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Abstract 

Air pollution is one of the serious environmental problem 
that has an impact on ecosystems and human health 
worldwide. The prediction of air pollution can provide 
significant information that will permit all parties to take 
right initiatives. Predicting air quality is considered as a 
popular research area. A potential solution to air pollution 
has been suggested through the application of numerous 
time-series and artificial intelligence (AI) methods. These 
models are used with Internet of Things (IoT) devices in a 
cloud environment to forecast the air quality parameters. 
However, there exist several challenges such as overfitting 
issues, inaccurate real-time updates, and low precision. In 
this paper, an IoT cloud-based Air Pollution Monitoring 
System using Deep Learning (IoT-CAPM-DL) model under 
various meteorological situations is proposed to address 
the existing problems. Data collected from sensors are 
preprocessed to enhance its quality by eliminating null 
values, handling missing data, and normalization. Then, a 
robust Compact Split-based Stacked VectormapConv 
Bidirectional long short term Bahdanau Attention 
(CSplitStack-VBA) network is used to predict air quality 
parameters. A Bobcat Optimization Algorithm (BcOA) is 
used to tune the hyper-parameters of prediction model. 
The entire implementation is carried out using the Python 
platform and different kind of performance measures are 
calculated. The finding shows that the IoT-CAPM-DL 
model attains better MAE and RMSE value of 0.0076 and 
0.0051. Thus, the experimental outcomes prove that the 

IoT-CAPM-DL model performed better in the prescribed 
dataset and produced significant results than existing 
approaches. 

Keywords: Air pollution, internet of things, vector map 
convolution, bahdanau attention, bobcat optimization 
algorithm, cloud environment 

1. Introduction 

Over the past years, the world has become more 
intelligent and increasingly connected with the expansion 
of Internet of Things (IoT). Idrees et al. (2020), Liao et al. 
(2020), and Ullo et al. (2020) published work related to 
the IoT sensor based air pollution predictor. IoT is 
deliberated as a wireless network of intelligent sensors 
that has the capability to collect and transmit data 
through embedded devices. The five main parts of an IoT 
devices are normally a processor, sensors, memory 
module, communications module, and power supply. 
Singh et al. (2021) discussed a gateway connects the 
sensors; it enables communication between the sensors 
and offers processing and storage abilities. The gateway 
can be hosted on edge or in the cloud. Time-series data 
generation from IoT devices, comprising robotics, sensors, 
and machines, is gaining popularity. Rapid data generation 
is a result of practical applications like air pollution 
monitoring. 

For further analysis, the data are sent to a cloud or edge 
processing center. Owing to the detrimental effects on 
human health, air pollution has gained greater attention 
globally. As a result, it has become increasingly significant 
to monitor and forecast the air quality around people in 
the past few years. IoT is broadly applied in various fields 
to improve human health by connecting various sensors in 
diverse locations. Feng et al. (2024) explained air pollution 
is a major global concern and has numerous detrimental 
health effects. The World Health Organization (WHO) has 
estimated that ambient air pollution approximately 
caused over 7 million deaths worldwide in 2019, which is 
greater than 15% of all deaths expressed by Maio, S et al. 
(2023). 

https://doi.org/10.30955/gnj.06937
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Wu et al. (2023) analyzed several areas have set up 
networks for monitoring air quality in real-time and 
combined a significant amount of monitoring data, which 
offers the fundamental data desirable for precise air 
pollutant prediction. Shin et al. (2023) derived the 
temporal dependencies still make it challenging to 
forecast the concentration of pollutants in a city. At any 
time interval, both the nearby and far-off historical time 
intervals and external causes have an influence on the 
pollution levels. Consequently, in order to offer an 
accurate prediction of air quality, an efficient model that 
fully extract and learn space and time dependencies as 
well as external inputs is essential. Knowledge-driven and 
data-driven methods are the two general categories used 
to predict air quality. 

Knowledge-driven models are capable to accurately assess 
the concentration of air pollutants since they combine 
both chemical and physical mechanisms to stimulate the 
processes of pollutant emission, diffusion, transformation, 
and transportation. Yet, these models are not supportive 
for the inspection of air quality issues at microscales, like 
in metropolitan regions. Because, they strongly depend on 
setting parameters that are hard to achieve and 
necessitate prior knowledge. Accordingly, data-driven 
techniques deliver an alternate method for accomplishing 
the predictive examination of the pollutant concentration 
in future by Liu et al. (2022). In contrast to knowledge-
driven models, these models do not necessitate prior 
knowledge and are merely based on correlations between 
dependent variables and pollutant concentration data. 

Shallow machine learning (ML), statistical, and deep 
learning (DL) techniques are the three subcategories of 
data-driven models by Maltare et al. (2023), and Ahmed 
et al. (2024). Time-series analysis is utilized by statistical 
models to predict future values based on the historical 
observed data. These models are efficient in dealing linear 
features however they are incompetent in capturing 
complex non-linear features. In contrast to shallow ML 
models, DL models have the capability to automatically 
identify important features and take unprocessed data as 
input for end-to-end prediction by Zhang et al. (2024), 
Prado-Rujas et al. (2024). DL architectures, a type of ML, 
have proven state-of-the-art outcomes in broad 
environmental prediction problems because of their 
strong generalization, potential non-linear mapping 
capabilities, and flexible model structure. Recurrent 
neural networks (RNNs) provides great benefit in handling 
with sequence learning challenges by Saravanan, D et al. 
(2023). 

Thereby, Liu et al. (2023) exposed to acquire the temporal 
dynamics in pollutant sequence, RNNs and their variants, 
including bidirectional LSTM (BiLSTM) and long short-term 
memory networks (LSTM) networks are presented. But, 
the limited utilization of the spatial relationships within 
the monitoring network by RNN-based models has 
potentially obstructed their capability to process 
spatiotemporal data. Encouraged by convolutional neural 
networks (CNNs) potential for extracting spatial features, 
it has turn out to be dominant to utilize CNNs and RNNs to 
predict air quality. The most recent successor of CNN by 

Wang et al. (2024) is residual neural network (ResNet), 
which permits longer structures for learning deep abstract 
spatial relationships. Nevertheless, this model developed 
by Shaban et al. (2024) may need a considerable amount 
of inference time in order to handle new data. With the 
intension of better optimizing urban atmospheric 
forecasting, this research Motivates to develop a hybrid 
DL model based on the IoT Cloud in air pollutant 
monitoring network. The proposed model offers decision 
makers with correct and timely information on air quality 
trends by using cloud computing and DL. The main aim of 
the proposed work is 

• To develop an IoT cloud-based Air Pollution 
Monitoring System using Deep Learning (IoT-CAPM-
DL) under various meteorological situations for 
predicting the air pollution. 

The Objectives of the proposed work is provided below as 
follows: 

• To employ a Compact Split-based Stacked 
VectormapConv Bidirectional long short term 
Bahdanau Attention (CSplitStack-VBA) network, 
which combines compact split-attention (CSplitA), 
vectormap CNN, and stacked BiLSTM, and Bahdanau 
attention for extracting features and forecasting the 
air quality parameters. 

• To tune the hyper-parameters of prediction 
model using a bio-inspired metaheuristic Bobcat 
Optimization Algorithm (BcOA) for minimizing the error 
rate.  

• To validate the working of IoT-CAPM-DL model 
by comparing with state-of-the-art methods.  

The scope of the proposed work is allows to make well-
informed decisions that lowers the levels of air pollution 
and meets the air quality standards. The rest of the paper 
is aligned as follows. Section 2 deliberates the works 
related to the research proposed. Section 3 introduces the 
proposed IoT-CAPM-DL model. The performance of the 
IoT-CAPM-DL model for air quality prediction is assessed 
with simulated results in Section 4, and finally, the paper 
concludes and establish future directions in Section 5. 

2. Related works 

Bhushankumar Nemade and Deven Shah et al. (2022) 
suggested an IoT-based air pollution prediction system 
based on deep learning modified neural network 
(DLMNN) classifier. First, the H-ANFIS algorithm was 
utilized in the sensor nodes to identify the problematic 
node. MPCA algorithm was employed to extract features 
from the sensed data and remove unnecessary features. 
Next, the data was balanced using Entropy-HOA, and pre-
processed using HDFS and replacement of missing 
attribute. After that, the pre-processed data was provided 
to DLMNN classifier, which could optimize the weight 
using pity beetle algorithm (PBA) for prediction. However, 
the complexity of this model was higher.  

Shilpa Sonawani and Kailas Patil et al. (2024) recommend 
an IoT-based air quality monitoring, warning, and 
prediction system that could perceive indoor air quality 
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parameters such as CO, NO2, PM2.5, NH3, O3, pressure, 
temperature, etc. Here, the multiheaded CNN-gated 
recurrent unit could identify the pollution concentration 
for upcoming hour. Moreover, the model employed a 
transfer learning (TL) approach if there was a limited 
availability of data for prediction. The findings showed 
that the performance enhancement of 55.42% had 
attained for prediction with insufficient data. However, 
the overfitting problem could minimize the generalization 
ability of this model.   

A combined air-quality prediction model based on the 
ARIMA-CNN-LSTM with dung beetle optimizer (DBO) was 
introduced by Jiahui Duan et al. (2023). To evade the 
blinding issue in hyperparameter setting of CNN-LSTM, 
ARIMA model was initially used to fit the linear portion of 
the data. Next, DBO was used to find the CNN-LSTM 
model's hyperparameters. As a result, the four cities had 
corresponding root mean square value (RMSE) values of 
7.594, 14.94, 7.841 and 5.496; and R2 values of 0.989, 
0.962, 0.953 and 0.953. However, this model needs to 
consider different influencing factors to enhance the 
model performance.  

Subramanian Deepan & Murugan Saravanan et al. (2024) 
suggested using seasonal autoregressive integrated 
moving average (SARIMA) transductive LSTM (TLSTM) for 
air quality index prediction. In order to predict values that 
characterize historical trends regarded as seasonal 
patterns, a SARIMA model was employed. Furthermore, a 
TLSTM model acquired long-term dependencies for 
predicting air quality index by learning dependencies 
through recurrent memory blocks. Further, the TLSTM had 
maximized the accuracy close to test sites. The 
experimental results showed that the SARIMA-TLSTM 
model had accomplished a greater accuracy of 93%. 
However, the time complexity of this model was higher.  

Shelly Sachdeva et al. (2024) suggested an integrated 
approach for predicting the air quality index using 
meteorological data and pollutant concentration. There 
were four modules in the framework for predicting air 
pollution. The first module had forecasted the 
concentrations of hazardous gases and particulate matter 
pollutants. Based on the historical air quality index data 
and pollutant data, the second module had predicted the 
air quality. By meteorological data and other data, the 
third module estimated air quality index. The output of 
second and third module were combined in the fourth 
module to compute air quality index. The findings showed 
that the mean absolute error (MAE) for prediction was 
only 7.09. However, the model would need to reduce the 
computation complexity and improve the performance in 
terms of different performance indicators.  

Periasamy, S., et al. (2024) developed a system based on 
transfer learning and quality indicators in recurrent 
network that is lightweight and has a skip connection to 
find the quality of air. By including skip contacts between 
the decoder and the linear forecasting layer, the 
suggested model lessens the decoding load. This study 
need to improve with larger datasets and more 
parameters will be added. Sundarapandi, A.M.S. et al. 

(2024) this study introduces a new prediction technique 
that combines a tree structural simple recurrent unit 
(LDTSRU) with a light weighted dense network. The input 
meteorological variables are first converted into grayscale 
images using a lightweighted dense network, which then 
looks for any noteworthy patterns within the variables. 

2.1. Problem statement 

Forecasting the concentrations of air pollutants at a 
specific location and time is a primary challenge. Several 
egression or classification has been used to predict 
concentration or categorize air quality. One significant 
problem is the inaccuracy in prediction since the 
conventional techniques struggle to capture nonlinear, 
complex relationships in pollution data, thereby tending 
to discrepancies between actual and predicted air quality 
levels. Several traditional methods rely on static model 
that cannot adapt to varying environmental conditions, or 
new data, which minimize their responsiveness to real-
time variation in air quality. Furthermore, advanced 
machine learning and artificial intelligence methods are 
not often used to their full potential to improve forecast 
accuracy. Also, the high computational burden particularly 
of advanced approaches also limits their use especially in 
low-resource areas. To fully exploit the immense potential 
of air quality forecast in smart cities, a number of 
challenges, including model interpretability, data 
accuracy, and the requirement for continuous model 
improvement should be addressed.  

3. Proposed methodology 

The potent tool that can assist businesses, governments, 
and individuals in managing and monitoring the quality of 
the air in their daily lives is an IOT- cloud based air 
pollution monitoring system. This system measures air 
pollutants using sensors and sends real-time data to a 
cloud server. Then, the data are analysis and visualization 
in accordance with environmental standards, and the 
application is allowed to remotely monitor the quality of 
air. The IoT-CAPM-DL model has considered various 
meteorological situations and it is modelled to measure 
several air quality parameters and pollutants in real time. 
Sensor nodes (SNs), WiFi module, gateway and cloud are 
used in the proposed system. The sensor nodes are 
positioned at various locations to collect information on 
the quality of the air, and wireless communication is 
utilized to transfer the data to the gateway. The SNs’ data 
is aggregated via the gateway and sent to the cloud server 
for further processing and analysis. After storing the 
collected data in cloud, the raw data undergoes pre-
processing to enhance its quality by eliminating null 
values, handling missing data, and normalizing data using 
L2-standardization. Then, a robust Compact Split-based 
Stacked VectormapConv Bidirectional long short term 
Bahdanau Attention (CSplitStack-BA) network is 
developed for extracting features and forecasting the air 
quality parameters.  In addition, the hyper-parameters of 
CSplitStack-VBA network can be tuned using Bobcat 
Optimization Algorithm (BcOA) to enhance the forecasting 
performance. The block diagram of IoT-CAPM-DL model is 
given in Figure 1.  
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Figure 1. Block diagram of IoT-CAPM-DL model 

3.1. Pre-processing 

Preprocessing is a significant process that help to reduce 
data noise, which eventually speed up processing and 
increases the applicability of deep learning algorithms. 
Null values and missing data are the two most problems in 
extracting data and monitoring applications by Wang et al. 
(2022). Null value removal, missing data handling, and 
normalization based on L2-standardization are among the 
several operations carried out in IoT-CAPM-DL model 
during the data preprocessing step. To maintain data 
integrity, the rows or columns with significant number of 
null values is removed. For missing values, the missing 
value imputation technique is used by Niu et al. (2021). 
The L2-standardization normalizes the dataset so that the 
sum of squares of all values will equal to one by 
Benmamoun et al. (2024). The below equation illustrates 
L2-standardization in which y specifies the dataset's 
feature values in Equation (1). 

= + + +
1 22 2 2

2 1 2|| || (| | | | .... | | )py y y y  (1) 

After pre-processing, the pre-processed data are used to 
extract the significant features and then performs 
prediction.  

3.2. Feature extraction and air quality prediction 

In IoT-CAPM-DL model, compact split-based stacked 
vectormapconv bidirectional long short term Bahdanau 
attention (CSplitStack-VBA) network is used to extract 
features and predict the air quality parameters. 
CSplitStack-VBA network combines the strength of 
compact split-attention (CSplitA), CNN with vector map 
convolution, and stacked bidirectional long short term 
network (BiLSTM), and Bahdanau attention for improving 
air quality parameter forecasting. Each component of 
CSplitStack-VBA network plays a significant role in 
processing spatial and temporal data corresponds to air 
quality and enable accurate prediction. Furthermore, the 
benefit of stacking integration in CSplitStack-VBA network 
is that it allows several base learners to be integrated and 
fully utilize their differences, providing more thorough 
information during the model training process. Stacking 
integration can improve the resilience and performance of 
a model while reducing variance when compared to a 
single model. The architecture of CSplitStack-VBA network 
is provided in Figure 2. 

 

Figure 2. Architecture of CSplitStack-VBA network 

3.2.1. Compact split attention module 

The role of CSplitA model that improves the process of 
feature extraction by splitting feature maps into various 
groups and employing attention within each group has 
employed. The deep network architecture uses large 
channel shared groups for feature extraction. Moreover, 
this model utilizes the same convolutional processes with 
the same receptive field size for each group. In order to 
optimize the structure and enhance its applicability while 
reducing the overall number of parameters in the entire 
network, the CSplitA module has two feature groups (Q = 
2). When these two groups are isolated from the input 
features, they undergo various transformation Gj. The two 

groups use a single 1  1 convolution followed by single 3 

 3 convolution. For increasing the representation across 
channels, the other group’s (G2) output feature maps can 
be subjected to additional convolution after adding the 
results of the first group (G1). In this way, the network's 
reception area can be increased and information from 
both separated groups can be gathered. Therefore, a 
more robust capability to extract both local and global 
information from feature maps is presented by the CSplitA 
module. The following is a mathematical expression for 
the fusion feature maps in Equation (2): 

 

=

= 
1

ˆ ˆ( ),
W

J Y E
j j

j

V G Y V R  
(2) 

where, J, Y and E resemble the output feature map scales. 
Channel-wise statistics designed by means of global 
average pooling are employed to gather the global spatial 
information. It is formed by compressing the results of the 
transformation across spatial dimensions, and dth 
component through in Equation (3): 

 

 
= =

= 



1 1

1 ˆ ( , ),
J Y

E
d dT V T

J Y
R  

(3) 

Channel-wise soft attention has employed to aggregate a 
weighted fusion characterized through a cardinal group 
representation since the split weighted combination can 
capture important data in feature maps. Furthermore, the 
feature map channel can be identified as follows in 
Equation (4): 

=

=
1

( ) ( )
Q

d j j j
j

W b d G Y  
(4) 
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where, bj describes the (soft) assignment weight that can 
be expressed in Equation (5): 

=


=

 1

exp( ( ))
( )

exp( ( ))

d
j

j Q d
kj

T
b d

T
 

(5) 

where, Mj
d is measured by applying two 1  1 

convolutions with ReLU activation and BatchNorm, it 
exemplifies the weight of global spatial information T to 
the dth channel. As a result, the entire CSplitA model is 
simulated using an ordinary residual structure, and the 
output feature map is comparable to the input feature 
maps. Then, the result Z is calculated by the skip 
connection: Z = W + Y. Otherwise, the skip connection can 
undergo an additional transformation u. For example, u 
can be the convolution combined with stride or pooling 
and convolution. 

3.2.2. CNN with vector map convolution 

CNNs with vector map convolution offer a reliable method 
for managing and utilizing spatial and directional data, 
improving performance in applications that demand deep 
geometric and contextual knowledge. CNN is considered 
as a well-known deep neural network (DNN) that extracts 
complicated features and learns from the input data by 
employing convolutional operations in some of its layers 
rather than matrix operations. Typically, CNN 
encompasses three layers such as a convolutional layer, a 
pooling layer, and a fully-connected (FC) layer. After the 
network obtains the time-series data as inputs, the 
convolutional layer utilizes the pre-processed data to 
extract complex features. Then, the result is fed to the 
activation function and the pooling layer. By using the 
average or max-pooling technique, the latter lowers the 
dimension of feature map. In order to upsurge learning 
stability and evade overfitting issue during training, batch 
normalization (BN) and dropout are generally added to 
the network. The convolution of the preceding input 
feature map yj

m−1 (the jth input feature map of (m−1) th 
layer, and the convolution kernel xjk

m which links jth and kth 
feature map yields the feature map yk

m of the 
convolutional layer by applying a nonlinear activation 
function g(.). The calculation process is exemplified by the 
following equation in (6): 

−

=

 
=  + 

 
 1

1

kN
m m m m
k j jk k

j

y g y x c  
(6) 

Where, Nk indicates the number of inputs in kth feature 
map, ck

m resembles the kernel bias, and (*) indicates the 
convolution operation.  

3.2.3. Vector map convolution 

Vector map convolution is a specific form of convolution 
employed in CNN. It involves employing convolution filters 
to vector data for extracting significant features in air 
quality prediction. Instead of scalar multiplication, the 
convolution encompasses vector arithmetic (such as dot 
products, norms). The weight sharing ratio in vector map 

convolution is represented as 1

P
, where P signifies the 

vectormap dimension Divm. Assume Vein
3 = [v1, v2, v3] be 

the input vector and ω3 = [ω1, ω2, ω3] specifies the weight 

vector with P = 3. A permutation  is performed on the 
inputs to make each vector multiplied through each 
weight vector element in Equation (7): 


−

=
= 



3

1

1
( )

1j
j

v j
v

v j  
(3) 

A new vector, Ve3 is formed by performing circularly right 
shifted permutation to Vein

3. The above equation can be 

utilized to find the weight (ω3) permutation. Thus, the 
output vector Veout is given in Equation (8): 

    =3 3 3 3 3 2 3 3[ . , ( ). , ( ). ]out in in inVe Ve Ve Ve  (8) 

Where, "." indicates dot product. The elements of Vein
3 

and ω3are combined linearly to provide the outputs Veout
3. 

Let VeF = [A, B, C] be the weight filter matrix for the 
vectormap and Veh = p [X, Y, Z] be the input vector after 
linear combination. Then, the vectormap convolution 
between VeF and VeH for Divm = 3 in Equation (9): 

     
     

 =  
     
          

( )

( )

( )

F h

F h

F h

R Ve Ve A B C X

I Ve Ve LM C A B Y

J Ve Ve B C A Z
 

 (9) 

Where, LM represents the learnable matrix specified as 

matrix 
 vm vmDi DiLM , which has been initialized by 

employing in Equation (10): 

 =


=


= = = + −


= − 

−

,

1 1

1

1 , ( ( 1))&

1

j k j j j

j vm j vm

j

j k

l k Cal whereCal j j Cal

Cal Di if Cal Di

else

 

(10) 

Any dimensional hypercomplex convolution can be 
utilized by selecting Divm and allocating a new constant 

matrix 
 vm vmDi DiLM  matching Divm. The mechanism used 

for vectormap weight initialization is comparable to the 
quaternion and complex weight initialization. 

3.2.4. Bidirectional long short term network 

BiLSTM builds an inverse LSTM layer on top of the long 
short-term neural network in order to process reverse 
time series. Its strong sequence modeling capabilities 
designates LSTM. It can effectively retain and transmit 
long-term dependency information while selectively 
forgetting irrelevant data by applying memory units and 
gating mechanisms. This tackles the gradient vanishing 
and exploding issues that conventional RNNs encounter, 
permitting them to perform exceptionally well in 
challenging tasks like time series prediction and natural 
language processing.  

Among these, the following formulas are employed to 
determine the functions and gates inside LSTM neurons in 
Equation (11), Equation (12), Equation (13), Equation (14), 
Equation (15), Equation (16):  

 −=  +1( [ , ] )T I T T II W H X B  (11) 
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 −=  +1( [ , ] )T F T T FF W H X B  (12) 

−=  +1tanh( [ , ] )T c T T cc W H X B  (13) 

−=  + 1 )T T T T Tc F c I c  (14) 

 −=  +1( [ , ] )T O T T OO W H X B  (15) 

=  tanh( )T T Ts O c  (16) 

Where, T indicates the input sequences, XT resembles the 
input data of the present time step, HT−1 indicates the 
hidden state of preceding time step, WI and BI specify the 
input gate's weights and biases, and ρ states the Sigmoid 
activation function. Equation (11) demonstrates that the 
input gate is utilized for controlling the updation of new 
input information. Equation (12) characterizes the 
forgetting gate, which regulates whether the preceding 
time step memory is forgotten. The cell state updated 
through the input and forgetting gate is characterized by 
Equation (13), where C̃T designates the current time step’s 
candidate cell state. The cell state updated by means of 
the input gate, forgetting gate, and candidate cell state is 
characterized by Equation (14). The output gate that 
controls the outcome of the current time step's hidden 
state is exposed in Equation (15). Through the updated 
gate and the output cell state, Equation (16) displays how 
to compute the hidden state of present time step, where 
ST indicates the hidden state of present time step.  

 

Figure 3. Structure of BiLSTM 

Figure 3 depicts the structure of BiLSTM. Here, the input 
sequences of three successive time steps are employed. x 
indicates the input sequence set, such as the feature maps 
that vector map convolution and the attention 
mechanism have processed. A set of output sequences 
sent to the next FC layers is designated by S. The forward 
and reverse LSTM units are characterized by d and u. The 
bi-directional design of BiLSTM improves neural network 
performance and long-term temporal dependencies to 
produce more accurate prediction outcomes by 
strengthening its capacity to handle nonlinear time series. 
BILSTM has a computational efficiency issue since it 
necessitates bidirectional processing. By giving distinct 
weights to various features, the attention mechanism 
improves the perception and application of significant 
information by simulating how humans swiftly extract 
important information from huge amount of data, 
increasing processing efficiency and exactness of 
perceptual information. This makes more important 

features have a greater impact on the outcomes and 
minimize the computation complexity. 

3.2.5. Bahdanau attention 

A technique that is often used in sequence-to-sequence 
models is Bahdanau Attention (BA), which provides 
distinct weights to various features. The encoder feature 
maps serve as keys k and values v, while the decoder 
LSTM generates a query vector QT at each time step T 
based on its present hidden state. A scoring function is 
employed to calculate the attention scores, and the 
softmax function is then employed to normalize the 
results and acquire attention weights. The context vector, 
which delivers targeted information is computed as a 
weighted sum of the encoder feature maps and 
concatenated with the input of decoder LSTM in Equation 
(17). 

=  +( , ) tanh( .( ) ))T I T IScore Q K w Q K B  (17) 

Then, the attention weights βT are attained by normalizing 
these scores by the softmax function in Equation (18): 

 = max( ( , ))T Tsoft score Q k  (18) 

By utilizing the attention weights, the context vector CT is 
calculated as a weighted sum of encoder feature maps in 
Equation (19): 


=

= ,1
.

P

T T I II
C V  

(19) 

Where, VT indicates the Ith value vector from the encoder 
feature maps, and P resembles the number of feature 
maps. In order to provide the model with significant 
information during quality parameter prediction, the 
context vector CT is concatenated with the decoder 
LSTM's input XT at each time step T. 

3.3. Hyper-parameter tuning 

In IoT-CAPM-DL model, the bobcat optimization algorithm 
(BcOA) is employed in CSplitStack-VBA network to update 
the parameters for optimizing the loss function. The BcOA 
is one of the population-based optimizer that influences 
the members’ search capacity to obtain appropriate 
solution for optimization problems in an iteration-based 
process. The design inspiration for BcOA resembles that 
the problem-solving space relates to the bobcats' wildlife 
habitat and their location within the habitat corresponds 
to the BcOA members’ location in the problem-solving 
area. Consequently, in BcOA, the values for the decision 
variables are determined by each bobcat 
(hyperparameters) as a population member based on the 
location it occupies in the issue solving space. Thus, each 
bobcat's location characterizes a potential solution to the 
problem, which can be mathematically described as a 
vector. Together, bobcats comprise the algorithm's 
population, which can be mathematically signified by a 
matrix in accordance with Equation (20).  

 

  
  
  
  = =
  
  
  

   

1,1 1, 1,1

,1 , ,

,1 , ,

d m

j j j d j m

n n n d n mn m n m

y y yY

Y Y y y y

Y y y y

 

(20) 
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The primary bobcats’ position is randomly initialized using 
the below equation in Equation (21): 

= + −, .( )j d d d dy LB s UB LB  (21) 

where, P indicates the number of bobcats, s resembles a 
random number in the interval [0,1], m characterizes the 
number of decision variables, UBd and LBd specifies the 
upper and lower bounds of dth decision variable, Y states 
the population matrix, Yj signifies the jth bobcat (candidate 
solution), and yj, d resembles its dth dimension (decision 
variable). Equation (22) states that a vector can be utilized 
to signify the set of evaluated values for the fitness 
function in Equation (22). 

= ( )jG Mini LossFunction  (22) 

where, Gj specifies the computed fitness function 
depending on jth bobcat. The best BcOA member 
resembles to the best assessed value for the fitness 
function, and the worst BcOA member resembles to the 
worst evaluated value for the fitness function.  

The population members' locations are updated during 
the exploration phase using a simulation of bobcats 
tracking and moving behavior in the direction of prey 
during hunting. Equation (23) is used to define the set of 
candidate prey for each bobcat, which is the location of 
other population members with a higher value for the 
fitness in Equation (23). 

=  { : }j l l jcp Y G G and l j  (23) 

where j = 1, 2, …, P and l{1, 2, …., P} where, Yl represents 
the population member with higher fitness value than the 
jth bobcat, Gl represents its fitness value, and cpj specifies 
the set of potential prey positions for jth bobcat. Using 
Equation (24), a new location is determined for every 
BcOA member. If this new position increases the fitness 
value based on Equation (25), it replaces the responding 
member's previous position in Equation (24) and Equation 
(25). 

= + − −1
, , , , , ,(1 2 ). . )Q

j k j k j k j k j k j ky y s sp J y  (24) 

 
= 


1 1,

,

Q Q
j j j

j

j

Y G G
Y

Y else  

(25) 

where, sj, k indicates the random numbers with interval 
[0,1], Jj, k specifies the numbers randomly selected as 1 or 
2, spj implies the chosen prey by jth bobcat, spj, k specifies 
its kth dimension, Yj, k

Q1 resembles the new location 
computed for the jth bobcat based on exploration phase, 
Yj, k

Q1 indicates its kth dimension, and Gj
Q1 specifies its 

fitness function value. 

During the exploitation phase, the population members' 
positions is updated based on the chasing behavior of 
bobcat. Equation (26) is used to define a new location for 
each BcOA member close to the hunting location 
depending on the modeling of bobcat’s location change 
during the chasing process. Based on Equation (27), the 
corresponding member's previous position is replaced 
with this new one if the value of fitness raises. 

−
= +

+

,2
, , ,

1 2
().

1

j kQ
j k j k j k

s
y y y

u  
(26) 

 
= 


2 2,

,

Q Q
j j j

j

j

Y G G
Y

Y else  

(27) 

where, Yj, k
Q2 resembles the new location computed for 

the jth bobcat depending on exploitation phase, Yj, k
Q2 

designates its kthdimension, and Gj
Q2 specifies its fitness 

function value. The pseudocode of BcOA for parameter 
tuning is provided in Algorithm 1. 

 

4. Results and discussion 

The experimental outcomes of both IoT-CAPM-DL and 
prevailing techniques on the air quality dataset are 
discussed in this section. The University of Utah Air 
Pollution Monitoring Network dataset Salt Lake City 
provided the dataset, which was gathered between 2019-
07-26 and 2021-05-14. The python programming language 
has been used to implement the proposed IoT-CAPM-DL. 
The input of IoT-CAPM-DL comprises of time series 
window of preceding air quality measurements, which 
encompasses dissimilar air quality indicators like PM2.5, 
PM10, CO, SO2, O3 and NO2, meteorological data, 
temporal elements and geographical characteristics. The 
meteorological data includes humidity, temperature, air 
pressure, wind speed and direction. Time-related features 
encompass days, hours, months and seasonal trends. The 
output is the predicted value of air pollution index. The 
effectiveness of the IoT-CAPM-DL is compared with 
recently published research articles for air quality 



8  MOHANDAS et al. 

prediction. The hyperparameter tuning of IoT-CAPM-DL 
method is given in Table 1.  

Table 1. Hyperparameter tuning of IoT-CAPM-DL method 

Parameters Values 

No of epochs 100 

Initial learning rate 0.01 

Batch size 32 

Maximum iterations 100 

Activation Function ReLU 

Dropout rate 0.2 

Optimizer BcOA 

4.1. Dataset description 

This air quality dataset was created using 25 pollution 
sensors from Salt Lake City, Utah, USA's Air Pollution 
Monitoring Network, which are requested from the 
University of Utah's linked group [32]. Each air quality 
sensor provides a packet of data for 60 seconds 
(supposing that the monitor is operating ordinarily). Each 
pollution monitor has environmental sensors, like a 
temperature and humidity sensor (Texas Instruments 
HDC1080), an optical particle counter (Plantower 
PMS3003), and a sensor for identifying reducing and 
oxidizing gases (SGXSensorTechMiCS4514). Conferring to 
the device utilized to take the readings (one row per 
device per hour), the readings in this dataset are 
aggregated and averaged across an hour. The FEM 
Tropospheric Ozone Equipment at the Hawthorne 
Monitoring Site, run by the Utah Department of Air 
Quality (DAQ), could provide the desired data. It is 
delivered for every 60 minutes. A DAQ system's hourly 
ozone values are attached to the relevant dataset row. 
Every one of the twenty-five air pollution sensors has 
more than twenty-five sets of ozone. 

4.2. Performance indicators 

The performance of the IoT-CAPM-DL method for air 
quality prediction is measured using the mean absolute 
error (MAE), mean absolute percentage error (MAPE), 
RMSE, and the coefficient of determination (R2‐Score).  

Mean absolute percentage error:  MAPE is defined as a 
relative statistic that expresses the average value of a 
relative error as a proportion of the true value. The 
expression of MAPE is given as follows in Equation (28): 

−

=

−
= 

1

0

1
100

u

j

Qj Bj
MAPE

p Qj  
(28) 

Where, p resembles the total number of data points or 
time steps, Qj specifies the expected value and Bj 
indicates the real value.  

Mean absolute error 

MAE determines the average magnitude of detection 
errors while disregarding their directions. It is deliberated 
as the average of the absolute differences between the 
actual and predicted values for every sample in the test 
set when every individual differences partake similar 
weight in Equation (29). 

−

=

= −
1

2

0

1 u

j

MAPE Qj Bj
p  

(29) 

Root mean square error 

The RMSE metric, which is measured by the standard 
deviation of the prediction errors, designates how far the 
data points are from the regression line. The prediction 
becomes more misaligned if the value is higher in 
Equation (30). 

−

=
−

=


1 2

0
( )

u

j
Qj Bj

RMSE
u  

(30) 

Where, u indicates the total number of data points. 

R2‐Score:  

A metric known as the R2 Score is employed to assess 
how well a linear regression technique calculates 
variations in a dependent variable from variations in the 
independent variables. 

4.3. Performance comparison  

In the experimental investigation, the IoT-CAPM-DL 
method has used the metrics RMSE, MAPE, MAE, and R2-
Score to measure the performance of the IoT-CAPM-DL 
method. The result of IoT-CAPM-DL method is contrasted 
with the existing long short term memory (LSTM), support 
vector machine based regression (SVMR), gradient 
boosted tree regression (GBTR) and hybrid LSTM 
recurrent neural network (LSTM-RNN) models. In addition, 
other existing models are employed for comparison.  

4.3.1. Comparison with different evaluation metrics 

During the initial experiment, the IoT-CAPM-DL method is 
evaluated on PM2.5 on the employed dataset and 
computed the level of pollution in terms of RMSE, MAPE, 
MAE, and R2-Score. The comparative assessment of IoT-
CAPM-DL method using different performance indicators 
like RMSE, MAPE, MAE, and R2-score is provided in Figure 
4. The existing methods, including gated recurrent units 
(GRU), transformer, hybrid particle swarm optimization 
based HPSO-LSTMRNN, hybrid LSTM+RNN+genetic 
algorithm (GA), and hybrid LSTM+RNN+ant colony 
optimization (ACO) are used for comparison. The results 
show that the IoT-CAPM-DL model is significantly better, 
as demonstrated by its lower MAE and RMSE values, 
which signifies enhanced accuracy and less differences 
from actual data. The accurate predictions of model with 
a low percentage error are emphasized by the lower 
MAPE, which is crucial for dependable forecasting. The 
maximum R2 score value designates that the IoT-CAPM-
DL model is useful in capturing discrepancies in air quality 
and determines that it fits the data well. The CSplitStack-
VBA approach, which incorporates BcOA for tuning 
parameters and the stacked neural network for catching 
temporal correlations, is responsible for the improved 
performance. This exemplifies the model's dependability 
and flexibility in predicting changes in air quality. The 
performance of the IoT-CAPM-DL method using different 
performance indicators is provided in Table 2. 
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The effectiveness of IoT-CAPM-DL method in predicting air 
quality dynamics is demonstrated in Figure 5. The model 
has trained over 20 epochs, and the data is depending on 
information collected on the specified date. The graphical 
representation clearly illustrates the assessment of 
predicted and actual values, permitting for a visual 

assessment of the model's precision and ability to identify 
patterns in the air quality data. Besides, the model's 
ability to predict air quality is enhanced by utilizing 20 
epochs, which implies the dataset has processed 20 times 
throughout training. 

 

Table 2. Performance of IoT-CAPM-DL method using different performance indicators 

Parameters Transformer GRU Hybrid 
LSTM+RNN+ACO 

Hybrid 
LSTM+RNN+GA 

HPSO-
LSTMRNN 

Proposed 

RMSE 0.0074 0.082 0.0089 0.0105 0.0184 0.0051 

MAE 0.0237 0.0197 0.0185 0.0165 0.0082 0.0076 

MAPE 5874*109 3594*109 3021*109 2894*109 2002*109 1996*109 

R2-score 0.0591 0.0784 0.0874 0.0890 0.1227 0.1234 

 

Figure 4. Comparative assessment of IoT-CAPM-DL method (a) RMSE, MAE, MAPE and R2-score 

 

 

Figure 5. Prediction of IoT-CAPM-DL based on predicted and 

actual pollution level 

The MAE results for IoT-CAPM-DL model and the existing 
models are displayed in Figure 6. The IoT-CAPM-DL model 
outperforms other existing methods such as LSTM, GBTR, 
SVMR and HPSO-LSTMRNN with MAE results of 1.92, 2.05, 

2.53, 3.13, and 3.5 for 2 hours, 4 hours, 6 hours, 8 hours, 
and 10 hours. Among the existing methods, HPSO-
LSTMRNN obtained MAE value of 2.12 for 2 hours, 2.25 
for 4 hours, 2.89 for 6 hours, 3.65 for 8 hours, and 4.12 for 
10 hours, and it is closer to the proposed method. The 
IoT-CAPM-DL model performs better when the MAE value 
is lower.  
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Figure 6. MAE comparison from 2 hour to 10 hour 

 

Figure 7. RMSE comparison from 2 hour to 10 hour 

The RMSE results for the IoT-CAPM-DL model and the 
prevailing models are displayed in Figure 7. In comparison 
to LSTM, GBTR, SVMR and HPSO-LSTMRNN models, the 
IoT-CAPM-DL model yields RMSE scores of 0.74, 0.87, 
1.12, 1.46, and 2.30 for 2 hours, 4 hours, 6 hours, 8 hours, 
and 10 hours. Among the existing methods, HPSO-
LSTMRNN obtained better RMSE values of 1.13 for 2 
hours, 1.45 for 4 hours, 1.97 for 6 hours, 2.25 for 8 hours, 
and 2.87 for 10 hours and it is closer to IoT-CAPM-DL 
model. A lower RMSE of IoT-CAPM-DL model indicates 
that the model is performing better. 

 

Table 3. Analysis of k-fold cross validation 

Model Fold RMSE MAE MAPE R2-score 

Hybrid LSTM + RNN 

+ GA 

1 0.014 0.010 4.0% 0.93 

 2 0.017 0.013 4.8% 0.89 

 …… …… ….. ….. ….. 

 10 0.020 0.015 5.8% 0.84 

 Avg. 0.018 0.013 5.2% 0.87 

Hybrid LSTM + RNN 

+ ACO 

1 0.015 0.011 4.2% 0.92 

 2 0.016 0.012 4.5% 0.91 

 …… ……. …… …. …. 

 10 0.020 0.015 5.8% 0.84 

 Avg. 0.018 0.013 5.2% 0.87 

HPSO-LSTMRNN 1 0.012 0.009 3.5% 0.95 

 2 0.014 0.010 3.8% 0.94 

 …… ……. …… …… …… 

 10 0.015 0.011 4.0% 0.93 

 Avg. 0.013 0.010 3.8% 0.94 

Proposed 1 0.011 0.008 3.2% 0.91 

 2 0.012 0.009 3.5% 0.93 

 …… …… …… …… …… 

 10 0.014 0.010 3.7% 0.92 

 Avg. 0.012 0.009 3.7% 0.93 

 

The MAPE outcomes of IoT-CAPM-DL model for the first 
two hours in the range of 15–30, 30–40, 40–70, and 70+ 
are displayed in Figure 8. According to "WHO" standard 
guidelines, PM 2.5 in the restricted range of 0 to 20 has 
less effect on the human body because of its lower value. 
In the same way, the MAPE outcomes for the first four 
hours in the range of 15–30, 30–40, 40–70, and 70+ are 
displayed in Figure 9. The graphical representation 

indicates that the IoT-CAPM-DL prediction approach 
performs better in terms of MAE, MAPE and RMSE errors 
as well as model expressiveness with various models. 



AIR POLLUTION MONITORING SYSTEM USING STACKED ATTENTIONAL VECTORMAP CONVOLUTIONAL BIDIRECTIONAL NETWORK 11 

 

Figure 8. MAPE results for first 2 hour 

4.3.2. Assessment for k-fold cross validation 

The analysis of k-fold cross-validation is essential for 
examining an air-quality dataset. For effective public 
health management and environmental monitoring, air 
quality prediction depends heavily on the robustness and 
dependability of predictive models. The k-fold cross-
validation is especially supportive to handle the 
complexity and inherent unpredictability of air quality 
data. Datasets on air quality usually reveal variations 
throughout time and space. This unpredictability can be 
helped and considered when training and evaluating 
models by including a range of data points from different 
sources. Besides, a model's generalizability across various 
contexts and time periods is evaluated by K-fold cross-
validation through systematically rotating different 
subsets of the dataset for testing and training. Also, the k-
fold cross-validation analysis is indispensable for getting a 
trustworthy and unbiased assessment of the model's 
accuracy, which increases the forecasts' accuracy for 
actual air quality conditions. When handling the 
complexities of fair quality datasets, the findings from K-
fold cross-validation increase the comprehensive 
evaluation of the model's performance. 

 

Figure 9. MAPE results for first 4 hour 

The outcomes of a 10-fold cross-validation for IoT-CAPM-
DL and existing models in air quality prediction are shown 
in Table 3. Every row resembles to a fold, presenting 
metrics like MAE, R2 Score, MAPE, and RMSE. The average 
performance over all folds is exposed by the "Avg" row. 
With an average RMSE of 0.012 and MAE of 0.009, the 
IoT-CAPM-DL model continuously establishes increased 
accuracy in predicting air quality levels and showing a 
decrease in prediction errors. The model's accuracy is 
emphasized by the average MAPE of 3.7%, which displays 
a lower level of error. A better level of explained variance 
and dependability in the predictions is designated by the 

R2 score of 0.93. The existing models show poorer 
performance with higher average higher RMSE, MAPE, 
and MAE, and lower R2 scores. The IoT-CAPM-DL model’s 
dependability and effectiveness are emphasized by its 
strong and constant performance in air quality prediction. 

5. Conclusion 

This paper contributes to a novel IoT-CAPM-DL model for 
predicting air quality by addressing the existing problems. 
To ensure the data quality, the IoT-CAPM-DL starts with 
pre-processing the collected data stored in cloud. After 
pre-processing, the significant features are extracted and 
predicted air quality index using CSplitStack-VBA network. 
The optimal parameters selected through BcOA supported 
the CSplitStack-VBA network to minimize the error and 
maximize the performance. The performance of IoT-
CAPM-DL model is evaluated by means of different 
performance indicators and it accomplished 1996*10^9 of 
MAPE, 0.0051 RMSE, 0.0076 MAE and 0.1234 R2-score, 
respectively. Overall, the proposed IoT-CAPM-DL model 
accomplishes better than the prevailing approaches 
across all performance indicators and contributes to a 
robust framework for predicting air quality and enhancing 
the understanding of air pollution dynamics to mitigate its 
effect on public health and environment. However, the 
continuously processing and transmitting IoT data can be 
resource intensive. This challenge is resolved by modelling 
a quality of service (QoS) aware and energy efficient 
protocol as future work. In addition, experimenting with 
other hybrid optimization strategies for hyper-parameter 
tuning can accomplish efficient neural network 
configuration. 
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