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ABSTRACT 

Wastewater recycling will protect the environment by reducing the quantity of contaminants released 

into water bodies, safeguarding aquatic ecosystems, and averting water pollution. The objective is to 

transform polluted ponds into clean water sources through real-time monitoring and efficient 

treatment by tracking water quality parameters such as pH, dissolved oxygen, turbidity, and biological 

oxygen demand using plotted IoT sensors. The IoT sensors continuously transmit real-time data to a 

cloud-based system, where the HG-RNN algorithm models complex relationships between water 

quality metrics to predict and optimize treatment processes. The HG-RNN is trained on historical 

data to predict future water quality trends and identify potential issues. Based on these predictions, 

appropriate treatment strategies can be implemented in real-time, such as adjusting chemical dosages 

or activating filtration systems. This proactive approach ensures optimal water quality and prevents 

further pollution.  

Keywords: Wastewater Recycling, Gated Linear Unit, Hierarchically Gated Recurrent Neural 

Network, Vision Pond Skimmer, Machine Learning, IoT Sensors, Cloud Environment 

1. Introduction 

In the 19th century, the first wastewater treatment plants were established as a reaction to concerns 

about public health. The primary objective of these initial systems was to eliminate solid waste and 

minimize unpleasant odors Periyasamy A.P. et al., (2024). The technological progress of the 20th 

century resulted in the development of more advanced treatment methods, such as biological and 

chemical treatment. Water reuse is becoming prevalent in agricultural and industrial sectors. The 

increasing scarcity of water and growing environmental concerns in the 21st century have made water 

recycling a key focus of sustainable development Baskar G. et al., (2024).  Ponds operate as natural, 

economical wastewater treatment systems that cleanse water, promote public health, and enhance 

environmental sustainability.  If compared to other systems, ponds need little capital investment and 

operating expenses, use natural processes, facilitate nutrient recovery, and are environmentally 

friendly; yet, they exhibit longer treatment times than mechanical and biological treatment facilities. 
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Inadequately maintained ponds might result in odor and pest problems. Advanced technology such 

as membrane filtering and desalination has extended water reuse options. Aeration floaters are crucial 

in diverse aquatic environments, ranging from aquaculture to wastewater treatment. They have a vital 

function in oxygenating water bodies, enhancing water quality, and sustaining aquatic life. 

wastewater from diverse sources including residential areas, industrial facilities, and runoff from 

agriculture. Before pouring the wastewater into the pond, it is necessary to pre-treat it to eliminate 

any large debris, sediments, paper, plastic covers, wood sticks, and dangerous compounds. This 

precaution decreases the burden on the pond's inherent purification mechanism and safeguards the 

integrity of the aquatic ecology Raveena Selvanarayanan et al., (2024), Thomsen L.B.S. et al., (2024) 

and M Venkatraman (2024). Sensors are placed in the pond at different zones to monitor water quality 

parameters such as physical parameters (temperature, conductivity, turbidity), chemical parameters 

(pH, dissolved oxygen, biological oxygen demand), and biological parameters (algal bloom, bacterial 

presence). Sensors can promptly identify changes in water quality indices, enabling timely measures 

to avert further deterioration. A quick decline in dissolved oxygen levels might activate alarms, 

notifying authorities of possible fish fatalities.  

A sensor network is created by connecting multiple sensors that provide data to a central system for 

ongoing analysis. Analyzed data are collected and transferred to wireless transmission to a cloud-

based platform. Preprocessing and data analysis The Hierarchical Gated RNN model is used for data 

cleaning (missing values, outliers, noise reduction), data normalization, feature engineering, and 

Exploratory Data Analysis (EDA) Sundarapandi A M S. et al., (2024) and M Venkatraman (2023). 

Cloud-based environments are connected to the IoT device plotted near the pond to monitor and 

collect real-time data on wastewater quality, flow rates, and treatment processes. Pond skimmers are 

devices mainly used to remove floating debris and scum from wastewater treatment ponds using 

camera integration to capture images, image processing analyze water change, anomaly detection 

learn and train abnormal patterns in water.  Aerator floaters are designed to distribute optimal oxygen 

transfer and treatment efficiency. There are several types of paddle aerator floaters designed to move 
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across the wastewater surface, ensuring even aeration coverage Periasamy, S et al., (2024) and 

Selvanarayanan, R. et al., (2024). They can be either manually or automatically controlled. 

Monitoring and optimization are essential for effective and dependable wastewater treatment. Sensors 

gather real-time data on essential parameters, allowing remote monitoring, predictive maintenance, 

and process optimization. The Internet of Things (IoT) technology enables data transmission and 

control, whilst software processes data, issues warnings, and enhances operational efficiency. This 

comprehensive strategy guarantees the safeguarding of public health, the sustainability of the 

environment, and the economical administration of wastewater treatment facilities. In real-time 

industrial wastewater treatment facilities for Supervising industrial discharges for adherence to 

regulatory criteria, detecting and mitigating pollution sources, and enhancing treatment 

methodologies to reduce environmental repercussions. The dependability of IoT sensors may be 

influenced by variables like climatic conditions, power supply, and maintenance. Sensor malfunctions 

or calibration inaccuracies may result in erroneous data and diminished model efficacy. The 

framework of the above article is as follows: Section 2 provides a comprehensive examination of 

previous research on Hierarchical Gated Recurrent Neural Networks with the Internet of Things, 

using Machine learning. Section 3 provides a comprehensive explanation of the planned HG-RNN, 

vision pond skimmer technique. Section 4 provides an overview of the experimental configuration 

and the outcomes obtained. Section 5 examines the findings and contrasts HG-RNN with current 

approaches. The work is concluded in Section 6, which also covers future research topics. 

2. Literature Survey 

Aeration floaters occupy a crucial role in diverse aquatic environments, ranging from aquaculture to 

wastewater treatment. They have a vital function in oxygenating water bodies, enhancing water 

quality, and sustaining aquatic life. The objective of this review of the literature is to present a 

comprehensive analysis of the current body of research on aeration floaters, with a specific emphasis 

on their design, performance, uses, and environmental consequences. Saeed T et al., (2024), 

wastewater treatment systems that integrate floating wetlands with septic tanks. The improvement of 
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bioenergy output and nutrient removal is the main focus. Floating wetlands offer extra treatment and 

habitat, and two-stage septic tanks enhance the decomposition of organic materials. Biogas 

production and microbial activity can both be enhanced by the oxygen from outside sources. Through 

regulation of flow and nutrient transfer, circuit coupling between systems maximizes treatment 

efficiency. Choosing the right plant, operational factors, and system design are crucial for maximum 

efficiency and power output. Adhikari, K et al., (2020), The Pond-In-Pond (PIP) system shows great 

potential as a viable option for the treatment and reuse of wastewater. The system combines anaerobic 

and aerobic ponds to improve the effectiveness of the treatment process. Research suggests that PIP 

systems are successful in significantly reducing Biochemical Oxygen Demand (BOD) to levels that 

are appropriate for reuse. CFD models have been used to enhance the performance of PIP design 

through optimization. Although PIP systems provide cost-effective and energy-efficient treatment, 

additional research is required to establish uniform design parameters and investigate their suitability 

in different climatic settings.  Kelestemur, Guluzar T et al., (2024), Pond aeration systems essentially 

aim to improve the efficiency of oxygen transmission. Research has investigated many techniques for 

aeration, such as surface and subsurface aerators. The oxygenation efficiency is influenced by several 

key aspects, including impeller design, air flow rate, water depth, and pond features. Scientists 

frequently utilize experimental configurations to quantify the amounts of dissolved oxygen and 

determine the speeds at which oxygen is transferred. The objective of optimization studies is to 

identify the most efficient system designs for various pond conditions. Although some progress has 

been achieved, additional study is required to enhance the efficiency and sustainability of aeration 

methods. Tong, C et al., (2024), aeration in recirculating aquaculture systems (RAS) is the levels of 

dissolved oxygen (DO), which have a substantial impact on the health and growth of fish. Prior 

research investigates different aeration techniques, such as surface and subsurface aerators, and their 

influence on water quality factors. There is an increasing fascination with aeration systems that are 

both energy-efficient and cost-effective. However, research is scarce on innovative aeration device 

designs that are specifically customized for RAS (Recirculating Aquaculture Systems). Important 
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factors to consider in the design include the efficiency of oxygen transfer, the amount of energy 

consumed, the degree of noise produced, and the ability to resist biofouling. Gaining a comprehensive 

understanding of the interplay among aeration, water quality, and fish physiology is essential for 

maximizing the performance of a Recirculating Aquaculture System (RAS) as follows in Table 1. 

Table 1. Existing Work is Compared with the Proposed Work 

Author Algorithm Methodology Result Future Scope 

Ji, 

Mingdong et 

al., 2024 

Mathematical 

Model 

Aeration flow rates, 

dissolved oxygen (DO) 

measurements, water 

quality parameters, and 

hydrodynamic 

simulations. 

Development of a 

mathematical model 

to predict DO 

distribution and 

oxygen transfer rate. 

Aeration system 

design for different 

fish species and 

stocking densities. 

Wu, Ye, 

Lingfeng 

Zhang et al ., 

(2024) 

Oxygen Mass 

Transfer 

Coefficient 

Economic analysis Assessed the 

economic feasibility 

of the intelligent 

oxygenation system. 

Develop predictive 

models for oxygen 

demand based on 

environmental 

factors. 

Roy, Subha 

M et al.., 

(2024) 

Cascade 

Aeration System 

Comparative analysis 

with other aeration 

systems. Economic 

evaluation. Life cycle 

assessment. 

PPCSC offers high 

performance and 

lower operational 

costs compared to 

traditional systems. 

Aquaculture 

scales. 

Development of 

hybrid aeration 

systems. 

Tien 

Nguyen, N et 

al., (2024) 

Mechanical 

aeration, Bubble 

diffusion 

Oxygen injection 

Bioaugmentation 

Combination of aeration 

and wastewater 

treatment, Optimization 

of system parameters 

Improved dissolved 

oxygen levels, 

enhanced shrimp 

growth, and reduced 

disease outbreaks. 

Development of 

more sophisticated 

models 

incorporating 

complex 
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interactions 

between 

biological, 

chemical, and 

physical factors. 

Qiu, Y et al., 

2024 

Computational 

Fluid Dynamics 

(CFD) 

Two-phase flow model, 

gas-liquid mass transfer, 

biokinetic model 

Evaluation of design 

and operational 

boundary conditions 

Develop advanced 

statistical methods 

for model 

validation 

Samsuri, E. 

R et al., 

(2024) 

Microbubble 

aeration 

Biofloc technology, 

microbubble aeration, 

water quality parameters 

(DO, pH, temperature, 

salinity, ammonia, 

nitrite, nitrate), shrimp 

growth, survival rate, 

feed conversion ratio 

Improved water 

quality, enhanced 

shrimp growth and 

survival, reduced 

water exchange 

Optimize 

microbubble size 

and aeration 

intensity, 

 

3. Materials and methods 

The research focuses on wastewater recycling system which involves multiple treatment stages tier 1 

grid removal, tier 2 removal of solids and organic matter, tier 3 biological oxygen demand (BOD) 

reduction, and tier 4 sand filtration. UV disinfection kills harmful bacteria and viruses Figure 0. IoT 

sensors and vision cameras are placed near the pond to monitor the purity of recycled water. Collected 

information is transferred to a cloud environment. The proposed algorithm Hierarchically Gated RNN 

monitor and predict the performance of the wastewater treatment system continuously. Aeration 

floaters are used to monitor the purity level of the recycled wastewater. They help maintain oxygen 

levels and prevent stagnation in the water body. 

3.1. Evaluation Setup 
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Paddlewheel Aerator- model AM-G001, 2024. IoT setup as shown in Figure 1. Python 3.6, Data 

Visualization Tools Matplotlib, Cloud platform AWS, DC Power Supply, Wi-Fi communication 

module - Permits linking to a nearby Wi-Fi hotspot for web surfing. Axis Communications PTZ 

Dome Network Camera Q3615-E Features High-resolution imaging, pan-tilt-zoom capabilities, 

weatherproofing, and night vision. Underwater camera Sea Vision HD 1000 with Waterproof 

housing, high-definition imaging, and LED lighting for low-light conditions. Personal Computer (PC) 

with the following specifications Processor: operating system Windows 11, Graphics Card: Nvidia 

GeForce 1050Ti 4GB, Intel Core i5-8600, Storage: 250 GB SSD (fast boot and program loading) + 

1 TB HDD (large data storage), RAM: 16 GB. The proposed model is evaluated using True Positive, 

True Negative, False Positive, and False Negative, and metrics using the Hierarchical-Gated 

Recurrent Neural Network.  

 

Figure 1. Block Diagram of Data Collection using IoT Devices   

3.2. Wastewater Collection and Pre-Treatment Process 

Wastewater is gathered from a multitude of origins, which may encompass, residential areas generate 

domestic wastewater, which consists of sewage and grey water from sinks, showers, and washing 
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machines in homes. Industrial facilities generate process water and effluents that can potentially 

contain chemicals, oils, heavy metals, and other pollutants. Agricultural runoff refers to the water that 

originates from farms and may contain fertilizers, pesticides, and organic waste. Stormwater runoff 

entails rainwater that accumulates contaminants as it travels across urban or agricultural areas (Figure 

2). The wastewater collection structure consists of underground sewage networks that collect 

wastewater from residential, industrial, and commercial areas. Pumping stations are used in cases 

when the inherent flow of wastewater is insufficient. These pumping stations elevate the wastewater 

to higher elevations to facilitate its transportation to the treatment facility. Drainage systems have 

Storm water and agricultural runoff are often collected using drainage systems that direct the flow 

 

Figure 2. Wastewater is collected from various sources such as A. residential areas, B. Industrial 

Areas, C. Agricultural Runoff, D. Storm water Runoff 

toward treatment facilities or ponds. Conveyance to the treatment facility or reservoir: Once collected, 

the wastewater is transported via pipes or channels to the pre-treatment plant and straight to the pond. 

Aeration floater contains a motorized aeration mechanism, such as a diffuser and propeller, which 

enhances oxygen diffusion and circulation. Collected data as shown in Figure 3, are stores the given 

data in a dictionary format. Converts the dictionary into a pandas Data Frame. Saves the Data Frame 

as a CSV file named water quality data.csv. Displays the Data Frame to the console. 
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Figure 3. Collected Dataset from the Pond 

3.3. IoT Sensors Installed in the Pond 

IoT sensors are designed for monitoring real-time water quality to ensure the pond remains healthy 

and clean. As illustrated in Figure 4, water quality sensors such as pH sensors measure the acidity or 

alkalinity of the pond water. These sensors are usually placed underwater in various sections of the 

pond to observe changes throughout the pond's surface. Dissolved oxygen sensors measure the 

concentration of oxygen dissolved in the water, DO sensors are strategically positioned at different 

depths to monitor oxygen levels across the entire pond, particularly in places sensitive to low oxygen 

levels. The purity of water is measured by turbidity sensors, which detect suspended particles. Algal 

blooms or pollutants can cause high turbidity. For water clarity monitoring, these sensors are placed 
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around the pond. Temperature sensors measure water temperature, which influences aquatic creature 

metabolism and oxygen solubility. To fully assess the pond's thermal characteristics, temperature 

sensors are installed at the surface and various depths. Conductivity sensors evaluate water's ability 

to conduct electricity, which is connected to ion concentration (salts, minerals). Distributed over the 

pond, these sensors detect high dissolved solids concentrations. Nitrates, phosphates, ammonia, heavy 

metals, and organic substances are detected using chemical sensors.  

 

Figure 4. Various IoT Sensors Are Installed in the Pond to Monitor Recycling Wastewater 

Chemical sensors are positioned near wastewater inlets and runoff points to prevent pollution from 

entering the pond. Environmental sensors such as weather sensors measure air temperature, humidity, 

wind speed, and rainfall Table 2. Such things can affect water quality. These sensors monitor the 

pond's environment from poles or platforms. Solar radiation sensors measure sunlight entering the 

pond, affecting aquatic plant photosynthesis and algae growth. Usually over the pond with weather 

sensors. Water flow sensors assess pond water entry and exit rates to understand water exchange and 

dilution. Installed pond inlets and outlets to monitor water flow. Level sensors at set sites around the 

pond measure water level, evaporation rates, rainfall influence, and inflow/outflow balance. 

Biological Sensors such as Algal Blooms detect hazardous algal blooms (HABs) that create toxins in 

the water. These sensors are at the surface where algae grow. Biological oxygen demand (BOD) 
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sensors measure organic pollution by measuring the oxygen aerobic bacteria need to break down 

water organics. BOD sensors are put near inlets to detect organic pollution. 

 Table 2. Before Cleaning the Pond Sensor Readings and Status with Comments 

Sensor Type Unit Typical 

Range in 

Pond 

Current 

Sensor 

Reading 

Status Acceptance 

Limits  

Comments 

pH Sensor pH 

Units 

6.5-8.5 5.8 Red Green (6.0-9.0) 

Yellow (5.8 -9.2) 

Red (< 6.0 or > 

9.0) 

pH is too low; water 

is too acidic for 

most aquatic life 

Dissolved 

Oxygen (DO) 

Sensor 

mg/L 5.0 - 14.0 3.0 Red Green (5.0-14.0) 

Yellow (4.5) 

Red (< 4.0) 

Low DO indicates 

potential hypoxic 

conditions 

Turbidity 

Sensor 

NTU 1 - 50 120 Red Green (1-50) 

Yellow (60-80) 

Red (>100) 

High turbidity, 

likely due to 

suspended particles 

or algae 

Water 

Temperature 

Sensor 

°C 10 - 30 28 Green Green (10-35) 

Yellow (36) 

Red (< 10-> 35) 

Within acceptable 

range for aquatic 

life 

Water 

Conductivity 

Sensor 

µS/cm 100 - 2000 2500 Red Green (500-1500) 

Yellow (1600) 

Red (>2000) 

High conductivity, 

indicating elevated 

ion levels 

Chemical 

Sensor 

mg/L  Varies by 

chemical 

N () Red Green (6.0-9.0) 

Yellow (5.8 -9.2) 

Red (< 6.0 or > 

9.0) 

High ammonia 

level, toxic to 

aquatic organisms 
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Algal Bloom 

Sensor 

Cells/

mL 

0 - 20,000 35,000 Red Green (0-20,000) 

Yellow (25,000) 

Red (>30,000) 

Algal bloom 

detected, potential 

risk of 

eutrophication 

Biological 

Oxygen 

Demand 

(BOD) 

Sensor 

mg/L mg/L 550 Red Green (20-500) 

Yellow (550) 

Red (>600) 

Very high BOD, 

indicating 

significant organic 

pollution 

Level Sensor cm or 

m 

Site-

specific 

100 cm Green Green (100) 

Yellow (150) 

Red ( 200) 

Normal water level 

Water Flow 

Sensor 

L/s or 

m³/h 

Varies by 

system 

size 

5 L/s Green Green (5) 

Yellow (7) 

Red ( 9) 

A low flow rate 

could indicate low 

inflow or stagnation 

Solar 

Radiation 

Sensor 

W/m² 0 – 1000 6.0 Green Green (6.0-9.0) 

Yellow (5.8 -9.2) 

Red (> 9.0) 

Adequate sunlight 

may influence algal 

growth 

Weather 

Sensor 

Varies Site-

specific 

60°C RH Green Green (32°C) 

Yellow (60°C) 

Red (70°C) 

Warm and humid 

conditions could 

affect water 

temperature and DO 

levels 

 

3.4. Real-Time Data Collection and Transmission to the Cloud Environment 

Improving wastewater quality to protect the environment using IoT sensors, Node MCU, Arduino, 

and cloud environment. Universal Asynchronous Receiver-Transmitter (UART) is a communication 

protocol. A transmitter, denoted as T, is transmitting a continuous sequence of bytes to a receiver, 
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denoted as R. T is a faster gadget compared to R, and R is unable to match its speed. Before continuing 

to receive data, it is necessary to either do data processing or clear certain buffers. R needs to instruct 

T to temporarily cease transmission. Flow control is the concept that is relevant in this context. Flow 

control enables additional signaling to indicate to the transmitter when it should cease (pause) or start 

(resume) the transmission. Multiple types of flow control are available. Hardware flow control 

employs additional wires to determine whether the transmitter should continue transmitting data or 

halt, based on the logic level of these wires. Software flow control involves the sending of certain 

characters across the regular data channels to initiate or terminate the transmission. 

Algorithm 1: Sensor readings are stored 

 Int sensor value;  

            Serial. begin (9600);                                     [Serial monitor for debugging] 

            Serial1.begin (9600);                                    [Serial-1 for sending data] 

void loop ()  

            Sensor value = analog Read (sensor pin);     [Read sensor value]  

            if (sensor value > 100)         [Send data only if sensor value exceeds a threshold]                          

String message = "Sensor value: " + String (sensor value);  [Combine text and sensor data] 

            Serial1.println(message); 

            if (Serial. Available () > 0)  

3.5. Hierarchical-Gated RNN 

The Hierarchically Gated Recurrent Neural Network (HGRNN) is a new structure created to improve 

the abilities of normal Recurrent Neural Networks (RNNs) in tasks involving the modeling of 

sequences. HG-RNN has a unique capability to discern both short-term and long-term intricate 

patterns in wastewater quality metrics. The hierarchical structure encapsulates both detailed and broad 

temporal relationships, allowing the model to discern complex patterns across several time scales, 

essential for comprehending the dynamic characteristics of wastewater quality. In comparison to 

analogous algorithms like LSTM, which is computationally intensive, GRU does not capture as 
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intricate relationships, CNN is less appropriate for sequential data, and the hybrid model (CNN-

LSTM) entails a complicated design and heightened computational expense. Gated Linear Units 

(GLUs) are used for channel-wise fusion, allowing the network to choose and proprietarily determine 

certain properties Peng-Fei, Lv. Et al., (2024). Hierarchical Gated Recurrent Units (HGRUs) are the 

essential building blocks of the HGRNN. Their main purpose is to capture and store temporal 

correlations. The authors suggest using a hierarchical forget gate system to control the transmission 

of information across different time steps and layers. The forget gates in HGRUs have a learnable 

lower limit, which guarantees the retention of knowledge across longer sequences (Figure 5). 

 

Figure 5. Proposed Algorithm Hierarchically Gated Recurrent Neural Network (HGRN) 

A multi-HGRU-layer, GLU-unit, and output-layer HGRNN take in the input sequence as wastewater 

quality parameters such as (temperature, pH, humidity, and dissolved oxygen level) are collected over 

time. Sequential data and their temporal dependencies are captured and processed in the first HGRU 

layer, which handles the input. A GLU unit is used for channel-wise mixing and receives the GLU 

output from the HGRU layer. Linear and layer norms are the production of the GLU that is 

transformed by a linear layer and then normalized using Layer Norm. SILU normalized output is 

passed through a SILU activation function. HRU output is fed into the next HGRU layer, which 

captures longer-term dependencies Eq 1. HGRU layers are repeated for subsequent results. The final 
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production of the HGRN is generated based on the outputs of the last HGRU layer, potentially passing 

through additional linear and activation layers. 

ht
l  =  HGRU(h{t−1}

l , xt, Wl, Ul, bl)                                                                                            (1)  

Where this is the hidden state at time step t for layer l., xt is the input at time step t. 𝑊𝑙 , 𝑈𝑙, 𝑎𝑛𝑑 𝑏𝑙 

are the weight matrices and bias for layer l. HGRU represents the Hierarchical Gated Recurrent Unit 

function. 

𝜇𝑡  =  𝜎(𝑊𝜇 ∗ 𝑥𝑡 + 𝑈𝜇 ∗ ℎ{𝑡−1} + 𝑏𝜇)                                                                                     (2) 

λt  =  γ +  (1 −  γ) ⊙  μt                                                                                                        (3) 

it  =  σ(Wi  ∗  xt  +  Ui  ∗  h{t−1} +  bi)                                                                                  (4) 

ctildet
=  tanh(Wc ∗  xt +  Uc ∗  h{t−1} +  bc)                                                                      (5) 

ct =  λt ⊙ c{t−1} +  it  ⊙  ctildet
                                                                                            (6) 

gt = σ(Wg ∗  xt +  Ug ∗ h{t−1} + bg)                                                                                     (7) 

yt = gt ⊙ xt + (1 −  gt) ⊙ h{t−1}                                                                                      (8) 

Where Eq 2- Eq 8, xt Input vector at time step t (e.g., wastewater quality measurements), ht Hidden 

state at time step t, Ct cell state at time step t, W, U, V: Weight matrices, b: Bias vector, σ: Sigmoid 

activation function, tanh: Hyperbolic tangent activation function. 

Algorithm 2: Build HGRN model and Training Loop 

Step 1: HGRU Cell  

Function HGRU_Cell (input, previous_hidden_state, previous_cell_state):  

Calculate gates and cell state updates based on HGRU equations  

Update hidden state and cell state  

Return updated hidden state and cell state 

Step 2: HGRNN Layer 

Function HGRNN_Layer (inputs, number_of_units): 

Initialize hidden state and cell state with zeros 
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For each input: update hidden and cell states using HGRU_Cell and store the output. 

Return output as a numpy array. 

Step 3: Build the HGRNN Model 

Function Build_HGRNN_Model (input_dimension, hidden_units, number_of_layers): 

Create a list for HGRNN layers. 

For each layer: create an HGRNN layer, append it to the model, and update the input dimension. 

Return the model. 

Step 4: Train the HGRNN Model 

Function Train_HGRNN_Model(model, data, learning_rate):  

Initialize optimizer. 

For each epoch and batch: calculate outputs, compute loss, and update model parameters. 

Step 5: Predict with the HGRNN Model 

Function Predict (model, input_sequence):  

Pass input sequence through the HGRNN layers  

Return the final output 

3.6. Anomaly Detection and Prediction Using Computer Vision  

Timely identification of anomalies in wastewater quality monitoring is essential for promptly 

recognizing possible concerns such as pollution, equipment malfunctions, or changes in wastewater 

composition before they develop into major difficulties.  Preventing environmental pollution by 

quickly spotting abnormalities protects ecosystems and public health.  Utilizing process optimization 

techniques to detect anomalous patterns may enhance the efficiency of wastewater treatment 

operations, resulting in cost reduction and improved overall performance El-Shafeiy. Et al., (2023). 

The Vision Pond Skimmer is positioned over a tall pole, situated in the center of a pond. The pole is 

securely fastened to the pond's floor, guaranteeing stability. The gadget is affixed to the top of the 

pole, positioned to face outward in the direction of the water Figure 6. Vision Pond Skimmer 

technique will monitor and identify atypical patterns in several parameters. Deviation of pH values 
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from typical limits, which indicate acidity or alkalinity, may frequently indicate concerns caused by 

industrial discharges or equipment faults.  

 𝑌 = 𝑓(𝑋1, 𝑋2, … , 𝑋𝑛)                                                                                                                      (9)  

 

Figure 6. A Vision Pond Skimmer Approach to Anomaly Monitoring in Wastewater 

where, Y is the dependent variable (BOD (Biochemical Oxygen Demand), COD (Chemical Oxygen 

Demand), pH, Temperature, Dissolved Oxygen, Nutrient levels (nitrogen, phosphorus), Eq 9, 

Suspended Solids). (𝑋_1, 𝑋_2, … , 𝑋_𝑛) are the independent variables (Debris collected, battery life, 

Filter clogging rate, Environmental factors such as Rainfall, Wind speed, Temperature, Sunlight). 

Temperature variations, particularly abrupt increases or decreases, might potentially suggest the 

presence of industrial emissions, sources of heat, or inaccuracies in the sensors. Dissolved oxygen 

(DO) levels, which are essential for the survival of aquatic organisms, may be negatively affected by 

organic pollutants, biological processes, or fluctuations in temperature. Elevated levels of 

biochemical oxygen demand (BOD) and chemical oxygen demand (COD) often indicate the presence 

of organic pollutants, industrial wastes, or inadequate treatment. Industrial discharges, rainwater 

runoff, or equipment faults may cause an increase in total suspended solids (TSS).  

𝐵𝑂D = β0 + β1 × COD + β2 × pH + β3 × Temperature + β4 × Dissolved Oxygen

+ β5 × Nutrient Levels + β6 × Suspended Solids + β7 × Debris Collected

+ β8 × Rainfall + β9 × Wind Speed + ϵ                                                               (10) 
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equation 10, developed based on observed data collected from the wastewater system where, β0 is 

the intercept (the baseline value of BOD when all other parameters are zero). β1, β2 …  β91 are 

coefficients that represent the impact of each independent variable on BOD. ϵ is the error term, 

accounting for variability not explained by the model. Elevated ammonia levels, which serve as an 

indicator of organic pollution, are often caused by home sewage, industrial discharges, or animal 

waste. Nitrates and phosphates, which are essential nutrients, may lead to pollution when their 

concentrations are elevated, usually due to the discharge of fertilizers, animal waste, and sewage. 

Turbidity, which quantifies the level of purity in water, rises due to the presence of suspended 

particulates, industrial discharges, and storm water runoff. Ultimately, atypical flow rate variations 

may be ascribed to precipitation, mechanical faults, or obstructions. 

3.7. Aeration Floaters Device 

Paddlewheel surface aerators are designed to improve water quality by increasing oxygen levels, 

reducing algae growth, preventing fish kills, breaking stagnant water, promoting aquatic life, and 

improving water clarity Figure 7. The shape of floating platforms makes them resistant to different 

kinds of weather.  

 

Figure 7. Aeration Floaters Device Placed in the Pond for Monitoring Oxygen levels and Water 

Circulation. 
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Paddle wheels are made of metal or plastic and turn to stir up the surface. The paddle wheels turn 

around the vertical shaft of the Central Shaft. The power that turns the paddle wheels comes from the 

motor. It's made to work with electric, solar, or even wind power. 

3.8. Continuous Pond Cleaning, Monitoring and Water Quality Improved 

Water Quality can be achieved by regularly monitoring and observing abnormal readings in recycled 

water using a positioned sensor that can quickly identify deviations from the acceptable ranges Table 

3. The process of collecting data from the IoT-sensor-based water quality monitoring system involves 

continuously acquiring key water parameters in real-time. These parameters include BOD 

(Biochemical Oxygen Demand), COD (Chemical Oxygen Demand), pH, Temperature, Dissolved 

Oxygen, Nutrient levels (nitrogen, phosphorus), Suspended Solids, Debris collected, battery life, 

Filter clogging rate, and Environmental factors such as Rainfall, Wind speed, Temperature, Sunlight. 

Table 3. After Cleaning the Pond Sensor Readings and Status with Comments 

Date pH DO Turbidity Temp Conductivity Chemical Algae 

Bloom 

BOD Weather 

05-22-2024 5.8 4.5 80 50°C 1800 9.2 27,000 800 50°C 

05-23-2024 6.0 4.9 72 47°C 1789 9.1 25,000 789 45°C 

05-24-2024 6.1 5.0 66 42°C 1642 9.0 24,000 777 42°C 

05-25-2024 6.3 5.0 60 38°C 1500 8.9 22,000 745 38°C 

05-26-2024 6.7 5.0 55 35°C 1478 8.7 20,000 712 35°C 

05-27-2024 7.0 5.0 50 33°C 1347 8.6 19,000 701 31°C 

05-28-2024 7.1 5.3 45 30°C 1224 8.2 17,000 699 30°C 

05-29-2024 7.1 5.5 40 27°C 1141 7.7 15,000 691 27°C 

05-30-2024 7.3 5.7 35 33°C 1021 7.5 13,000 689 33°C 

05-31-2024 7.3 5.9 31 33°C 987 7.5 11,000 677 33°C 

06-01-2024 7.4 6.2 27 33°C 921 7.4 10,000 645 30°C 

06-02-2024 7.5 6.2 25 33°C 897 7.4 9,000 632 33°C 

06-03-2024 7.6 7.0 21 33°C 842 7.3 9,000 632 35°C 
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06-04-2024 7.3 7.5 19 33°C 811 7.3 8,500 622 33°C 

06-05-2024 7.3 7.9 15 33°C 751 7.2 8,200 612 33°C 

06-06-2024 7.3 8.4 15 27°C 712 7.1 8,200 603 27°C 

06-07-2024 7.5 8.6 14 27°C 645 7.1 8,150 599 27°C 

06-08-2024 7.5 8.9 12 33°C 601 6.9 8,000 578 33°C 

06-09-2024 7.5 9.7 10 33°C 550 6.5 7,200 566 33°C 

06-10-2024 7.7 9.9 8 31°C 521 6.2 7,000 545 31°C 

 

4. Implementation and Results  

To conduct a comparative analysis between proposed Hierarchical Gated Recurrent Neural Network 

(HG-RNN) and other commonly used sequence modeling structures (Support Vector Machine, 

Random Forest, Feedforward Network, K-means Clustering, Logistic Regression, and FE-RNN), 

Primary language as python for implementation models, pytorch and Scikit-learn performance 

metrics, and comparing results, Matplotlib for virtualization. Regular ongoing monitoring involves 

the collection of samples over one year (365 days), totaling around 27 samples each day, resulting in 

an overall accumulation of 10,000 samples. This situation would need regular monitoring, maybe on 

a daily or hourly basis, to monitor fast changes in water quality metrics.  Batch size of 1000, number 

of epochs 50, learning rate is 0.01, number of iteration 10. Training set 7000 (70%), testing set 1500 

(15%), and validation set 1500 (15%) Figure 8. The collected data was then inputted into the system 

to detect repetitive patterns and trends in the quality of water, especially to assist in the management 

of pond cleanliness and the quality of recycled water. 

4.1. Performance Compared with HG-RNN 

In recycled water quality is monitored using a true positive rate by correctly predicting an anomaly 

in wastewater quality, a true negative rate by correctly predicting normal wastewater quality, a false 

positive by incorrectly predicting an anomaly, and a false negative by incorrectly predicting normal 

water quality. Accuracy measures the overall correctness of the model's predictions. A high accuracy 

indicates that the model is making correct predictions most of the time Eq 11. 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
                                                                   (11)  

 

Figure 7. Dataset for Training and Testing Set 

Precision measures the proportion of correct positive predictions. A high precision indicates that the 

model is not making many false positive predictions Eq 12. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
True Positives

True Positives +  False Positives
                                                                     (12)  

Recall measures the proportion of actual positive cases that the model correctly identified. A high 

recall indicates that the model is not missing many positive instances Eq 13. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
True Positives

True Positives +  False Negatives
                                                                          (13) 

F1-Score is a harmonic mean of precision and recall, providing a balanced measure of both. A high 

F1 score indicates good performance in terms of both precision and recall Eq 14. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
Precision ∗ Recall

Precision + Recall
                                                                                           (14) 

Specificity measures the proportion of actual negative cases that the model correctly identified. A 

high specificity indicates that the model is not making many false positive predictions Eq 15. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
True Negatives

True Negatives +  False Positives
                                                               (15) 
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Table 4, shows the overall performance of the Proposed HG-RNN Model compared with other 

existing algorithm obtains a remarkable accuracy of 96.89%, demonstrating its ability to accurately 

classify the majority of samples. The F1-Score is a statistic that achieves a balance between accuracy 

and recall.  

Table 4. Comparison of Different Algorithm with Proposed Model 

Performance Accuracy F1-Score Recall Specificity Precision 

Support Vector 

Machine 

76.66% 73.13% 75.77% 74.21% 71.72% 

Random Forest 79.88% 79.24% 79.60% 79.16% 79.44% 

Feedforward Neural 

Network 

82.50% 82.61% 82.60% 82.80% 82.02% 

K-means Clustering 85.98% 86.23% 87.12% 87.89% 83.12% 

Logistic Regression 89.97% 83.23% 85.91% 86.12% 87.73% 

FE-RNN 92.40% 92.45% 93.22% 94.78% 92.21% 

Proposed HG-RNN 

Model 

96.89% 95.42% 96.77% 96.75% 96.58% 

The HG-RNN Model demonstrates exceptional performance in this aspect, achieving an impressive 

F1-score of 95.42%. High recall rate of 96.77%, suggesting its capacity to accurately detect the 

majority of real anomalies. Specificity of 96.75%, indicating its ability to accurately identify normal 

samples without generating false alarms. The precision of 96.58%, suggesting that its positive 

predictions are quite accurate. A pairwise density plot shows the relationship between water quality 

parameters kernel density estimation (KDE). Eq 16 where, Pij pairwise relationship between two 

parameters Xi, Xj.  

Pij = f(Xi, Xj)                                                                                                                                     (16) 

𝑓(𝑝𝐻, 𝐷𝑂) = 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑝𝐻, 𝐷𝑂)                                                                                          (17) 

f (Turbidity, Temp) = correlation(Turbidity, Temp)                                                          (18) 

f (Nitrate, Conductivity) = correlation(Nitrate, Conductivity)                                         (19) 
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Figure 9. Recycled Water Quality Analysis 

The subplots display the density relationships between two parameters in a paired fashion shown in 

Eq (16) - (19). Most of the data for that parameter combination is concentrated in the shaded blue 

zones, representing areas of high-density data points. Figure 9, The diagonal plots display the pH 

values, dissolved oxygen, and turbidity levels of the current data, while, the off-diagonal plots 

illustrate the pH values, dissolved oxygen, and turbidity levels of the historical data. Darker regions 

indicate more data point density, whereas lighter regions signify lower data point density. Positive 

Correlations: A concentration of color intensity along a diagonal line from the bottom left to the top 

right indicates a positive correlation between the two variables. A robust positive association between 

pH and alkalinity may suggest that elevated pH levels correspond with increased alkalinity. Negative 

Correlations: A concentration of color intensity along a diagonal line from the top left to the bottom 

right indicates a negative connection. A negative association between temperature and dissolved 
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oxygen suggests that elevated temperatures result in decreased dissolved oxygen levels. No 

Correlation: An equal distribution of color intensity throughout the plot indicates a lack of substantial 

link between the two parameters. As an example: The pH-dissolved oxygen relationship may help 

measure water ecosystem health. High dissolved oxygen may indicate a certain pH range. Turbidity 

and water temperature may suggest suspended particles that impact water heating. Chemical sensors 

monitoring nitrates can be linked with water conductivity, suggesting pollution-induced ionic 

presence of water quality analysis. Figure 10, demonstrates the performance of the proposed HG-

RNN model in transforming a pond into a clean-water pond. It is compared with existing algorithms 

that are most suitable for real-time IoT sensor-based monitoring systems in wastewater recycling. 

The goal is to ensure accurate predictions, effective detection of contaminants, and optimal 

intervention in the water treatment process. The figure 11, determine the ideal equilibrium between 

the rate of oxygen transport and the effectiveness of oxygen utilization. Real-time monitoring of this 

balance is essential in wastewater recycling, since the oxygen demand in water bodies changes owing 

to variable amounts of organic contaminants, algae development. The data distribution across various 

graphs is distinct, indicating that specific conditions substantially influence the oxygen transfer 

behavior. In certain subplots, the optimum efficiency is achieved at moderate or higher oxygen 

transfer rates, while in others, it is higher at lower rates. The proposed system could be programmed 

to optimize aeration rates in ponds or treatment facilities to sustain high oxygen transfer efficiency, 

thereby ensuring that ponds are transformed into clean water more effectively. A model that learns 

the patterns in the training data is one with a high training accuracy. Figure 12, shows how well HG-

RNN performed on unknown data is the validation accuracy statistic, which shows what proportion 

of validation samples were properly identified. Figure 11 shows that this improves the model's ability 

to generalize to new data. The Training Loss metric quantifies the disparity between the predictions 

made by the HG-RNN model and the actual targets included in the training data. A diminishing 

training loss signifies that the model is improving its capacity to accurately represent the training 

data. Loss during the validation process Validation loss, like training loss, quantifies the disparity 
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between predictions and targets using unseen validation data. If the validation loss remains consistent 

or decreases, it indicates that the model is learning from the training data without overfitting. 

Figure 10. Performance Compared with Existing Algorithms 

 

Figure 11. Aerator Monitor Recycled Water Oxygen Level Monitoring 
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Figure 12. Proposed Model Performance Analysis 

5. Conclusion and Future Direction  

Wastewater treatment enables the secure use of water in many fields such as agriculture, 

manufacturing, and landscaping. This minimizes the pressure on freshwater resources, encourages 

water preservation, and guarantees the implementation of sustainable water governance. The 

wastewater originates from several sources, such as residential areas, industrial facilities, and 

agricultural runoff. Prior to discharging the wastewater into the pond, it is essential to subject it to 

pre-treatment to remove any sizable debris, silt, paper, plastic coverings, wooden sticks, and 

hazardous substances. This measure reduces the strain on the pond's natural cleaning system and 

protects the stability of the aquatic ecosystem. IoT sensors will monitor real-time on wastewater for 

immediate detection of any issues or deviations from optimal conditions. HG-RNN model is trained 

on historical data and pre-treatment process of water. Ability to analyze complex data relationships 

enhances the accuracy of pollutant detection and treatment optimization, ensuring that water quality 

is maintained at safe levels. Compared with existing algorithm, proposed algorithm HG-RNN 

achieved accuracy excels in F1-score (95.42%), recall (96.77%), specificity (96.75%), and precision 

(96.58%), highlighting its robustness in detecting and treating water contaminants in real-time. Future 
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directions could merge reinforcement and deep learning for predicting contamination patterns more 

effectively and autonomously adjusting treatment parameters. 
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