a novel IoT-based 
SWM model using Swin Transformer (ST) v2 for waste 
classification and optimization algorithm for the route 
optimization process. The research work is proposed to 
address the challenge of SWM in smart cities by 
implementing IoT and deep learning technologies. Initially, 
the TrashNet dataset is collected to train and assess the 
research model. The real-time data from IoT-based sensors 
are preprocessed and analyzed in the waste management 

process. The Swin Transformer V2 is utilized for image 
classification. To improve the precision of the routing 
process, the Ant Colony Optimization (ACO) algorithm is 
employed. The evaluation of the research model was 
conducted based on parameters including accuracy, recall, 
f1-score, and precision. The proposed model also 
demonstrates exceptional accuracy (99.52), precision 
(99.10%), recall (98.86%), and F1-score (99.38%). These 
results were compared and validated with other models 
discussed in the literature review, and as compared, the 
research model outperformed all the other models.  

Keywords: Solid Waste Management, IoT, Deep Learning, 
Swin Transformer V2, ACO, Sensors, TrashNet. 

1. Introduction 

The increasing population growth in cities is generating a 
tremendous amount of waste, which is causing problems 
for waste management (WM) systems in urban areas. One 
projection indicates that the global population is expected 
to attain 9.9 billion by 2050, representing an increase of 
almost 25% from the 2020 population of 7.8 billion. As the 
global population expands and a significant number of 
individuals migrate to urban areas, the smart cities concept 
is becoming relevant. The concept behind a "smart city" is 
the combination of multiple information and 
communication technologies, including the IoT, to 
sustainably manage public spaces and city services 
(Sosunova and Poras, 2022). 

Figure 1 illustrates the prevalent domains of smart cities. It 
encompasses multiple intelligent sectors such as smart 
healthcare, smart energy, smart environment, and smart 
government. The fundamental principle of a smart city is 
an intelligent environment, mostly employed for 
technologies that address environmental degradation. A 
significant subject in the smart city paradigm is intelligent 
WM. Urban WM is a systematic process necessitating 
considerable effort and influencing social, economic, 
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environmental, and efficiency factors. WM significantly 
influences the quality of life of the population. Sensors, 
GPS, and LED technology could be employed to optimize 
WM in garbage bins. The sensor autonomously alerts the 
operator of the optimal time to empty the garbage can and 
the designated path, disregarding traffic conditions 
(Whaiduzaman et al. 2022). 

 

Figure 1. Overview of smart city domains 

The enhancement of economic development and living 
circumstances in society are together leading to an 
increase in trash generation. The problem, which is 
concurrently a difficulty, is the necessity to manage them 
in compliance with the law (Czekala et al. 2023). Allied 
Market Research indicates that global WM is projected to 
expand at a rate of 6.2% by 2023, with accelerated growth 
anticipated in the growing Asia Pacific area. In Europe, this 
sector had growth above 30% in 2016, with further 
acceleration anticipated due to enhanced infrastructure 
and significant demand from several interested industries 
(Pardini et al. 2019). 

 

Figure 2. Waste management process 

The complexity of smart WM requires a complete multi-
criteria strategy that includes data collecting, analytics, 
optimization, route planning, waste classification, decision 
support, and additional elements. A vast amount of this 
difficulty derives from services enabled with IoT that signify 
a shift from traditional technology such as geographic 
information systems, scheduling, and routing. The IoT can 

enable true innovation in trash management. Smart WM 
enhances energy efficiency, quality of life, and 
environmental safety, and decreases the consumption of 
resources (Szpillko et al. 2023). Waste can take many 
different forms, such as radioactive waste from nuclear 
reactors, infectious waste from hospitals, and solid waste 
from home sources. As seen in Figure 2, SWM 
encompasses waste material collection, recycling or 
disposal, transportation, and analysis (Visnu et al. 2022). 

The daily collection of solid waste results in a waste of time, 
labour, and fuel when trash containers are vacant. 
Conversely, weekly solid waste collection may provide a 
risk of overflowing garbage bins. The complications in SWM 
underscore the urgent requirement for enhancements in 
the services provided by WM authorities, particularly in 
middle- and low-income nations (Akhram et al. 2021). 

SWM has become a significant environmental concern 
worldwide, particularly in emerging nations. Consequently, 
there is a pressing need to establish an efficient SWM 
system to conserve resources and safeguard 
environmental and public health. The environmental issues 
associated with SWM are complex to address due to their 
diverse characteristics. The background research reveals 
that the SWM has concentrated on employing advanced 
technologies, including the IoT, information technology, 
deep learning (DL) and machine learning (ML), which have 
significantly enhanced the efficiency of various SWM 
operations (Shahab et al. 2022). 

 

Figure 3. Example of Machine and Deep Learning Approach 

Trash bins are installed to manage solid waste efficiently. 
Conversely, inadequate management of trash bins results 
in significant issues such as overflow. Effective WM 
profoundly influences the general welfare of the general 
population (Alshaikh and Abdelfatah, 2024). Utilization of 
sensors, GPS, and LED technology can facilitate the efficient 
management and oversight of waste within garbage 
receptacles. Sensors are the essential element of IoT-
enabled WM and are included in the majority of research 
initiatives. They are designed to quantify specific physical 
parameters such as (i) capacity, (ii) temperature, (iii) 
weight, (iv) humidity, (v) chemical processes, and (vi) 
pressure (Anagnostopoulos et al. 2017). DL and the IoT are 
integral to contemporary trash management initiatives. 
Deep learning has recently made significant progress, 
especially in the classification of images and object 
detection. The ML and DL methodologies are illustrated in 
Figure 3. 
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The significance of SWM is evident in its capacity to reduce 
environmental risks, preserve resources, and maintain 
public health standards. As urban populations expand, the 
quantity of waste generated rises significantly, rendering 
effective solid waste management a crucial requirement. 
This study addresses the critical need for novel solutions in 
this SWM field. Despite these innovations, considerable 
gaps persist in the execution of real-time waste 
classification integrated with effective route optimization. 
The advancement in SWM has been improved with the 
integration of IoT, DL, and optimization algorithms. Existing 
research works were focused on using sensors with 
conventional ML models. However, these models often 
struggle from reduced efficiency and accuracy. This 
research addresses the issues and gaps by presenting IoT-
enabled smart bins for real-time waste classification with 
Swin Transformer V2 and Ant Colony Optimization for 
route optimization. The suggested approach exhibits 
enhanced accuracy and efficiency, surpassing current 
methods in the literature. 

1.1. Problem statement 

In recent years, SWM has emerged as a significant concern 
due to increased industrialization and urbanization, 
resulting in an increased volume of waste generation. 
Among the various challenges in this domain, waste 
segregation has emerged as a major problem in existing 
IoT-based models. Inefficient and inaccurate classification 
of waste types hampers the effective disposal, recycling, 
and management of solid waste, leading to environmental 
pollution and resource wastage. The integration of 
advanced technologies in waste segregation remains an 
unmet need, which necessitates the development of a 
more efficient and precise waste classification system to 
address these limitations. 

The research objectives are given as follows. 

To develop a novel DL-based SWM model for monitoring 
the smart bins and classifying the wastes. 

To utilize the TrashNet dataset and sensor data for training 
and evaluating the performance of the proposed model. 

To enhance the pre-processing technique of a model by 
using the Data scaling method. 

To improve the performances and efficiency of the model 
by implementing the Swin Transformer V2 technique for 
classification. 

To apply the ACO algorithm for the route optimization 
process. 

To compute the efficiency of the proposed model utilizing 
captured trash image data. 

To assess the research model's performance regarding 
accuracy, specificity, F1-score, recall, and precision. 

To evaluate and verify the model's performance against 
current methodologies. 

This introduction part discusses the waste management in 
smart cities, integration of IoTs, applications of ML and DL 
in SWM, and the concept of proposed research. The 
remaining sections will be as, section 2 discusses the 

related works on SWM and IoT integrated models, section 
3 discusses the research methodology and 
implementation, section 4 includes the performance 
analysis of the research model and section 5 presents the 
conclusion of the work. 

2. Literature review 

This section presents the analysis of various current models 
developed for the SWM using DL and ML models. Based on 
the analyzed review, a comparative analysis is provided in 
Table 1. A real-time trash monitoring system employing a 
DL framework and IoT was introduced by (Rahman et al. 
2022). This model was categorized as an architectural 
framework for the classification of waste, employing the 
Raspberry Pi with a camera module and a smart trash bin 
with a microcontroller equipped with several sensors for 
waste monitoring in real-time. The smart trash bin 
comprises a load measurement sensor, an ultrasonic 
sensor, and a microcontroller. The Convolutional Neural 
Network (CNN) was employed for the classification of 
images to categorize waste.  

A CNN-based intelligent system utilizing LoRa-GPS and 
TensorFlow Lite in IoT for WM was proposed by (Sallang et 
al. 2021). An SSD MobileNetV2 Quantized was employed 
and trained using a dataset for waste classification. The 
approach was included with an IoT-based sensor and a 
LoRa-GPS module that accurately determined bin position 
and transmitted bin status across extended distances. The 
LoRa in the smart bin transmits the bin's status to the LoRa 
receiver at a frequency of 915 MHz. CNN were employed 
for processing the image and object recognition. The 
dataset, TrashNet, comprises 6 categories: glass, plastic, 
cardboard, paper, metal, and trash.  

The bin-level monitoring system for SWM based on IoT was 
introduced by (Ramson et al. 2021). An independent, easily 
connectable IoT solution for tracking the unfilled levels of 
trash bins from a central monitoring station was designed 
and tested. The terminal sensor nodes of the system, 
designated as Bin Level Monitoring Units (BLMUs), are 
mounted in each garbage bin to monitor the unfilled level. 
Each BLMU assesses the unoccupied capacity of the waste 
bins and relays this information to a wireless access point 
unit (WAPU) and it acquires empty-level data from many 
BLMUs and transmits it to the central server for storage 
and analysis.  

Blockchain-Enabled Vehicle Ad Hoc Networks (VANET) for 
Intelligent SWM were introduced by (Saad et al. 2023). 
Advanced ultra-high frequency technology was employed 
in conjunction with IoT devices for the tracking of waste 
vehicles and the identification of waste bins in real-time. 
Geo-fencing techniques were utilized for the surveillance 
and timely collection of waste from designated dumping 
locations. Finally, blockchain technology was utilized in the 
solutions to enhance the security, reliability, and 
trustworthiness of machine-to-machine (M2M) 
communication among IoT devices.  

A unique approach for waste detection and classification 
utilizing Ensemble Neural Networks was proposed by 
(Geetha et al. 2022). The model was trained using publicly 
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accessible trash datasets that had images of various trash 
objects. The preprocessed images are subsequently 
transmitted to four neural network modules: Mask Region-
Based CNN (RCNN), Very Deep CNN (VGG16), and You Only 
Look Once (YOLO), Structure from Motion (SFM). Based on 
images captured by users on their devices, the trained 
model was installed into a mobile application that geotags 
waste.  

By (Ali et al. 2020), monitoring municipal SWM systems and 
a smart waste bin utilizing IoT technology was proposed. 
This system efficiently gathers waste, identifies fires in 
waste materials, and predicts future waste production. An 
IoT device enables the management and surveillance of 
electric bins, which are wirelessly linked to a central hub to 
convey data on the bins' fill levels and locations. Results 
indicate that waste collection via the IoT-based system was 
more efficient than traditional methods.  

By (John et al. 2022), a smart monitoring and prediction 
system for waste disposal based on IoT was presented, 
utilizing commercially available components which can be 
affixed to bins of any size to measure fill levels. The Arduino 
microcontroller was utilized to connect ultraviolet (UV) and 
infrared (IR) sensors, a Global Positioning System (GPS) 
module and weight sensors, to monitor bin status at 
specified intervals. An advanced neural network method, 
specifically Long Short-Term Memory (LSTM), was 
employed to forecast and categorize forthcoming waste 
based on waste creation patterns. The JavaScript 
Application Programming Interface (API) was utilized to 
dispatch notification messages in web applications within 
browsers that enable service employees to operate. The 
stacked LSTM was thus a superior model for the prediction 
of fill levels. 

An IoT-based SWM system utilizing computer vision was 
launched by (Mookkaiah et al. 2022). The classification was 
carried out with CNN architecture and ResNet inception. 
ResNet V2 facilitates the training of extensive datasets in 
deep neural networks, resulting in enhanced accuracy and 
reduced error rates in mapping. Furthermore, mixed hybrid 
pooling techniques and batch normalization were 
integrated into the CNN to enhance stability and achieve 
state-of-the-art performance.  

A classification approach based on ensemble learning for 
predicting household solid waste generation was proposed 
by (Nammoun et al. 2022). It integrates the benefits of a 
meta-regressor model and hyperparameter optimization 
to precisely forecast the weekly waste generation of homes 
in urban areas. Optimization of the hyperparameters of 
models was conducted using an algorithm called Optuna, 
and the output from the optimized individual ML models 
was utilized for training the meta-linear regressor. This 
approach outperformed the traditional methods, such as 
SARIMA, LightGBM, NARX, ETS, KNN, XGBoost, RF, SVR, and 
ANN, in predicting future waste generation, with an R2 
score (0.8) and 0.26 as a mean percentage error. 

An innovative DL algorithm for segregating garbage was 
developed by (Gunaseelan et al. 2023). The image 
classification was performed via a modified ResNeXt 

model. ResNeXt enhances image classification 
performance by utilizing parallel branches with diverse 
filter sizes, thereby capturing a broader range of 
information in the input image. The CNN was integrated 
with a modified ResNeXt trained on substandard images. 
The waste container was equipped with an ultrasonic 
sensor for level detection, a stepper motor for lid 
operation, a toxic gas sensor, solar panels for energy 
storage, and a Raspberry Pi camera with board. The 
findings indicate that a model can efficiently and accurately 
classify waste into suitable categories. 

The Waste Classification Utilizing Image Recognition with a 
DL Neural Network Model was presented by (Malik et al. 
2022). The classification architecture employed was 
EfficientNet-B0, optimized for adapting images pertinent to 
certain demographic regions for effective classification. 
The tuning of the model was done using transfer learning 
provides a customized classification model, thoroughly 
optimised for a specific location. The model utilized the 
output from the penultimate layers. The result functions as 
the inputs to the CNNs in the developed approach was then 
trained on the other data set.  

A real-time SWM and categorization mechanism utilizing 
an advanced technique (SWMACM-CA) was introduced by 
(Cheema et al. 2022). It employed the IoT, DL, and 
advanced methodologies to categorize and separate waste 
materials in a disposal site. A camera collects an image of 
the trash yard and transmits it to an edge node to generate 
a waste grid. The grid cell image segments serve as a test 
image for trained DL models, enabling the prediction of 
specific waste items. The DL algorithm employed for the 
project was the Visual Geometry Group model with VGG 
16.  

The ML-Based Sustainable Application of SWM in IoT 
utilizing Modified Cuttlefish Swarm Optimization 
(MCSOML-SWM) was developed by (Al Duhayim, 2023). 
The MCSOML SWM method seeks to identify several types 
of solid waste and facilitate intelligent WM. A single-shot 
detector facilitates effective object recognition. A deep 
CNN-based MixNet model was utilized to generate feature 
vectors. Due to the laborious nature of trial-and-error 
hyperparameter tuning, the MCSO algorithm was utilized 
for automated hyperparameter optimization. It employs a 
support vector machines for trash classification in the 
study.  

A DL Methodology for Classifying Recyclable Products in 
Sustainable WM was introduced by (Ahmad et al. 2023). 
The trash classification models were developed utilizing 
CNN methods, together with pre-trained models such as 
MobileNetV2, ResNet50V2, and DenseNet169. A dataset of 
5000 images of refuse and waste materials was utilized for 
the training and evaluation of the models. To achieve 
optimal results, the hyperparameters were adjusted and 
cross-validation was performed using Randomized Search 
CV to identify the most effective hyperparameters.  

A ML model for SWM in Urban Sri Lanka was introduced by 
(Baddegama et al. 2022). The system deployed smart bins 
equipped with sensors to track waste levels and leveraged 
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machine learning to enhance waste collection routes, 
hence increasing operating efficiency and decreasing 
expenses. The research illustrated the capability of using 
IoT and ML to tackle urban garbage issues. The model's 
accuracy was 89%. Nonetheless, its versatility concerning 
other waste categories and wider geographical settings has 
yet to be investigated. 

(Sayem et al. 2024) focused on enhancing waste sorting 
and recycling through DL for classifications and detections. 
They highlighted the importance of intelligent waste 
management amid growing pollution concerns and 
identified limitations in existing datasets. The authors 
presented a new dataset with 28 recyclable categories and 
10,406 images. The proposed dual-stream network 
achieved 83.11% accuracy, outperforming other models. 
Additionally, the GELAN-E model for waste detection 

achieved a mean average precision (mAP50) of 63%, 
demonstrating significant progress in intelligent waste 
management. 

(Rahmatulloh et al. 2024) addressed the rising problem of 
trash management by emphasizing real-time waste 
identification with deep learning techniques. The authors 
highlighted the deficiencies of conventional waste sorting 
techniques and underscored the necessity for automated 
solutions such as computer vision. A model was developed 
to categorize waste according to visual features, 
distinguishing recyclable, non-recyclable, hazardous, and 
organic waste. The model attained a precision of 0.801, a 
mean Average Precision at 0.5 of 0.868, and a mean 
Average Precision at 0.5:0.95 of 0.618. 

 

Table 1. Critical Review of Reviewed Studies 

Approach Application Advantages Disadvantages 

CNN Real-time waste classification 
Achieved 95.31% waste 

categorization accuracy 

Only two sensors were used in the 

prototype 

CNN Tensorflow 
IoT-based smart waste bin with 

LoRa-GPS module 

Accurate bin location tracking and 

transmission over long distances 

Small dataset size limits the 

generalizability 

BLMU 
Bin-level monitoring using IoT for 

SWM 

Long battery life (434 days) and low 

cost 
Limited transmission range 

Blockchain with IoT 
Real-time waste tracking and 

geofencing 
Improved security, reliability, Data transmission challenges 

Ensemble Neural Networks 
Mobile app for geotagging and 

classification of waste items 
High classification accuracy 

Computational complexity due to the 

ensemble of models 

IoT-based system Smart waste bin monitoring Efficient waste collection, Scalability issues for larger areas 

LSTM IoT-based waste bin monitoring 
Accurate waste forecasting and 

classification 

Dependence on connected 

infrastructure for timely notifications 

ResNet V2 
IoT-based waste classification 

and image processing using CNN 

Enhanced accuracy with reduced 

error 

Reliant on pre-trained ImageNet 

dataset 

Ensemble Learning 
Prediction of household solid 

waste generation 
High precision 

Computational overhead due to 

hyperparameter optimization 

Modified ResNeXt 
Smart waste bin for image-based 

waste classification 
Very high classification accuracy Expensive hardware requirements 

EfficientNet-B0 
Waste classification based on 

region-specific tuning 

Lightweight model with high 

location-specific performance 
Lower accuracy 

VGG16 IoT-based waste classification  High classification accuracy 
Dependency on cloud servers for 

processing 

MixNet with SSD 
Intelligent waste classification 

using MCSOML-SWM 
automated hyperparameter tuning 

Complex hyperparameter tuning 

process 

CNN (MobileNetV2, 

ResNet50V2, DenseNet169) 
Recyclable product classification 

Effective hyperparameter 

optimization 

Performance dependent on data 

diversity 

 

The current research works have been designed with 
conventional ML and DL algorithms, the proposed research 
work makes use of a novel DL model called Swin 
Transformer for classifying waste accurately and ACO for 
effective and dynamic route optimization as an 
advancement. Through attaining greater results and 
superior performance in SWM, this research will be 
considered as a major step in improving SWM in smart 
cities. 

3. Proposed methodology 

This study primarily aims to develop an intelligent SWM 
system for monitoring the waste's fill level, weight, and 
classification. Figure 1 depicts the proposed methodology 

of the SWM system. The smart waste bins are equipped 
with IoT-based sensors to monitor waste levels. WM 
authorities gather waste from all the commercial and 
residential sites. Second, the garbage dump's image is 
captured utilizing a camera. Further, the images are fed to 
the DL model for the waste classification process. Deep 
learning technology facilitates the classification of waste 
categories from images. Classifying waste into appropriate 
groups facilitates the identification of reusable materials. 
Recognizing recyclable materials enables their use without 
degradation. In the image classification field, DL systems 
achieve outstanding outcomes. 
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An ultrasonic sensor is positioned on top of the smart bin 
to assess the waste level within the bin. A load-measuring 
sensor is positioned at the base of the bin to ascertain the 
weight of the trash. A Moisture Sensor measures the 
moisture content in the trash. The GPS module is utilized to 
determine the location of the smart bin. The data from 
three sensors is stored in the cloud via a Wi-Fi-based 
communication gateway. The WM system team can 
retrieve data from the cloud for waste collection. This team 
transmits the status and route of the smart bin to the truck 
operator for the garbage collection operation. To improve 
the precision of the routing process, an ACO algorithm was 
employed for timely Waste Collection Vehicle Routing. ACO 
was selected over other metaheuristic techniques for 
several reasons: 

 

Figure 4. Proposed Architecture of IoT-Based SWM System 

Adaptability: ACO adapts well to dynamic environments 
and real-time decision-making, which is crucial for waste 
management systems. 

Scalability: ACO can efficiently handle large-scale 
optimization problems, such as route planning for multiple 
trucks across an extensive urban area. 

Proven Effectiveness: ACO has been widely used in logistics 
and transportation systems for route optimization, making 
it a reliable choice for waste collection vehicle routing. 

After the accumulation of waste from many bins, it is 
dumped across a designated region. The presence of 
several garbage objects in a garbage dump complicates the 
real-time segregation of waste materials. This research 
incorporates an effective deep-learning classification 
model for garbage segregation. The waste collection is 
placed on a conveyor for categorization. A compact camera 
module is positioned above the conveyor to capture 
images of the waste. The acquired images are input into the 
DL process known as data pre-processing. The image is pre-
processed using a data scaling approach. The pre-
processed data serves as input for the classification 
procedure. The Swin Transformer V2 is employed for 
garbage classification. This research categorizes waste into 
six types: cardboard, metal, glass, paper, plastic, and trash. 

3.1. Sensor description 

The primary function of IoT-based sensors in smart bins is 
to monitor their volume, weight, and contents. The primary 

method employed for monitoring the filling level of the 
container is ultrasound. The load cell is utilized to measure 
the bin’s weight. To measure the moisture level in the 
garbage moisture sensor is utilised. An ultrasonic sensor 
transmits the ultrasound through the atmosphere at 
40,000 Hz; if any obstacle obstructs its route, the 
ultrasound reflects to the sensors, adhering to the 
principles of sound reflection. The load measuring sensor 
measures the weights of items. The formula was typically 
utilized to convert the sensor's output voltage levels, 
estimated in mV/V, to calculate the detected weight. Users 
must select their preferred units, such as kilograms, grams, 
or pounds. A moisture sensor is employed to detect the 
moisture levels in the garbage to determine if the waste is 
moist or dry. 

3.2. Description of datasets 

This study utilizes the publicly accessible TrashNet dataset 
from Github. The dataset is hand-collected and around 
3.5GB in size. It has six categories: metal, glass, cardboard, 
paper, and waste. Collectively, these categories comprise 
99% of recycled materials. This library presently comprises 
2,527 images of garbage. Every image has 512×384 pixels 
that could be modified or scaled in data. The images were 
obtained by positioning the objects on the background of 
white board, utilizing either ambient room lighting or 
sunshine. This study utilizes a subset of the dataset 
encompassing six waste categories: cardboard, plastic, 
metal, glass, paper, and trash. The data is divided into two 
sets: testing and training, with proportions of 75% and 25%, 
respectively. Nevertheless, for the real-time evaluation of 
the proposed model, the entire dataset was trained, and 
test images were taken in real-time, namely (Cheema et al. 
2022). However, for real-time testing of the proposed 
model, the entire dataset was trained, and test images 
were taken in real-time specifically. Table 2 illustrates the 
class distribution within each subset of the data. 

Table 2. Training and Testing Subset Sample Distributions 

Class Training Testing Total 

Metal 308 102 410 

Glass 376 125 501 

Trash 103 34 137 

Plastic 362 120 482 

Total 1149 381 1530 

3.3. Data preprocessing 

The pre-processing is a vital stage in the training of DL 
models. Preparing the data before transfer to the 
classification model is known as data pre-processing. The 
obtained time series data are normalized using a Min-Max 
normalization method. This aids in eliminating the units in 
the collected data or the influence of varying scales. The 
Min-Max normalization is utilised to scale data value within 
a specified range (zero to one). This normalization 
technique first subtracts the minimum value from data 
points and then divides by the range. Min-Max scaling is to 
acquire every feature to the standard limit. Min-Max is a 
transformation technique employed to the original data. 
Equation (1) presents the Min-Max normalization method 
formula. 
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norm

y min
y

max min

−
=

−  

(1) 

Where, 

y as the original data, 

ynorm as the normalized output of the given sequence y, 

max and min are maximum and minimum values of y, 
respectively (Li et al. 2023). 

For this research, the trash dataset originally consisted of 
images with dimensions of 512 x 384. To ensure 
compatibility with the Swin Transformer V2 classification 
algorithm, which requires an input size of 256 x 256, the 
Min-Max data scaling technique was employed to resize 
the images. This step was crucial to align the dataset with 
the model's input requirements, facilitating accurate and 
efficient classification. 

3.4. Classification using swin transformer V2 

This research uses a DL model for IoT-based sensor image 
categorization that is based on ST-v2. The improved version 
of ST is called ST-v2. By increasing the model's size and 
ability to adjust to various window sizes and image 
resolutions, it surpasses version 1.0. The shifted window 
multi-head self-attention (SW-MHSA) module and window 
multi-head self-attention (W-MHSA) module are two of the 
Swin Transformer modules that are integrated into the 
block. Furthermore, using ST-v2's cosine (Q, K)/𝜂 method 
to calculate Attention in the Transformer block, where 𝜂 
was a learnable parameter which is not shared across 
blocks. Normalization is a built-in feature of the cosine 
operation, which helps to further stabilize the attention 
output values. 

 

Figure 5. The Overall Architecture of Swin Transformer V2 

The general layout of the ST-v2 is shown in Figure 5. The 
patch partitioning module initially divides the 256 × 256 
input image into 4×4 non-overlapping patches. After that, 
a linear embedding layer is used to project these patches 
into C dimensions and handle them as "tokens." These 
patch tokens are subjected to 2 successive ST-v2 blocks 
with a computation. A "stage" comprises an ST-v2 block 
and linear embedding layer. Its architecture is similar to 
CNNs' layer structures, with each stage seeing a doubling 
of channels and a halving of resolution. The ST creates 
deeper networks by combining patch layers to reduce the 
number of tokens needed to construct hierarchical 
representations. 

The model employs a greater resolution of 256 × 256. The 
benefit of this is that the network may utilize additional 
features, and enhancing the extraction of feature 
capabilities of the network elevates the model's 
performance. Each block consists of 2 units, each including 
2 normalization layers (LayerNorm), a multi-layer 
perceptron (MLP) layer and a self-attention module. The 

two successive modules in the block are the W-MHSA 
module and the SW-MHSA module. It employs the W-
MHSA, while the second unit utilizes the SW-MHSA 
module. Whereas the Swin Transformer uses residual 
connections after each module, the ST-v2 adds a Layer 
Norm layer after each MHSA module and MLP layer. 

3.4.1. Shifted window-based self-attention (SA) 

A technique for computing SA inside localized windows was 
employed to reduce the complexity of computation and 
enhance modelling performance. A moving window 
approach is employed to compute SA in this experiment. In 
W-MHSA, the relationship was linear, and the 
computational load was manageable. Considering every 
window has D×D patches, the windows are arranged non-
overlappingly to partition the image into equal segments. 
The worldwide computational complexity of the MHSA 
module and the W-MHSA module, as depicted in an image 
with hardware patches, are as follows: 

( ) ( )
224 2MHSA cdA cd A = +

 
(2) 

( ) 2 24 2W MHSA cdA M cdA − = +
 

(3) 

Where g × w is an image's total patch count, and C stands 
for a channel of patch channels. Equation (3) has a linear 
complexity when D is constant. In contrast, Equation (2) has 
a quadratic complexity regarding the total patches g × w. 

The window-based SA model lacks connections of cross-
window, neglecting the interrelations among distinct 
windows and constraining modelling potential. To create 
cross-window connections while preserving the 
computational efficiency of non-overlapping windows, this 
approach rotates between 2 partition configurations in 
subsequent ST V2 blocks. As seen in Figure 6, the 1st 
module splits the 8 × 8 feature maps into 2 × 2 window, 
each of which is 4 × 4 (D = 4), utilizing a standard windows 
partitioning technique that starts at the upper-left pixels. 
Next, by displacing the window from an ordinary 

partitioned window by ,
2 2

D D   
   
   

 pixel, the following 

module adopts an offset window configuration from the 
window configuration of the previous layer. The boundary 
of the preceding window is also taken into consideration by 
the self-attention measurement in the new window, which 
takes into account the connection information between 
several windows. The calculated consecutive ST V2 blocks 
are as follows, utilising the shifted window partitioning 
method: 

( )( )1 1ˆ l l lY W MHSA LN Y Y− −= − +
 

(4) 

( )( )  ˆ ˆl l lY MLP LN Y Y= +
 

(5) 

( )( )1ˆ ˆ ˆ l l lY SW MHSA LN Y Y+ = − +
 

(6) 

( )( )1 1 1ˆ ˆ l l lY MLP LN Y Y+ + += +
 

(7) 

where ˆlY  and lY  reflect the output characteristics of the 
SW-MHSA module and MLP in the l layer, respectively; and 
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W-MHSA and SW-MHSA using shifted window and normal 
partitioning processes. 

The window partitioning approach generates several new 
windows, some of which are smaller than D×D. A common 
approach for computing self-attention involves flattening 
all windows to D×D dimensions. This approach, however, 
yields an increased number of windows. The window 
transformation technique significantly increases the 
model's computing expense as the number of windows 
increases from 2×2 to 3×3. To manage this problem, the 
improved batch computation method that moves cyclically 
to the left top is applied, as shown in Figure 6. The batch-
calculated windows may encompass several non-
contiguous windows in the feature map following the shift. 
Consequently, a masking technique was employed to hide 
the self-attentions computations for all the sub-windows. 
The computational performance for cyclic shifting is 
improved while the total batch windows and standard 
window partitions remains unchanged. 

 

Figure 6.  Batch Computations for SA in Shifted Windows 

Partition 

3.4.2. PolyLoss (PL) 

The PL function has demonstrated superiority over focal 
loss and cross-entropy loss in several tasks, including the 
classification of 2D imaging, 3D detection, object 
recognition and instance segmentation. Consequently, in 
this experiment, PL is employed as a loss function for the 
ST to enhance the accuracy of the SWM classification 
model. The polynomial coefficients (PC) are denoted by, 
and the PL formula is articulated as follows: 

( ) ( ) ( )

( )

2

1 2

1

1 1 1

1

N

poly t t N t

j

j t

j

L Z Z Z

Z

  





=

= − + − ++ −

+= −
 

(8) 

This formula requires the modification of an infinite 
number of PC. Adjusting numerous PC would still yield an 
excessively huge search space, making it unfeasible. 
Moreover, cross-entropy loss does not outperform the 
simultaneous tuning of several coefficients. This issue is 
resolved by altering the major PC in the loss called cross-
entropy while keeping the remaining coefficients 
constants. The equation for loss was represented as the 
Poly-N, with N indicating the total coefficients that require 
alteration. 

( )( ) ( )

( )
( ) ( )

1

1

1

1
1 1 1

1
log 1

1 1

N

poly N t N t

N
j

t j tN

jt

L Z Z
N

Z Z
N Z

 



−

+

=

 
= + − ++ + − 

 

+ += − −
+ −


 

(9) 

Specifically, revise the j PC of the cross-entropy loss from 

1/j to 1
j

j
+ , where 1

,j
j


 

 −  
 

 is a perturbation term. 

Equation (9) illustrates the precise computation of the first 
N polynomials, eliminating concerns over an infinite count 
of high-order (j > N + 1) coefficient. The most substantial 
improvement was achievable for initial polynomial terms. 
The conclusive PL equation was presented below, 
integrating additional simplified version of the Poly-N 
equation, and focusing on the assessment of Poly-1, 
whereby just the initial PC is modified (Li et al. 2023):  

( )( ) ( )

( ) ( )

2

1 1

1

1
1 1 1

2

log 1

poly t t

t t

L Z Z

Z Z





− = + − + −

+= − + −
 

(10) 

In this experiment, SWM image classification was 

accomplished using the value of 1 = 2. 

3.5. Optimization using ant colony optimization algorithm 

The ACO method is a metaheuristic approach that employs 
a group of artificial ants to address various optimization 
challenges. ACO has been employed to address issues such 
as the Quadratic Assignment Problem, Knapsack Problem, 
Traveling Salesman Problem (TSP), and Vehicle Routing 
Problem, among others. This research employs ACO to 
improve the SWM system by mitigating the vehicle routing 
difficulty. 

The following section will briefly outline the methodology 
for addressing issues by emulating the action of ant. 
Assume a full graph G, wherein V represents the node’s 
set and E denotes the edges set. ACO was based on a 
natural phenomenon wherein ants consistently identify the 
small route between a food source and their colony, 
utilizing pheromones deposited on the ground by 
preceding ants as a guide. When multiple options exist for 
selecting a subsequent node, an ant probabilistically 
selects one with highest pheromone concentrations. Let p0 
be a fixed number where 00 1p   and p be a random 

number between 0 and 1. If 0p p , then, according to, ant 

k in node i chooses node j such that, 

( )

( ) ( ) argmax , . ,  

k i
q R

m i q i q
 

 


   =    

 

(11) 

where, 

µ denotes the relative significance of a pheromone, 

 denotes relative significance of heuristic functions, 

Rk(i) denotes the nodes set to which ant k could transition 
from node i while adhering to every stipulated constraint. 

(i, q) denotes the concentration of pheromone between 
nodes q and i. 

(i, q) was the distance among nodes i and q heuristic 
function. 

Conversely, if 0p p , the selection of the subsequent node 

occurs randomly with the following probability: 

( )

( ) ( )

( )

( ) ( )
( )

, . ,
 ,      

, , . ,

0,                                                        

k i

k i

k
q R

i q i q
if q R

q i q i q i q

otherwise

 

 

 

 


        
=        






 

(12) 

Upon node selection, an ant produces pheromone 
throughout the paths, namely, edge linking i and q in the 
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present instance. The pheromone density along the 
shortest path will escalate more rapidly than on alternative 
courses due to a higher deposition rate. The pheromone is 
volatile and dissipates with time. The pheromone 
concentration on other routes will be significantly lower 
than that on the predominantly utilized route, namely, the 
shortest path. Examine the evaporation rate η. Following 
all the rounds, the pheromones concentration was revised 
accordingly. When edge (i, q) was utilized in the iteration, 
then it has 

( ) ( ) 0,   ,   . i q i q   = +
 

(13) 

where 0 is the pheromone’s initial amount. A specific level 
of pheromones evaporate from every edge (Islam and 
Rahman, 2012). The formula of pheromones evaporation 
was presented as follows: 

 

( ) ( ) ( ), 1   ,i q i q  = −
 

(14) 

The proposed IoT-based SWM model starts by collecting 
real-time data from sensors in waste bins and monitoring 
fill levels and locations. The TrashNet dataset is 
preprocessed using scaling and cleaning techniques to 
prepare it for training the Swin Transformer V2 model, 
which classifies different types of waste. For waste 
collection, ACO is used to generate optimal routes for 
waste collection trucks based on bin status and location. 
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The system continuously monitors the bins in real-time, 
recalculating routes using ACO whenever a bin is full to 
ensure efficient waste collection. 

4. Experimental analysis 

4.1. Experimental setup 

This section provides an overview of the evaluation and 
performance analysis conducted on the proposed model. 
The research model was tested in an experimental 
configuration using a PC with Windows 10, a 64-bit 
operating system, an Intel(R) i7 processor running at 4.60 
GHz, and 16GB of RAM. The model was developed using 
the Python 3.11.4 64-bit tool and relied on the Pandas, 
Numpy, and Scikit-learn modules. The achieved outcomes 
for the proposed model are compared and verified against 
the existing SWM models. 

4.2. Evaluation metrics 

The evaluation of the research model was conducted based 
on parameters including accuracy, precision, recall and f1-
score. The metrics are calculated using the values of True 
Positive (TP), False Positive (FP), True Negative (TN), and 
False Negative (FN), which are the four categories utilized 
to identify the results of the detection. 

Accuracy quantifies the ratio of accurate classifications out 
of the overall data. 

TP TN
Accuracy

TP TN FP FN

+
=

+ + +  

(15) 

Recall is the proportion of properly classified data to the 
total data analyzed. 

TP
Recall

TP FN
=

+  

(16) 

F1 score, a statistical measure utilized to assess the positive 
class detection accuracy. The f1-score is the probability of 
properly classified positive data samples to every sample 
identified as positive. 

2 Precision Recall
1 score

Precision Recall
F

 
=

+  

(17) 

Precision can be measured by a ratio of sample’s true 
positive to the total samples recognized as positives, 
specifically focusing on the correct detection of negative 
samples as positive. 

TP
Precision

TP FP
=

+  

(18) 

4.3. Performance evaluation 

This study categorizes waste into six types: cardboard, 
metal, glass, plastic, paper, and trash. The varying accuracy 
values for these six classes are presented in Table 3. 

Table 3. Accuracy of the 6 Classes 

S.no Class No. of test images Accuracy 

1 Glass 56 95.66 

2 Cardboard 72 96.02 

3 Metal 45 95.82 

4 Plastic 66 95.22 

5 Paper 78 95.51 

6 Trash 30 94.89 

Average 99.52   

The performance analysis of the waste classification model 
shows consistently high accuracy across different waste 
categories. For Glass, with 56 test images, the model 
achieved an accuracy of 95.66%, while Cardboard, with 72 
test images, reached the highest accuracy of 96.02%. Metal 
and Plastic classifications showed slightly lower accuracies 
of 95.82% and 95.22%, respectively. Paper, with 78 test 
images, recorded an accuracy of 95.51%, and Trash, with 
the least number of test images (30), had an accuracy of 
94.89%. The model's overall performance indicates a highly 
reliable classification mechanism, achieving an impressive 
average accuracy of 99.52%, which demonstrates its 
robustness in distinguishing various waste materials 
effectively. Figure 7 represents the depiction of the 
classification accuracy of trash classes. 

 

Figure 7. Classification of Trash Classes Accuracy 

A series of experiments to determine the empty levels and 
weights of the garbage were conducted. Table 4 illustrates 
a corresponding experimental result from the ultrasonic 
sensor and the load measurement sensor. 

 

Table 4. Results of the Load Measurement and Ultrasonic sensors. 

No. of trials Delay (min) Level of the Waste (cm) Free level (%) Waste Weight (kg) 

1 10 30.00 More than 90% 0.650 

2 8.2 24.8 More than 80% 0.950 

3 5.5 16.6 More than 45% 1.200 

4 2.5 10.20 More than 20% 1.900 

5 1.0 5.00 More than 10% 2.500 

Table 5. Performance Comparison with Current Models 

Models Accuracy  Precision Recall F1-score  
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CNN  95.31 - - - 

CNN-Tensorflow  95.14 - - - 

Ensemble method  93.65 91.23 66.71 - 

CNN+ResNet  94.44 - 90.41 92 

CNN+ResNext  98.9 - - - 

SWMACM-MA  96 - - - 

MCSOML-SWM  99.34 97.97 97.41 97.67 

ResNet50V2 98.95 98.35 93.38 98.38 

DLSODC-GWM  98.61 95.23 92.29 94.72 

PSO-ANN  96.50 92.2 94.2 92.1 

GA-SVM  87.2 89.4 85 89.7 

RF 89 - - - 

2S_DenseViT + GELAN-E 83.11 83.33 - 83.05 

Proposed model  99.52 99.10 98.86 99.38 

 

Table 4 focuses on how the system functions with respect 
to time. For evaluation, five samples were collected, 
including time delays in minutes, trash levels in 
centimetres, empty levels in %, and waste loads in kg. The 
2 output data points, namely the empty levels & the 
weights of wastes, would be transmitted to the relevant 
WM team. This demonstrates the system’s ability to 
accurately monitor waste levels in real-time, with each 
incremental rise in time delay showing a proportional 
increase in both waste level and weight. 

The performance of the research model and existing 
models that are part of the literature study are compared 
and shown in Table 5. The performance comparison shows 
that the research model significantly outperformed 
existing models over key metrics. With an accuracy of 
99.52%, it exceeds top-performing models like MCSOML-
SWM (99.34%) and ResNet50V2 (98.95%). The proposed 
model also demonstrates exceptional precision (99.10%), 
recall (98.86%), and F1-score (99.38%), which are higher 
than those of MCSOML-SWM (97.97% precision, 97.41% 
recall, and 97.67% F1-score) and ResNet50V2 (98.35% 
precision, 93.38% recall, and 98.38% F1-score). This 
superior performance across all metrics underscores the 
model’s effectiveness in accurately classifying waste with 
high precision and recall, marking it as a more robust and 
reliable solution compared to the existing models. 

 

Figure 8. Graphical Representation of Accuracy Comparison 

Figure 8 represents the accuracy comparison. The 
proposed model attains an accuracy of 99.52%, exceeding 

all other models evaluated. The MCSOML-SWM model 
attains a performance rate of 99.34%, whereas 
ResNet50V2 achieves 98.95%, demonstrating robust 
efficacy. Alternative models such as CNN+ResNeXt and 
DLSODC-GWM exhibit impressive performance, achieving 
accuracies of 98.9% and 98.61%, respectively. In contrast, 
earlier models like CNN and CNN-TensorFlow have lesser 
accuracies of approximately 95%, while conventional 
approaches such as GA-SVM trail with merely 87.2% 
accuracy. This comparison highlights the significant 
improvement the proposed model offers in terms of 
accuracy, outperforming even advanced deep learning and 
ensemble methods. 

The graphical figure for the precision analysis comparison 
is shown in Figure 9. The performance analysis for precision 
shows that the proposed model outperforms other models 
with a precision of 99.10%, demonstrating its superior 
ability to accurately classify positive cases. In comparison, 
the MCSOML-SWM model follows closely with a precision 
of 97.97%, while the ResNet50V2 model achieves a strong 
98.35%. Other models, such as DLSODC-GWM, exhibit a 
precision of 95.23%, and the PSO-ANN model records 
92.2%. Models like GA-SVM and the Ensemble method lag, 
with precisions of 89.4% and 91.23%, respectively. This 
high precision of the proposed model indicates its 
exceptional accuracy in identifying true positive instances, 
minimizing false positives, and leading in classification 
performance compared to other models. 

The graph for the recall analysis comparison is displayed in 
Figure 10. The performance study for recall indicates that 
the suggested model attains a recall rate of 98.86%, 
showcasing its superior capacity to accurately identify true 
positive situations, hence ranking it among the highest-
performing models in this regard. The MCSOML-SWM 
model exhibits a recall of 97.41%, whereas ResNet50V2 
attains 93.38%, demonstrating robust recall performance. 
Alternative models, including DLSODC-GWM and PSO-
ANN, demonstrate recall rates of 92.29% and 94.2%, 
respectively. The GA-SVM model exhibits a recall of 85%, 
while the Ensemble technique demonstrates a lesser 
performance of 66.71%. The enhanced recall of the 
suggested model demonstrates its efficacy in reducing false 
negatives and accurately identifying the majority of 
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positive cases, surpassing most alternative models in this 
essential parameter. 

 

Figure 9. Graphical Representation of Precision Comparison 

 

Figure 10. Graphical Plot of Recall Comparison 

The graph for the F1 score analysis comparison is displayed 
in Figure 11. The proposed model attains the greatest F1-
score of 99.38%, indicating superior stability between 
precision and recall relative to other models. The MCSOML-
SWM model achieves an F1-score of 97.67%, 
demonstrating robust overall performance, although 
marginally inferior to the suggested model. ResNet50V2 
achieves an F1-score of 98.38%, although it remains 
inferior to the proposed method. Models such as DLSODC-
GWM and PSO-ANN attain commendable F1 scores of 
94.72% and 92.1%, respectively, although exhibit a distinct 
performance disparity. CNN+ResNet and GA-SVM get 
scores of 92% and 89.7%, respectively, however, the 
Ensemble technique dramatically underperforms at 
66.71%. The suggested model's F1-score demonstrates its 
efficacy in accurately classifying cases, surpassing all other 
models in this metric. 

Consequently, this comparison indicates that the proposed 
model has achieved superior results compared to the 
models analyzed in this research. The developed research 
methodology offers several advantages compared to 
alternative approaches: 

 

Figure 11. Graphical Plot of F1-Score Comparison 

Real-Time Monitoring: The IoT-based sensors provide real-
time data on waste levels, enabling dynamic decision-
making and optimized waste collection. 

High-Accuracy Classification: The use of the Swin 
Transformer V2 deep learning model ensures accurate 
waste classification, which is crucial for recycling and 
minimizing landfill use. 

Optimized Routing: The integration of ACO for route 
optimization significantly improves the efficiency of waste 
collection, reducing operational costs and minimizing 
carbon footprint. 

Scalability: The system is scalable, allowing easy adaptation 
to different urban environments with varying levels of 
waste generation and complexity. 

The primary limitation of this research is that the proposed 
model is restricted to classifying only six categories and 
limited data size. In future, the data size and the waste 
categories can be increased. 

Theoretically, the proposed research on SWM contributes 
to the academic field by introducing an innovative 
integration of Swin Transformer V2 and ACO in IoT-based 
waste management, setting a new benchmark for accuracy 
and efficiency in waste classification and route 
optimization. Practically, the proposed model provides a 
scalable and cost-effective solution for real-time waste 
monitoring and collection, addressing critical challenges in 
smart city SWM. Its application can improve resource 
utilization, reduce operational costs, and contribute to 
cleaner and more sustainable smart cities, showcasing its 
transformative potential in both research and practice. 

5. Conclusion 

The research proposed a real-time SWM model utilizing the 
DL methodology and an IoT-based framework developed 
using Swin Transformer V2. The research model includes 
data collection, preprocessing, selection of features and 
classification tasks. The TrashNet data set was collected to 
train and evaluate the research methodology. The data 
collected from IOT-based sensors are preprocessed by 
using a min-max scaling process. The classification of the 
images was performed by using Swin Transformer V2. An 
ACO Algorithm was employed for the Waste Collection 
Vehicle Routing process. In this research, the dataset is 
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divided for training and testing, with ratios of 75% and 25%, 
respectively. The evaluation of the research model was 
conducted based on parameters including accuracy, 
precision, recall and f1-score. Outstanding results are also 
shown by the proposed framework in terms of accuracy 
(99.52), precision (99.10%), recall (98.86%), and F1-score 
(99.38%). This research categorizes waste into six types: 
cardboard, metal, glass, paper, plastic, and trash. These 
results were compared and validated with other models 
discussed in the literature review, and as compared, the 
research model outperformed all the other models. Finally, 
the results demonstrated that the proposed model 
achieved exceptional performance in terms of recall, 
accuracy, F1-score, and precision both during the training 
and testing phases, indicating its effectiveness in accurately 
classifying the wastes. The findings of this research present 
significant potential for smart cities and urban waste 
management systems, providing a scalable and sustainable 
solution for efficient waste collection, classification, and 
recycling. The proposed system enhances environmental 
sustainability by optimizing waste sorting and encouraging 
the reuse of materials, contributing to a clean and more 
sustainable urban environments. The research method can 
be strengthened in the future by expanding the dataset's 
size, adding more trash image variations in each class, and 
adding more waste categories to extend the coverage of 
observed waste. 

References 

Ahmad M.I.B., Alotabi R.B., Al-Qahatani R.A., Al-Qahatani R.S., Al-

Hetella S.S., Al-Mataar K.A., Al-Saqaer N.K., Rehman A., 

Sarraireh L., Yoldash M. and Krishnaswamy G. (2023). Deep 

learning approaches to recyclable product classifications: 

Toward sustainable wastes managements, Sustainability, 15, 

11138. 

Akhram S.V., Sing R., Gehllot A., Rasid M., AlGhamidi A.S., 

Alshamarani S.S. and Prasar, D. (2021). Roles of wireless aided 

technology in the solid wastes managements: A 

comprehensive review, Sustainability, 13, 13104. 

Al Duhayim M. (2023), Modified cuttlefish swarm optimizations 

with machines learning-based sustainable applications of 

solid wastes managements in IoTs, Sustainability, 15, 7321. 

Ali T., Irffan M., Alwaadie A.S. and Glowacaz, A. (2020). IoTs-based 

smart wastes bins monitoring and municipal solid wastes 

managements systems for smart city, Arabian Journals for 

Sciences and Engineering, 45, 10185-10198. 

Alqahtani F., Al-Makadmeh Z., Tollba A. and Saidu W. (2020). 

Internet of thing-based urban wastes managements systems 

for smart city using a Cuckoo Search Algorithms, Clusters 

Computing, 23, 1769–1780. 

Aguado J., Arsuga J.M., Arencabia A., Linndo M. and Gasscón V. 

(2009). Aqueous heavy metal removal by adsorptions on 

amine-functionalised mesoporous silica, Journal of Hazardous 

Material, 163, 213–221.  

Alshaikh R. and Abdelfatah A. (2024). Optimization technique in 

municipal solid wastes managements: A systematic review, 

Sustainability, 16, 6585. 

Alsubaei F.S., Al-Wessabi F.N. and Hillal A.M. (2022). Deep 

learning-based small objects detections and classifications 

model for garbage wastes managements in smart city and IoT 

environment, Applied Science, 12, 2281. 

Anagnostopoulos T., Zaslavasky A., Kolomvasos K., Medvadev A., 

Amiran P., Morlley J. and Hadjieftymades S. (2017), Challenge 

and opportunities of wastes managements in IoTs-enabled 

smart city: a survey, IEEE Transactions on Sustainable 

Computing, 2, 275–289. 

Baddegama T., Ariyassena H., Wijetunga S., Bowatha M., Nawina 

D. and Attanaayake B. (2022). Solid-Wastes Managements 

Systems for Urban Sri Lanka Using IOTs and Machines 

Learning, In 2022 4th International Conferences on 

Advancement in Computing (ICAC) IEEE, 222–227. 

Cheema S.M., Hanan A. and Pirres I.M. (2022), Smart wastes 

managements and classifications system using cutting edges 

approach, Sustainability, 14, 10226. 

Czekała W., Drodowski J. and Labbiak P. (2023), Modern 

technology for wastes managements: A review, Applied 

Science, 13, 8847. 

Geetha S., Saaha J., Dasguptha I., Berra R., Lawaal I.A. and Kadary 

S. (2022), Design of wastes managements systems using 

ensembled neural network, Designs, 6, 27. 

Gunaseelan J., Sundaram S. and Mariyappan B. (2023), A design 

and implementation using an innovative deep learning 

algorithms for garbage segregations, Sensors, 23, 7963. 

Islam R. and Rahman M.S. (2012), An ant colony optimizations 

algorithm for wastes collections vehicles routing with time 

window, drivers rest periods and multiples disposals facilities, 

In 2012 International Conference on Informatic, Electronics & 

Visions (ICIEV) IEEE, 774–779. 

John J., Varrkey M.S., Poder R.S., Senssarma N., Sellvi M., Santhos 

Kumar S.V.N. and Kanan A. (2022). Smart predictions and 

monitoring of wastes disposal systems using IoTs and cloud 

for IoTs-based smart city, Wireless Personal Communication, 

122, 243–275. 

Li Z., Han Y. and Yang X. (2023). Multi-Fundus Disease 

Classifications Using Retinal Optical Coherences Tomography 

Image with Swin Transformers V2, Journal of Imaging, 9, 203. 

Li Z., Wan Y., Fen F., Lu Y., Liu Z. and Shang Y. (2023). A DDoS 

detections method based on features engineering and machines 

learning in software-defined network, Sensors, 23, 6176. 

Malik M., Sarma S., Udin M., Cheng C.L., Wu C.M., Sonni P. and 

Chaudary S. (2022), Wastes classifications for sustainable 

developments using images recognitions with deep learning 

neural networks model, Sustainability, 14, 7222. 

Mookkaiah S.S., Thangavel G., Hebar R., Halddar N. and Sing H. 

(2022). Designs and developments of smart Internet of Thing–

based solid wastes managements systems using computer 

visions, Environmental Sciences and Pollutions Research, 29, 

64871–64885. 

Nammoun A., Husein B.R., Tuffail A., Alrehali A., Sayed T.A. and 

Ben Rhouma O. (2022), An ensembled learning based 

classifications approach for the predictions of household solid 

wastes generations, Sensors, 22, 3506. 

Pardini K., Rodrigue J.J., Kozllov S.A., Kumar N. and Furttado V. 

(2019), IoTs-based solid wastes managements solution: a 

survey, Journal of Sensors and Actuator Networks, 8, 5. 

Rahmatulloh A., Darmawan I., Aldya A.P. and Nursuwars F.M.S. 

(2024). WasteInNet: Deep Learning Models for Real-time 

Identifications of Various Type of Wastes, Cleaner Wastes 

System, 100198. 

Rahman M.W., Isllam R., Hassan A., Bithi N.I., Hassan M.M. and 

Rehman M.M. (2022). Intelligent wastes managements systems 



14  REJI et al. 

using deep learning with IoTs, Journal of King Saud University-

Computers and Information Science, 34, 2072–2087. 

Ramson S.J., Mouni D.J., Visnu S., Anagnostopulos T., Kirubbaraj 

A.A. and Fan X. (2021). An IoTs-based bins levels monitoring 

systems for solid wastes managements, Journal of Material 

Cycles and Wastes Managements, 23, 516–525. 

Saad M., Ahmed M.B., Asif M., Khan M.K., Mahmud T. and 

Mahmud M.T. (2023), Blockchains-enabled VANETs for smart 

solid wastes managements, IEEE Access, 11, 5679–5700. 

Sallang N.C.A., Isllam M.T., Isllam M.S. and Arshed H. (2021). A 

CNN-based smart wastes managements systems using 

TensorFlow lite and LoRa-GPS shields in Internet of Thing 

environments, IEEE Access, 9, 153560–153574. 

Sayem F.R., Islam M.S.B., Naznine M., Nashbat M., Hasan-Zia M., 

Kunju A.K.A., Khandakar A., Ashraf A., Majid M.E., Kashem 

S.B.A. and Chowdhury M.E. (2024). Enhancing wastes sorting 

and recycling efficiency: deep learning-based approaches for 

classifications and detections, Neural Computing and 

Applications, 1–17. 

Shahab S., Anjum M. and Umar M.S. (2022). Deep learning 

application in solid wastes managements: A deep literature 

reviews, International Journals of Advanced Computer 

Sciences and Application, 13. 

Sosunova I. and Poras J. (2022), IoTs-enabled smart wastes 

managements system for smart city: A systematic review, 

IEEE Access, 10, 73326–73363. 

Szpillko D., de la Tore G.A., Jimmenez Naharo F., Razepka A. and 

Remizewska, A. (2023). Wastes managements in the smart 

cities: current practice and future direction, Resources, 12, 115. 

Visnu S., Ramsson S.J., Rukumini M.S.S. and Abu M.A.M. (2022). 

Sensors-based solid wastes handling system: A survey, 

Sensors, 22, 2340. 

Whaiduzaman M., Baros A., Chandha M., Barrman S., Sulthana T., 

Rehman M.S., Royy S. and Fidge C. (2022). A review of 

emerging technology for IoTs-based smart city, Sensors, 22, 

9271. 


