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ABSTRACT 

Human activities are directly affected by weather events. In particular, extreme weather events like 

forest fires, global warming, drought-causing high air temperatures make human life challenging. The 

use of reliable and accurate weather prediction models is essential to take precautions against these 

types of climate events. As a result, creating models that accurately forecast the weather is critical. The 

successful development of deep learning-based weather prediction models has largely aided by 

technological advancements. With high success rate, this paper proposes a Robust Feature Selection 

based Hybrid Weather Prediction (RFS-HWP) model for weather prediction. The input dataset is 



 

 

initially pre-processed with the help of Missing Data Imputation and Z-score Standardization. After 

that, the feature selection process is accomplished using Botox Optimization Algorithm (BxOA) to 

find the optimal subset of features. The selected features are then fed into the Hybrid Deep Gated 

Tobler’s Hiking Neural Network (HDGT-HNN) model, which classifies weather conditions into three 

classes as temperature, pressure and humidity. The hyper-parameters of HPC-DBCN are optimized 

using Hiking Optimization Algorithm (HiOA). The entire implementation is carried out on Python 

platform using publicly available Jena climate dataset, and many types of performance measures are 

calculated. Also, the usefulness of RFS-HWP model is proven by comparing its performance to state-

of-the-art approaches. As a result, the RFS-HWP outperforms by accomplishing overall accuracy of 

99.3% and proven to be an applicable model for weather forecasting systems. 

Keywords: Weather prediction; Deep learning; Botox optimization; Feature selection; Hiking 

optimization; Gated recurrent unit; Attention mechanism;  

1. Introduction  

The ability to predict weather conditions, such as temperature and humidity, allows us to 

understand the climate and make decisions accordingly. Wind, humidity, temperature etc., are 

examples of environmental factors that influence human livelihood. Weather forecasting is termed as 

a scientific technique of predicting the atmospheric state based on particular time frames and locations 

[1, 2]. Climate disaster prediction and warning depend heavily on early environmental forecasting. A 

variety of societal advantages, comprising the preservation of life and property, the maintenance of 

economic growth and quality of life, and the advancement of public health and safety are supported 

by accurate weather prediction [3]. For these reasons, this field of early prediction is crucial. Farmers 

could benefit from having access to current weather reports in order to maximize productivity. 



 

 

Predicting the course of weather is crucial in halting the spread of pests and diseases among crops. The 

weather may have an impact on pests that consume crops.  

Numerical Weather Prediction (NWP) techniques are the basis of earlier works. It is associated 

to numerous difficulties, particularly a lack of understanding and knowledge of physical mechanisms 

[4-6]. The process of extracting relevant information from huge amounts of data necessitates high 

processing power and powerful computers. The application of physical model determines the accuracy 

of NWP technique. It is generally depending on nonlinear equations termed as primitive equations [7-

8]. When the model receives input with inadequate knowledge about the atmosphere, the minor 

variations in the atmosphere will have more effect on the outcome of model. The error, which is the 

discrepancy between the actual and predicted times automatically decreases the accuracy. The deluge 

of information is yet another major issue with the existing methods. Weather forecasting methods 

based on deep learning (DL) have advanced dramatically in the recent decades [9].  

Computer vision applications for DL technology are numerous, and time series issues can 

effectively forecast both temporal and spatial information [10-12]. Meteorological data becomes the 

sample and standard geographical data. An excellent alternative for traditional weather forecast 

method is the DL-based approach. By implementing the artificial system, DL models [13-16] like 

Artificial Neural Networks (ANN), which mimic the structure of human brain and relate the complex 

relationship between the task's output and input, are more dominant data modeling technology. DL 

techniques make it simple to address nonlinear problems, such as weather prediction. Recurrent Neural 

Networks (RNN) and Temporal Convolutional Networks (TCN) are popular deep models for 

multivariate time-series predicting [17, 18]. Due to its improved performance, an RNN version 

recognized as Long Short-Term Memory (LSTM) has drawn greater interest [19, 20].  



 

 

Artificial Neural Networks (ANNs) represent a significant deep learning model which replicates 

human brain structures to find complex relationships in input-output interactions. Multiple domains 

use these models as their primary data modeling equipment. ANNs have successfully forecasted 

renewable energy while improving system optimization according to research publications [21, 22]. 

Electricity load forecasting together with grid stability analysis depends on ANNs to ensure efficient 

resource management in smart grids [23, 24]. Neural network developments have improved their 

capacity to work with dynamic and non-linear datasets which makes them essential for weather 

prediction and energy system management [25]. ANS became increasingly essential because of their 

status as a leading artificial intelligence technology that performs reliably across various applications. 

These models' exceptional performance has gathered a lot of attention. Besides, the deep networks 

frequently employ stacked neural networks, with multiple layers making up the overall structure 

acknowledged as nodes. Since the node allows for the combining of data input over coefficient sets, 

the computation complexity of these model has maximized. Thereby, this paper focusses on an 

advanced weather prediction model using optimized deep learning and effective feature selection. With 

the support of the link between the selected features as well as their representation, the proposed model 

maximizes the accuracy and minimizes the complexity. The major contribution of the proposed work 

is presented below as follows: 

➢ To design a Robust Feature Selection based Hybrid Weather Prediction (RFS-HWP) model for 

effectually predicting weather conditions like temperature, pressure and humidity.  

➢ To select the optimal features and minimize the dimensionality issues, a new meta-heuristic 

optimization algorithm called Botox Optimization Algorithm (BxOA) is employed. 



 

 

➢ To present a Hybrid Deep Gated Tobler’s Hiking Neural Network (HDGT-HNN) model, which 

incorporates Additive Attention Mechanism (AAM) and Hiking Optimization Algorithm (HiOA) 

based hyperparameter tuning, for the prediction of weather with maximum precision rate.   

➢ To estimate the performance of RFS-HWP model by relating it with prevailing models for 

determining the superiority and applicability in weather monitoring systems. 

The paper is summarized as follows: Section 2 deliberates the recent work done by different authors 

related to weather prediction. Section 3 signifies the methodology of RFS-HWP model. Section 4 

provides the experimental outcomes of RFS-HWP model. Finally, the conclusion and future work are 

presented in Section 5.  

2. Related Works  

A. Utku & U. Can [26] presented a hybrid weather forecasting approach using RNN and convolutional 

neural network (CNN) with maximum success rate. Here, the large-scale, 14-parameter meteorological 

data in the Jena dataset was subjected for weather prediction. To compare the experimental results, 

popular machine learning, deep learning, and statistical techniques were used and produced the best 

forecast outcome for all metrics. This hybrid method had obtained 0.126% Mean Absolute Error 

(MAE), 0.035% Mean Squared Error (MSE), 0.189% Root MSE (RMSE), and 0.987% R-Squared, 

respectively. However, this method undergoes vanishing and gradient explosion issues, and require 

more computation resources. Rita Teixeira et al. [27] presented a regression model based on LSTM to 

predict medium- to short-term weather in Douro region. The hyperparameters of LSTM were tuned by 

utilizing a genetic algorithm (GA). The outcome demonstrated that the optimized LSTM had 

minimized the evaluation criteria throughout a range of time horizons. This is because the LSTM 

utilized gates and memory cells to store previous information and update or forget it as new data were 



 

 

presented. This allowed LSTMs to recognize and understand long-term dependencies within the data 

sequence. However, it became clear that the computing cost of training the models would be 

significant. Leopoldo Eduardo Cardenas-Barron and Alfonso Angel Medina-Santana [28] 

recommended an optimal design considering weather forecasting using RNN in order to forecast three 

variables such as wind speed, global solar irradiance, and ambient temperature. Here, the RMSprop 

optimizer was used by RNN to train the hyperparameters. Even with improved performance, other 

metaheuristic optimization strategy would be essential in order to tackle the optimization problem and 

reduce the complexity. Additionally, the inclusion of improved RRN networks for weather parameter 

prediction could be helpful. K. Venkatachalam et al. [29] suggested an enhanced data-driven hybrid 

model for predicting weather based on transductive LSTM (T-LSTM). The evaluation metrics such 

MAE, loss, and RMSE were used for evaluating the model. The Jena Climate and HHWD datasets 

were employed for the experiments. There were 14 weather forecasting features in the dataset, like 

temperature and humidity. The T-LSTM model had outperformed other approaches, and yielded 

98.2% of accuracy rate in weather prediction. Subsequently, the hybrid T-LSTM model offered a 

reliable solution for hydrological variables. The drawbacks of this model would include overfitting 

problems, less robustness, and limited ability to unseen data. 

Sercan Yalcın [30] introduced a deep hybrid neural networks for weather condition forecasting with 

time series. This technique utilized a hybrid approach of training and predicting weather forecasting 

parameters using LSTM and CNNs models. The parameters were relative humidity, pressure, 

temperature, and wind speed. First, the CNN layers processed the values resembled by the input 

neurons in order to deliver a more precise and understandable data assessment. Then, the outcomes 

were fed to the LSTM block after optimization. Based on the experimentation, the relative humidity, 



 

 

temperature, atmospheric pressure, and wind speed RMSE values were 7.12, 1.82, 2.61, and 1.06, 

respectively. However, the model exhibited overfitting issues and higher error rate.   

Problem statement: The increasing complexity of weather systems and the limitations of 

conventional NWP techniques, which often struggles with sensitivity and high computational 

demands, highlight the urgent requirement for more effective weather prediction methods. Earlier 

works have exposed the potential of DL methods, specifically CNN, RNN but they are prone to 

overfitting and tending to poor generalization on unseen data. Besides, the computational complexity 

allied with training DL can be crucial, requiring substantial processing time and power, which may not 

be possible for real-time applications. Furthermore, the dynamic and nonlinear nature of weather 

systems is often not satisfactorily taken into account by existing methodologies, which can tend to 

errors, particularly in situations where conditions are changing quickly. The LSTM model captures 

intricate spatial and temporal relationships in meteorological data. Yet, there remains a significant gap 

in the application of DL for weather prediction by using several meteorological parameters and 

optimizing the model parameters by parameter tuning. A significant number of existing methods have 

concentrated on limited parameter sets and not completely explored the advantages of hybrid models 

that incorporates various DL approaches. Thereby, an efficient and robust prediction method is needed 

to address the challenges of existing methods by associating various meteorological variables. 

3. Proposed Methodology 

  In this section, an efficient RFS-HWP model, which utilizes weather data is discussed to predict 

patterns and forecasting with better precision. The steps involved in RFS-HWP framework are pre-

processing, feature selection and deep-learning based weather prediction. Initially, the input data 

required for weather prediction process are collected from the Jena climate dataset. The pre-processing 



 

 

steps are performed over the raw input data for generating the relevant outcomes valuable for an 

effective prediction. After pre-processing, effective features are extracted using Botox Optimization 

Algorithm (BxOA). After extracting the relevant features, the data are classified through proposed 

predictive model. The overall performance in the predictive network is optimized by tuning the 

hyperparameters. The RFS-HWP model helps to enhance the weather prediction process and serves as 

an excellent research source. The workflow of RFS-HWP architecture is described in Figure 1. 
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Figure 1: Block Diagram of RFS-HWP Model 

3.1.  Pre-Processing  

A crucial phase in the pipeline for data analysis and deep learning is data pre-processing, which 

involves converting raw data from the dataset into a clean and readable format. This process includes 

enhancing the quality of data and ensuring it is appropriate for modeling or analysis. The design 

variables encompass the parameters for Missing Data Imputation and the thresholds for Z-score 

Standardization, which facilitate the dataset readiness for thorough analysis. In RFS-HWP model, the 

following are the major components of preprocessing the data. Missing value imputation: One of the 

biggest challenge to practical data collection is deliberated as missing data [31]. In data-driven model 



 

 

construction, missing values tend to various difficulties such as inefficiencies and other complexity. It 

can result in biased decisions because complete and missing data differ from one another. As the 

missing data affects the model performance, a missing value imputation must be performed. Two kinds 

of missing data imputation techniques are usually employed in earlier works. The first approach is 

depending on a strategy of missing data tolerance that combines specific data mining algorithms with 

missing value techniques. On the other hand, the RFS-HWP model substitutes missing values with the 

median of feature's non-missing values by means of a standard imputation method with numerical 

features. 

( )Medianxkx =)(                                                                      (1) 

where, suggests the missing values replaced with median of observed data, and   defines the median 

value of observed data points. 

Z-score normalization: When the underlying attribute range is unidentified or an outlier exists, min-

max normalization can be strongly affected or not feasible [32]. Z-score normalization [33] is another 

method that involves transforming the data so that it has 1 as the standard deviation and 0 as the mean. 

Given the attribute's mean and standard deviation, the transformation is characterized as in below 

equation.  

  





−
='

                                                                      (2) 

where, represents the normalized value. It should be noted that the sample mean and standard deviation 

could be utilized if and are unknown. 

3.2. Feature Selection 

One of the most challenge in recent decades is choosing the appropriate features to solve the data 

classification issues with best outcome. The design variables represent the selected subset of 



 

 

meteorological features, including temperature, pressure, and humidity, identified by the Botox 

Optimisation Algorithm (BxOA) to minimise redundancy and emphasise pertinent inputs. From the 

perspective of learning theory, employing more features progresses the prediction accuracy but the 

practical evidence suggests that this is not always correct since not all features are necessary to identify 

the data class label. Feature selection [34] aids in the reduction of less significant features or irrelevant 

features and enhances algorithmic performance. Botox Optimization Algorithm (BxOA) is provided 

by the RFS-HWP model to help choose the important features most effectively for weather prediction. 

BxOA is a new metaheuristic optimization algorithm enthused by the botox operation process. The 

goal of BxOA is to tackle optimization issues by using a human-based tactic. The BxOA is 

mathematically investigated and designed by Botox treatments, where defects are identified and 

addressed to enhance appearance. Additionally, it is more capable of striking a balance between 

exploitation and exploration. Each and every person requesting Botox treatments is regarded as a 

member of BxOA. BxOA mimics how a doctor injects Botox into certain face muscles to minimize 

wrinkles and boost beauty. The BxOA strategy, like Botox is selecting decision variables and offering 

a specific value to enhance a candidate's solution.  
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The population members of BxOA are used as the features in optimal feature selection. Each member 

contributes to the values of decision variables conferring to their location in the problem-solving space, 



 

 

which is signified as a vector. The population matrix from this vector, which includes the decision 

variables, is given by the equation Eq 3. 

During initialization, the following equation is engaged to randomly assign each BxOA 

member’s position. 

pfQjLBUBtLBz fffjffj ,...,2,1,,...,2,1),.(,, ==−=                              (4) 

where, UB  and LB  signify the upper and lower bounds of thf  decision variables, Z designates 

the population matrix of BxOA, jẐ   defines the thj   member of BxOA (candidate solution), p  

specifies the number of decision variables, fjt ,  denote the random numbers from the interval ]1,0[ , 

and Q  represents the total population members, respectively. 

The fitness function is employed to rate each feature's excellence (potential solution). The 

objective of BxOA is to identify the subset of ideal features in a search region with minimum feature 

subset size and lowest classification error rate. In the proposed method, the fitness function engaged 

for the feature selection problem is given as follows: 









+−=

Dimen

Ns
SaHl  )1(                                                    (5) 

where, Ns  describes the size of the chosen feature subset, Sa  defines the classification accuracy, 

 exemplifies the weight parameter set to 0.01 and, Dimen  indicates the dimension. The best value 

attained for the fitness is considered by the optimal member of BxoA. According to the BxOA's design, 

the number of face muscles that need Botox injections reduces as the algorithm iterates. For that reason, 

the total chosen muscles (i.e., decision variables) for injecting Botox is calculated using the following 

expression: 

p
v

p
Qd 





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
+= 1                                                               (6) 

where, dQ   describes the total muscles that need Botox injections and v   represents the iteration 

counter value. The doctor assesses the patient's face and wrinkles to find the best places for Botox 

injections. Due to this fact, the variables to be injected for each member of population are selected 

based on the equation below. 
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=                                        (7) 

where, jg   specifies the location of thk   decision variable chosen for injecting Botox and jCdv  

resembles the set of potential decision variables for the thj  member of population.  

The following formula in BxOA, which is similar to the doctor’s choice in deciding the quantity 

of drug for Botox injection based on patient needs and experience, is used to calculate the Botox 

injection amount for each member: 


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where, ),....,,...,(ˆ
,,1, pjkjjj dddD =  exemplifies the considered amount for botox injection to the thj  

member, V  suggests the total number of iterations, BestẐ  states the best member of population, and 

MeanẐ  implies the mean population position (which means  =
=

Q

j jMean Z
Q

Z
1

ˆ1ˆ ).  

After a facial muscle botox injection, wrinkles vanish and changes the appearance of face. 

Using the following equation, a new location is first computed for each BxOA member based on botox 

injection: 

kkkk gjgjgj

New

gj

New

j dtzzZ ,,,, .:ˆ +=                                                       (9) 

where, New

jẐ  represents the new location of thj  member after injecting botox, 
kgjd ,  signifies the 

dimension of botox injection for thj   member (i.e. jD


 ), 
New

gj k
z ,   resembles its th

kg   dimension, and 

kgjt ,  indicates a random number with uniform distribution. If the fitness function's value maximizes, 

this new location exchanges the resultant member's preceding location, as seen in the below equation: 
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where, 
New

jH  signifies the value of fitness function. The pseudocode of feature selection using BxOA 



 

 

is provided in Algorithm 1. 

  

Algorithm 1: Feature selection using BxOA 

Start  

Initialize the size of population Q  and total number of iteration V  

Set the variables, fitness function, and constraints 

Generate the initial population matrix in random 

Determine the fitness function 

Compute the best candidate solution Best Ẑ  

For 1=v to V  

Update the number of decision variables to inject botox based on Equation (6) 

For 1=j to Q  

Express the variables that are reflected for botox injection by Equation (7) 

Evaluate the amount of botox injection by Equation (8) 

For 1=j to dQ  

Compute the new position of thj  BxOA member by Equation (9) 

End 

Evaluate the fitness function based on New

jẐ  

Update the thj  member of BxOA by Equation (10) 

End 

Save best obtained candidate solution 

End 

Output the optimal features 

Stop 

3.3. HDGT-HNN based Weather Prediction 

In the framework of weather prediction, the proposed model has utilized Hybrid Deep Gated Tobler’s 

Hiking Neural Network (HDGT-HNN) to forecast different weather conditions like pressure, humidity 

and temperature. The HDGT-HNN model utilizes the selected features as their input and outputs 

various weather parameters compared to the actual observed values. The integration of CNN, Gated 



 

 

Recurrent Unit (GRU), Additive Attention Mechanism (AAM) and Hiking Optimization Algorithm 

(HiOA) makes up the HDGT-HNN model. The architecture of HDGT-HNN model is provided in 

Figure 2. 
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Figure 2: Architecture of HDGT-HNN model 

First, the CNN is employed to record the features of weather in the input sequence. Then, this data is 

combined with an additive attention layer and a GRU to model the sequence. Convolutional kernels 

are used to process the input data and PReLU function has used to activate the data. The temporal 

information is effectively captured by utilizing the ability of GRU layer by integrating past, present, 

and future data. Moreover, the attention fusion is performed by combining the output sequences from 

the GRU model, the generated feature maps of CNN model and the output of additive attention layer. 

This is accomplished by applying an additive attention layer. Eventually, the combined features are 

subjected to a fully collected layer for linear transformation, model compilation, and output generation. 

3.3.1. Convolutional Neural Network 

One-dimensional CNNs are typically employed to handle 1D time series data or textual data since they 

are superior at extracting features from short, fixed-length inputs [35]. At first, the input sequence is 

scanned in a sliding fashion by means of a convolution kernel (or filter), followed by convolutional 



 

 

operations to extract prominent features for making a new feature representation. The convolution 

operation output   is calculated for the input sequence Y  and the convolution kernel X : 

( )  ( )
−

=
++==

1

0
][.][.][

L

l cnnt BlXlUkYfkXYk                               (11) 

where, ][k  resembles the 
thk  element of output sequence ensuing from the convolution operation. 

The convolution kernel has been multiplied element-by-element with a part of input sequence (from 

k  to 1++ Lk ) and summed to create the 
thk element of output sequence. In Equation (11), ][ lkY +  

describes the 
thlk + element of input sequence, in which l  symbolizes the counterweight at which the 

convolution kernel slides and k  represents the current position of convolution operation. Besides, tU  

indicates the time step,  L  states the convolution kernel’s window size, cnnB  signifies a bias term, 

and ][lX  defines the l  convolution kernel weight, which is utilized to execute element-by-element 

multiplication. Also, (.)f   characterizes the activation function that provides nonlinear properties. 

Next, the feature map size is minimized by a pooling procedure, which instantaneously extracts the 

significant features and reduces the model’s computational intricacy. The following is the calculating 

formula: 

 ( )tt UkUkYMaxiky += )1(:][                                               (12) 

where, the feature sequence attained by the pooling process is characterized by first k  elements, or 

][ky  . In Equation (12), the subsequence that has chosen in the input sequence is designated by 

 tt UkUkY + )1(: . This sequences start index is given as tUk  , and its end index is stated as 

tUk + )1( . This type of indexing action is normally utilized for intercepting a certain part of the 

window or sequence. 

3.3.2. Gated Recurrent Unit 



 

 

An improved version of LSTM network is termed as GRU network. It combines hidden state and 

neuron state, optimizes the three LSTM gate architectures, and unifies input and forget gates into a 

single update gate. It can successfully diminish the gradient disappearance of RNN and lower the 

LSTM network unit's parameter. As a result, GRU falls the model's training time. 
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Figure 3: Structure of GRU 

Figure 3 depicts the structure of GRU network. The mathematical formulas of GRU are explained 

below.  

]),.[( 1 uuRu yHXR −=                                                            (13) 

]),.[( 1 uuUu yHXU −=                                                            (14) 
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where, uy  represents the input vector, uH  defines the state memory variable at the current moment, 

uR   resembles the state of reset gate, 1−uH   indicates the state memory variables at the previous 

moment, uH
~

 denotes the state of present candidate set, uU  signifies the state of update gate, and uz  

implies the output vector of present moment. The weight matrices for the appropriate network 

activation function’s input are resembled by RX , UX , 
H

X ~  and oX . The Identity matrix is signified 

by J  , matrix cross product is characterized by   , vector connection is represented by []  , tanh 

activation function is denoted by   , and the sigmoid activation function is denoted by   . The 

following is the mathematical definition of   and  : 
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The update and reset gates are the primary components of GRU network. Following sigmoid nonlinear 

transformation, which governs the degree to which the state variable has brought into the present state 

at the previous time, the update gate receives the splicing matrix of the input variable uy  and the state 

memory variable 1−uH  at that moment. The amount of data written to the candidate set previously is 

controlled by the reset gate. 

3.3.3. Additive Attention Mechanism 

AAM also known as multilayer perceptron attention is one of the attention mechanism that was initially 

used in sentence translation. It provides the model with the capability to assign different weights to 

various segments of input sequence. This allows for the sequence data to be processed with a focus on 

important elements. After a linear transformation, the input features to be summed and the transformed 

features to be activated by a sigmoid function for characterizing the similarity relationship between 



 

 

the two features, which can handle with nonlinear relationships efficiently. The time series features are 

processed using CNN, and the data is encoded by utilizing GRU. Then, the output is taken as input 

and decoded by means of additive attention. The expression for additive attention is provided below 

as follows. 

),( uuj dtputDecoderOutz =                                                        (20) 

where, jz   resembles the output of decoder at time step j  , ud   states the weighted summation of 

encoder's encoding outcomes, and ut  describes the hidden vector of additive attention decoder at time 

step u  . The decoder determines ud   at time step u   based on the encoding outcome 

),...,,,( 210 uHHHH  of encoder as follows: 
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Concerning the weight, jub ,  is computed as follows: 
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where, jub ,  defines the attentional weight that signifies the attentional weight of decoder from u time 

step to j  time step, is derived from the attention score normalized through softmax. The expression 

of attention score is determined as follows: 

)tanh( 1, −+= ubjb

U

bju tVHXf                                                      (23) 

In additive attention, the decoder and encoder’s hidden states are linearly transformed, and then a 

hyperbolic tangent function is employed to define the attention score. At the current position, the 

decoding outcome is to be subjected to the decoder’s latent state at the previous time step 1−ut . The 

encoding outcome of the encoder at thj  time step is stated as jH . juf ,  defines the attention score 



 

 

from the decoder at 
thu  time step to the encoder at thj time step. bX  and bV  resemble the matrices 

of model's learnt parameter while b  specifies the learned weight vector 

3.3.4. Hyper-Parameter Tuning 

Hyper-parameter tuning is considered as the process of determining the best values of hyper-

parameter for a deep learning model. Building a high-performance model and selecting an appropriate 

model based on computational resources and time restrictions are essential. The design variables 

encompass the quantity of hidden layers, the number of neurones per layer, the learning rate, the 

dropout rate and the activation functions in the Hybrid Deep Gated Tobler’s Hiking Neural Network 

(HDGT-HNN). HiOA is a new metaheuristic algorithm that draws inspiration from hiking, a well-liked 

recreational activity in the recognition of the similarities between the search landscapes of optimization 

issues and the rugged terrains traversed by hikers. Tobler's Hiking Function (THF), which calculates 

hikers' (or agents') walking velocity by considering the terrain's elevation and distance traveled is the 

basis of HiOA model. THF is used to find the positions of hikers when resolving an optimization issue. 

The HiOA facilitates a number of benefits when it comes to efficiency with computational resources 

and time constraints. Its design offers fast convergence to quickly converge, which makes it very useful 

in scenarios where time is significant. HiOA shortens the time needed to locate solutions by effectively 

navigating the search space compared to traditional optimization algorithm. Besides, it uses fewer 

resources and can handle large-dimensional issues without the significant computational overhead that 

comes with conventional algorithms. HiOA can be applied in a variety of fields without requiring 

extensive reconfiguration due to its adaptability to several optimization issues and thereby saving 

resources and time. Additionally, HiOA efficiently prevents from stuck in local optima, which 

enhances its ability to locate global optima faster with less computing effort. Owing to these 



 

 

advantages, the proposed RFS-HWP model has employed HiOA to fine-tune the classification model's 

hyper-parameters. Hyper-parameter tuning uses the population members of HiOA as the hyper-

parameters. Now, the mathematical model of HiOA based on THF for parameter tuning is discussed. 

THF is deliberated as an exponential function that computes the speed of hiker based on the slope or 

steepness of trail or terrain. The expression of THF is provided as: 

05.05..3
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= ujT

uj e                                                            (24) 

where, ujT ,  represents the slope terrain or trail' and uj,  signifies the velocity of hiker j  (i.e., in 

km/h) at time or iteration u . Furthermore, the slope ujT , is provided by 

ujuj
dy

di
T ,, tan==                                                            (25) 

Where, the variables dy  and di  signify the distance traveled by hiker' and the elevation difference, 

respectively. Besides, uj ,  characterizes the terrain's or the trail's angle of inclination within range 

]50,0[ 0 . 

HiOA takes the advantage of both hiker’s social thinking as group and individual hiker's 

personal cognitive abilities. The lead hiker's location, the hiker's actual location, the sweep factor, and 

the initial velocity determined by THF contribute to the actual or updated velocity of a hiker. Thus, the 

present velocity of hiker j  is provided by 

)( ,,,1,, ujujbestujujuj  −+= −                                                (26) 

where, uj,   signifies an integer with a uniform distribution in the interval ]1,0[  , uj,  and 1, −uj

represent the initial velocity and current velocity of hiker j  . uj ,   signifies the sweeper factor in 

range ]3,1[ , and best  indicates the lead hiker's location. In order to perceive where the lead hiker is 

headed and receive signals, sweep factor ensures the hiker doesn't wander too far from lead hiker.  

Through the consideration of hiker velocity in Equation (24), updated position 1, +uj  of hiker 

j  is obtained as follows: 

ujujuj X ,,1, +=+                                                             (27) 



 

 

The initial agent setup in a variety of metaheuristic algorithms, including HiOA is an important 

factor that has a great influence on how quickly convergence is reached and the feasible solutions can 

be found. Although there are other strategies, such as heuristic-based or problem-specific initialization 

approaches, the HiOA uses the random initialization methodology to initialize the locations of its 

agents. The below equation characterizes the lower bound 1

k  and upper bound 2

k  of the solutions, 

which determines the initialization of locations uj , . 

)( 121

, kkjkuj  ++=                                                        (28) 

Where, k  indicates the uniformly distribution integer in the interval ]1,0[ . The parameter 

sweep factor influences the HiOA's tendency for exploration and exploitation. As seen in Equation 

(26), this factor has a significant influence on the gap between the trail leader and other hikers. 

Furthermore, the HiOA's intrusive and exploitative behaviors are considerably shaped by the trail's 

slope, which impacts hiker velocity as exposed by Equation (24) and Equation (25). Besides, the HiOA 

tends to lean more toward an exploitation phase as the sweep factor range is extended. Whereas, 

lowering the SF range generally promotes an exploratory stage in HiOA. Additionally, the HiOA is 

steered toward the exploitation phase if the trail's degree of slope is reduced. All these factors 

collectively contribute to influence HiOA performance while tackling optimization issues. 

4. Experimental Results and Discussion 

This section presents the outcomes of RFS-HWP model and highlights its advantages over state-of-

the-art methods for accurate weather prediction. The RFS-HWP model is implemented using Python 

platform to do experiments of weather prediction on a personal computer (PC) with 16 GB RAM and 

Intel(R) Core (TM) i5-4670CPU@3.20GHz processor, which operates on a 64-bit operating system. 

For experimenting the weather prediction process, the RFS-HWP model utilized a publicly available 

Jena climate dataset. The loss is computed using quadratic loss function and mean squared error (MSE). 

Optimizer employed in RFS-HWP model is HiOA. The learning rate is set to 0.01. To prevent 



 

 

overfitting, the layer associated with dropout rate is utilized. Several other performance measures are 

analyzed, and proves the efficacy of RFS-HWP model over existing approaches. The following 

sections deliver the justifications of dataset employed, performance metrics, and result discussion. 

4.1. Dataset Description   

The RFS-HWP model has employed publically available time series Jena climate dataset for 

experimentation. The meteorological station located at the Max Planck Institute of Biogeochemistry 

in Jena, Germany, is the source of Jena climate dataset. It has a comprehensive assemblage of 14 

features, each carefully recorded at every 10 minutes. This massive data collection was spanned over 

the course of eight years, commencing on January 1, 2009 and ending on December 31, 2016. There 

are 420,551 timestamps in this interval, and each one is related to 14 meteorological parameters. The 

dataset is available in https://www.kaggle.com/datasets/mnassrib/jena-climate. The features of Jena 

climate dataset is provided in Table 1. 

Table 1: Features of Jena climate dataset 

Features Description Format 

Date time Date-time reference 
01.01.2009 

00:10:00 

T (degC) Temperature in Celsius -8.02 

p (mbar)  Pascal SI derived a unit of 

pressure  

996.52 

Tdew (deg C) Temperature in Celsius relative 

to humidity 

-8.9 

Tpot (K) Temperature in Kelvin 265.4 

VPmax (mbar) Saturation vapor pressure 3.33 



 

 

rh (%) Relative humidity 93.3 

VPdef (mbar) Vapor pressure deficit 0.22 

VPact (mbar) Vapor pressure 3.11 

H2OC (mmol/mol) Water vapor concentration 3.12 

sh (g/kg) Specific humidity 1.94 

wv (m/s)  Speed of wind 1.03 

rho (g/m3) Airtight 1307.75 

wd (deg) Direction of wind in degrees 152.3 

max. mv (m/s) Wind speed at maximum 1.75 

4.2. Performance Measures 

Several performance measures, including accuracy, F1-score, MSE, recall and precision with their 

mathematical formulas are offered in this section. The ratio of accurate weather condition predictions 

to complete data elements is known as prediction accuracy. Recall is replicated as the ratio of true 

positive (TP) results to the total number of matters in the positive class. Precision, or positive predicted 

value (PPV), mentions to the percentage of optimistic weather predictions that belong to every positive 

class. The F1-score is a measure that thoroughly replicates the average of recall and PPV. The average 

squared difference between the actual and predicted values is designated MSE. The below expression
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 where, fp   designates false positive, tn   states true negative, tp   indicates TP, and fn  

symbolizes false negative. Furthermore, p  signifies the number of observation, 
jz  designates the 

actual value, and 
jẑ  resembles the predicted value.  

4.3. Performance Evaluation 

This section covers a detailed evaluation and result comparison for predicting weather conditions. The 

RFS-HWP model produces outputs which serve two purposes because it meets requirements for both 

continuous and discrete weather forecasting functions. Three meteorological elements, temperature, 

pressure and humidity serve as the basis for the model to predict weather conditions. The model 

employs numerical simulation for predicting meteorological variables which include temperature and 

pressure together with humidity data. The assessment metrics for this study include Mean Squared 

Error (MSE) to determine the amount of deviation between actual and predicted observations. The 

continuous output functions enable precise specification forecasting which proves necessary for exact 

climate measurement systems. RFS-HWP transforms meteorological condition variables into specific 

classifications through established criteria which derive from continuous data analysis. The model 

determines whether condition categorization by making forecasts about temperature levels as well as 

pressure variations and humidity patterns. The performance assessment of these categories relies on 

the Accuracy, Recall, Precision and F1-score indices for determining the model accuracy in predicting 

categorized weather results.  

The RFS-HWP model considers three classes such as humidity, temperature and pressure. These 

classes resemble the key meteorological variables that the RFS-HWP intends to forecast correctly. 



 

 

Figure 4 indicates the distribution of wind direction and wind vector over a specific period. As the 

wind can affect temperature distribution and humidity level, this aids to understand the overall 

dynamics and considerably influence the patterns of weather. Figure 4(a) describes the direction of 

wind in degrees and it displays the orientation from which wind is blowing. In Figure 4(b), the wind 

vector derived from wind direction data is shown. The plot wind vector visually resembles both the 

magnitude and direction of wind and permits of understanding the wind behavior.  

  

(a)                                                                                           (b) 

Figure 4: Distribution of wind direction and wind vector 

The graphical representation has significantly captured the temporal variation in wind pattern, which 

is vital for predicting weather by plotting these parameters against time and date. This visualization 

supports in determining the trends in the behavior of wind and contributes into weather conditions and 

their influences on weather systems. Figure 5 displays the humidity distribution derived using Jena 

climate dataset. This graphical representation provides the variation in humidity over a specified time 

period and shows how the level of humidity varies throughout the day by emphasizing the patterns that 

can correlate with changes in atmospheric pressure and temperature. By plotting the value of humidity 

against time, the graphical representation exposes distinct trends, like peaks during certain hours, 

which can resemble greater moisture levels generally related with particular weather conditions. This 



 

 

visualization is significant for understanding the humidity’s temporal dynamics in Jena region and 

offers a valuable insight for forecasting and meteorological analysis. 

 

Figure 5: Distribution of humidity 

Figure 6 provides a thorough analysis of different performance indicators for several weather 

classes predicted by the RFS-HWP model and existing DWFT-TLSTM [24] using Jena Climate dataset. 

Here, the three main meteorological variables such as pressure, temperature, and humidity are 

emphasized. A number of performance measures are given for each parameter, particularly precision, 

accuracy, recall, and F1 score, which jointly evaluate the predictive ability of RFS-HWP model. The 

accuracy metric shown in Figure 6(a) displays that the proportion of the model's predictions for each 

weather condition are accurate. Remarkably, the RFS-HWP model predicted temperature with an 

accuracy of 100%, which means that it accurately noticed every incident without creating any mistakes. 

This degree of exactness expresses how reliable the model is at predicting temperature, which is 

significant for many applications in climate science and meteorology.  

Comparative Analysis Between RFS-HWP and DWFT-TLSTM: DWFT-TLSTM (Dynamic Weighted 

Feature Transformation-Temporal Long Short-Term Memory) represents a deep learning technique 

that detects meteorological data spatial-temporal correlations. DWFT-TLSTM delivers outstanding 



 

 

performance in humidity detection with 99% accuracy while reaching perfect agreement in other 

metrics and performing highly effectively for temperature forecasting. The system uses a dynamic 

weight control mechanism which establishes the most important factors as top priorities. DWFT-

TLSTM demonstrates two weaknesses such as heightened computational requirements together with 

diminished ability to generalize pressure measurements with an F1-score of 97.8%. 

The model RFS-HWP demonstrates increased total performance through its 99.3% accuracy together 

with F1-scores of 98.79% for pressure measurement and 100% accuracy and 99.12% for temperature 

and humidity measurements. BxOA as a Botox Optimisation Algorithm together with HiOA as Hiking 

Optimisation Algorithm ensures both computer efficiency and reliable results through their powerful 

feature selection and effective hyperparameter tuning functions. The RFS-HWP system performs 

better across weather patterns yet DWFT-TLSTM excels at timing patterns detection.  

  

(a) (b) 



 

 

  
(c) (d) 

Figure 6: Comparison in terms of accuracy precision recall and f1-score 

The RFS-HWP model demonstrated high accuracy rates of 99.21% and 98.45% for both humidity and 

pressure, demonstrating its efficacy in forecasting these parameters. Whereas, the exiting DWFT-

TLSTM has also attained an accuracy of 100% for temperature, 99% for humidity and 98% for 

pressure because of capturing spatial and temporal relationships. On the other hand, the overall 

accuracy value attained by the proposed RFS-HWP model is 99.3%, whereas the existing DWFT-

TLSTM attained 98.2%. Along with accuracy, the graphical representation encompasses precision, f1-

score and recall metrics for establishing deeper insights into the model's performance. Precision clearly 

expressed the model's ability to prevent FPs by counting the percentage of actual positive predictions 

among all positive predictions. With a precision of 100% for temperature, the model accurately 

identified every instance of temperature, as shown in Figure 6(b). The precision values for pressure 

and humidity are 98.45% and 99.32%, and the existing method has achieved 98% and 99%. This 

describes that the model minimized FP predictions while maintaining a high accuracy level. Another 

significand metric recall, sometimes describes to as sensitivity, evaluates the RFS-HWP model's ability 

to determine all relevant instances. As perceived in Figure 6(c), the RFS-HWP model has able to 



 

 

clearly resemble almost all real instances of these weather parameters with better recall values of 99.3% 

for pressure, 100% for temperature, and 98.5% for humidity. The exiting DWFT-TLSTM has achieved 

99% for pressure, 100% for temperature, and 98% for humidity. The RFS-HWP model's excellent 

performance in all three weather conditions is further maintained by F1 score, which is depicted in 

Figure 6(d). A balanced capability to predict with no bias towards FPs or FNs is highlighted by the 

proposed model's f1-scores of 98.79% for pressure, 100% for temperature, and 99.12% for humidity. 

The exiting DWFT-TLSTM has achieved f1-score of 100% for temperature, 97.8% for pressure, and 

98.9% for humidity. Conversely, the overall precision, recall and f1-score value attained by the 

proposed RFS-HWP model is 99.25%, 99.4% and 99.29%, whereas the existing DWFT-TLSTM has 

attained 98%, 99% and 97%. 

 

 

 

Figure 7: Comparison in terms of MSE 

Figure 7 offers the comparison of various machine learning (ML) models in terms of MSE 

metrics for weather prediction. AdaBoost, Decision Tree Regression (DTR), Gradient Boosting (GB), 



 

 

XGBoost, K-Nearest Neighbors (KNN), Linear Regression, Support Vector Regression (SVR), 

Bayesian Ridge, and CatBoost are the techniques used for comparison [24].  The proposed RFS-HWP 

model has attained minimum MSE score of 11,374.73. As compared to the existing method, CatBoost 

outperformed the other ML algorithms in weather prediction as evidenced by its minimum MSE of 

11032. On the other hand, the DTR approach has the highest MSE of 33,014.21, resembling a lower 

level of accuracy in predicting weather. Thereby, the RFS-HWP model is effective in achieving 

reduced MSE values and greater prediction accuracy in weather forecasting tasks, as demonstrated by 

the graphical depiction that resembles the variability in performance across different ML approaches. 

 

Figure 8: Analysis of training and validation loss 

 The training and validation loss analysis of RFS-HWP model is provided in Figure 8. This figure 

exemplifies the performance of predictive model over training epochs and depicts how the loss values 

varies as the model learn from the data. The error calculated on the training dataset is represented as 

training loss and the validation loss signifies the error on validation set. The figure shows that the 

predictive model is effectively learning and generalizing from data since there is a decreasing trend in 

both validation and training loss. Besides, the model exhibits reduced overfitting issues and offers 

insights into predictive abilities for weather prediction.  



 

 

 

(a) 

 

(b) 

 

(c) 

Figure 9: Analysis in terms of actual versus predicted values (a) temperature (b) humidity (c) pressure 

 Figure 9 presents the comparative analysis of actual and predictive temperature, humidity and 

pressure values. The figure 9(a) states the RFS-HWP’s performance in predicting temperature by 



 

 

plotting the actual recorded temperature alongside the predicted temperature values over a specified 

time period. The figure 9(b) and figure 9(c) state the RFS-HWP’s performance in predicting humidity 

and pressure by plotting the actual recorded humidity and pressure alongside the predicted humidity 

and pressure values over a specified time period. These comparisons permit for an assessment of 

reliability and accuracy of the RFS-HWP model. The predictive model is effective when the actual 

values align closer to the predicted values. In the graphical representation, it is perceived that the 

predicted value of RFS-HWP is closer to the actual value. Also, the graphs highlighted discrepancies, 

representing periods where the model’s predictions differ from actual observations, which supports to 

determine the weakness and strength of model. 

Conclusion 

  This paper contributes to a unique RFS-HWP model for predicting different weather 

conditions. To ensure data quality, the RFS-HWP model begins by pre-processing input dataset with 

Z-score normalization and imputation for missing data. To improve the precision rate with minimum 

complexity, the best subset of features is selected by means of BxOA. The RFS-HWP classifies 

weather conditions into categories of temperature, pressure and humidity. In order to maximize the 

model performance, the HiOA is also utilized to fine-tune the hyper-parameters of regression model, 

HDGT-HNN. Thus, the comprehensive method that incorporates feature selection, pre-processing, and 

prediction demonstrates that the RFS-HWP can effectively predict the weather conditions. This helps 

to progress public safety, agricultural planning, transportation and environmental protection. The 

performance of RFS-HWP model is evaluated by means of different performance indicators, and it 

accomplishes 99.3% classification accuracy, 99.25% precision, 99.4% recall and 99.29% f1-score. The 

proposed RFS-HWP model outperforms state-of-the-art techniques in all performance measures. Even 



 

 

with improved performance, the performance of model could vary across different climatic conditions 

or geographical regions and minimizes the accuracy. Future work involves adding real-time data to 

predictive model for improving the model's responsiveness utility in practical applications. 

Furthermore, experimenting with other optimization algorithms for feature selection and hyper-

parameter tuning can disclose even more efficient neural network configurations. Lastly, the model's 

strength and generalizability will be verified by validating it on a number of datasets from different 

geographic regions with additional meteorological variables.  
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