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Abstract 

The incidents occurring within the marine environment are 
supported by various Decision Support Systems (DSS), both 
in simulation and intervention. Accurate and real-time data 
inputs into these systems greatly contribute to the 
effective and prompt decision-making process. However, 
the absence of these systems in all situations or the 
inability to provide real-time data inputs can negatively 
impact the effectiveness of decision processes. This study 
aims to create a method that can enable reliable and 
accurate predictions regarding oil pollution and the cost-
effective execution of certain decision processes. For this 
purpose, an exploratory study with various cases of ship-
sourced oil pollution has been simulated using the 
Potential Incident Simulation Control and Evaluation 
System (PISCES). Random input values for each case have 
been utilized in PISCES simulation experiments. Afterward, 
supervised machine learning models were trained using 
the simulation experiments data set to predict oil 
dispersion amount and time of oil impact on shore. Model 
hyperparameters were optimized using cross-validated 
grid-searches. Through hyperparameter optimization using 

grid search, XGB, Random Forest, and Gradient Boosting 
emerged as the leading models for estimating oil 
dispersion. However, while Gradient Boosting yielded 
satisfactory outcomes, its performance could be further 
enhanced with additional data. Obtained results show that 
the proposed methodology has the potential for predicting 
the time of impact on shore, hence for rapid results for 
standard initial actions, they can be used as an alternative 
DSS to PISCES. 

Keywords: marine environment, machine learning, oil 
pollution, decision support system  

1. Introduction 

In interventions to incidents occurring in marine 
environment, the time factor is the primary criterion to be 
considered, both in search and rescue operations aimed at 
minimizing loss of life and property and in interventions to 
marine pollution. Changes occurring in the structures of 
chemicals after the interaction with seawater make 
intervention increasingly difficult over time. Therefore, 
prompt intervention in the disposal of polluting substances 
is crucial to minimizing harm to the ecological balance 
(Zeeshan et al. 2022), (Muhammad et al. 2024), 
(Muhammad et al. 2022). Considering the lessons learned 
from previous marine pollution incidents, technological 
capabilities such as predictive dispersion modeling to 
anticipate the possible movements of pollution, control, 
evaluation, and Decision Support Systems (DSS) have been 
developed to prevent similar events from occurring and to 
enable effective and rapid response once they occur. 

DSS plays a crucial role in offering decision-makers a 
comprehensive understanding of incident areas during 
search and rescue and pollution response operations 
following maritime accidents. They achieve this by 
continuously monitoring and integrating real-time data 
about various sea surface, subsurface, and above-sea 
surface parameters. These parameters encompass a wide 
range of factors, such as oil evaporation, dispersion, 
degradation, and viscosity changes linked to pollution. 
Additionally, DSS incorporates information on 
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meteorological conditions, sea state, surface currents, 
coastal geography, water depth, locations of ecological 
sensitivity, availability of intervention equipment, and 
other pertinent characteristics specific to the incident area. 
This holistic approach enables decision-makers to make 
informed choices and optimize their responses in maritime 
emergency scenarios (Delgado et.al., 2006). Among this 
spectrum of variables, the dynamic real-time inputs, such 
as meteorological conditions, surface currents, sea 
conditions, and the presence of other vessels in the 
incident area, hold particular significance. These dynamic 
factors are instrumental in facilitating effective and prompt 
decision-making within the DSS. Their involvement ensures 
that decision-makers have access to continuously updated 
information, allowing them to make timely and well-
informed decisions essential for managing maritime 
emergencies. 

However, both cost and technological limitations make it 
not always possible to establish such a decision support 
system and achieve real-time integration of all static and 
dynamic data. This study aims to provide an alternative 
framework for decision support systems, using machine 
learning, to develop an intervention strategy for potential 
incidents at sea. Thus, an alternative methodology has 
been introduced, detached from the conventional decision 
support system paradigm, aimed at identifying two pivotal 
criteria essential for formulating intervention strategies in 
the context of marine pollution incidents. This innovative 
approach offers valuable insights and represents a 
departure from traditional methodologies. It serves as a 

foundation for more extensive and all-encompassing 
investigations within the realm of marine pollution 
management. 

In the context of oil spill incidents, there exists a range of 
regulations designed to mitigate and prevent such 
occurrences. When a vessel adheres to these regulations, 
it can reasonably be assumed that all feasible preventive 
measures have been implemented to minimize the risk of 
spillage. However, in the unfortunate event of an oil spill, it 
is imperative to ensure a swift and effective response. The 
primary objective of this research is to develop a method 
capable of delivering reliable and precise predictions about 
oil pollution incidents while also facilitating cost-effective 
decision-making processes. Acquiring comprehensive 
datasets related to real-world oil spill events in marine 
environment is particularly challenging. Consequently, to 
circumvent this limitation, an exploratory approach has 
been adopted, wherein various scenarios of ship-induced 
oil pollution have been simulated using the Potential 
Incident Simulation Control and Evaluation System 
(PISCES). This approach offers a means to generate 
valuable insights and formulate strategies for managing oil 
spill incidents, even in cases where empirical data is 
limited. Utilizing PISCES enables sustainable dataset 
availability with high reliability. With the extracted data, to 
model the behaviors of oil spill, machine learning 
estimators have been trained using the simulation 
experiments data set for prediction of oil dispersion 
amount and time of oil impact on shore. 

 

Table 1. Results of the systematic literature review. 

Article 
No 

Reference Publication 
Year 

Machine 
Learning Model 

Oil Spill Case Best Estimator 

A1 (Khlongkhoi et.al., 2019) 2019 Regression Marine Oil Spill Deep Neural Network 

A2 (Li et al. 2021) 2021 Classification Marine Oil Spill Deep Neural Network 

A3 (M. Yang et al. 2021) 2021 Regression Marine Oil Spill XGB Regressor 

A4 (Chen et al. 2021) 2021 Classification Marine Oil Spill Random Forest Classifier 

A5 (Mohammadiun et al. 2022) 2022 Regression Marine Oil Spill Gaussian Process Regression 

A6 (Burmakova & Kalibatienė, 2022) 2022 Regression Ground Oil Spill Adaptive Neural Fuzzy Inference System 

A7 (Kaplan et al. 2022) 2022 Regression Ground Oil Spill Convolutional Neural Network 

A8 (Hafezi et al. 2022) 2022 Classification Marine Oil Spill Subtractive Clustering Algorithm (SCA) 

and Fuzzy C-Means (FCM) Algorithm 

A9 (Carvalho et al. 2022) 2022 Classification Marine Oil Spill Artificial Neural Network 

A10 (J. Yang et al. 2023) 2023 Classification Marine Oil Spill Convolutional Neural Network 

A11 (Wang et al. 2023) 2023 Regression Ground Oil Spill Convolutional Neural Network 

A12 (Genovez et al. 2023) 2023 Classification Marine Oil Spill SVM 

 

Supervised Machine Learning (SML) techniques, although a 
fairly new concept in the maritime domain, have been in 
use for the prediction of various systems whether it is on 
ship movement (Bassam et al. 2022; Nielsen et al. 2022), 
ship machinery (Guo et al. 2022; Hu et al. 2019; Lang et.al., 
2022) onboard energy efficiency and sustainability (Erol 
et.al., 2020; Öztürk and Başar, 2022), decision making (Bal 
Beşikçi et al. 2016; Ozturk et.al., 2019) or marine pollution. 
There are two main modeling approaches for SML: 
regression and classification. Both prediction methods are 
available to use in the maritime domain. Regarding marine 

oil pollution, the utilization narrows down to considering 
the availability of data, which is the main component for 
accurate predictions. Hence, to evaluate the utilization of 
SML in oil spills, independent of the oil spill area, a 
systematic literature review has been carried out. 

The systematic literature review approach enables 
rigorously reviewing several studies on SML applications on 
oil spills instead of an examination of independent studies 
while reducing the probability of carrying out a biased 
literature review. The systematic literature review 
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methodology has been derived from the original guidelines 
set by (Kitchenham 2004). 

An electronic search on the Web of Science Core Collection 
(WoSCC) database was performed for the systematic 
literature review. In the search process, AB= ("machine 
learn*") AND AB= ("oil* spil*" OR "mari* pollut*" OR 
PISCES) search code has been utilized for acquiring a wide 
range of studies on the main search subject. Instead of 
solely focusing on marine oil pollution, for evaluating the 
application of SML and best estimators, the cases have not 
been limited to a keyword. Initially, 94 studies resulted. To 
support the results' reliability, Science Citation Index- 
Expanded indexed journal articles have been extracted for 
search settings. After filtering and removing unrelated 
articles, 29 studies have been found. For this study, image 
processing has not been considered and only studies on 
regression and classification prediction models using 
numerical values have been included. With the inclusion-
exclusion criteria set, 12 studies have been extracted for 
evaluation. The results of the systematic literature review 
are given in Table 1 below. 

According to the results of the systematic literature review, 
most of the studies have focused on marine oil spills. The 
percentage of utilization of machine learning models is 
found to be distributed evenly, where 50% of the studies 
are for regression and classification. Neural networks have 
been found to be the best estimators among utilized 
models in each study. Given that multi-layered perceptron 
models are sensitive to the number of data and distribution 
of the data, it is unlikely to establish an estimator with 
reliable performance metric values based on neural 
networks. 

It is also known that the performance of the estimator 
depends highly on the given data set and hyperparameters 
(Ozturk et al. 2019). To tackle the problem of data 
availability (Mohammadiun et al. 2022) utilized synthetic 
data, while (Ozturk et al. 2019) utilized expert opinions and 
fuzzy methodologies for compensating lack of data.  

As argued in the previous chapter, when data acquisition is 
limited and reliable data is out of reach or costly, for 
maintaining a decision support system, alternatives are 
required. This study follows an exploratory approach for 
creating an alternative to a decision support system on 
marine oil spills by evaluating SML estimators on PISCES 
data. 

The systematic literature review on machine learning 
applications on oil spills shows that none of the studies 
followed such an approach and all of them presented a 
limitation on data availability on oil spills. The outcome of 
this study also presents an alternative for data acquisition 
and synthetic data utilization. Considering PISCES is a 
simulator on oil behavior, using extracted data from PISCES 
and creating machine learning models for predicting oil 
spill behavior based on specific requirements and cases 
have been explored to be a well-performing decision 
support system methodology without the usage of 
additional complementary methods. 

2. Materials and methods 

The general approach to the problem at hand, generating 
data through PISCES and providing a viable alternative DSS 
to PISCES is given below in Figure 1. Simulator-based data 
acquisition is not a method explored much in maritime 
transportation studies regarding machine learning. As it is 
not conventional to utilize secondary data rather than 
actual data for SML models, the problem that was tackled 
in this study separates itself by trying to create an 
alternative for a decision support system, that is simulation 
software in the case of oil spills. 

 

Figure 1. The general framework of the applied methodology. 

For accessibility as a DSS alternative, conventional SML 
regression models have been utilized in this exploratory 
approach. As secondary data have been used from 
simulations, adding customized models or models with 
questionable reliability and validity has been avoided. As 
given in the framework, only hyperparameter tuning has 
been carried out to improve the accuracy of the estimators. 
The Scikit-Learn Library (Pedregosa et al. 2011) has been 
used for SML estimators with the addition of XGboost 
(Chen & Guestrin, 2016). 

3. Results 

3.1. Data gathering 

Following the framework, 110 scenarios have been 
generated for PISCES simulation runs. After generating 
scenarios for ship-sourced oil spills, utilizing PISCES the 
generated scenarios have been put into simulation runs 
and resulting data have been extracted from the software. 
The most significant obstacles to responding to marine 
pollution, specifically oil pollution, that leads to substantial 
damage, arise when the oil drops from the sea surface into 
the water intervening unattainable, and when it reaches 
the shoreline, significantly aggravating remediation efforts. 
The two above factors—the timing of oil dispersion and the 
onset of oil interaction to the coast—are meticulously 
assessed when developing pollution response plans, which 
encompass decisions about the timing of interventions, the 
locations of equipment deployment, and the methods of 
those interventions. Therefore the simulation runs have 
been carried out considering two initial targets which are 
the time for oil to reach shore and the amount of oil 
dispersed in tonnes. 

The outliers in the data distribution were primarily 
attributed to extreme scenarios in the PISCES simulations, 
such as prolonged spill durations or unusually high 
evaporation rates. These outliers can significantly affect 
predictive model performance, particularly in regression-
based estimations. Furthermore, ensemble models like 
XGBoost and Random Forest, which are less sensitive to 
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outliers due to their tree-based structure, were leveraged 
to achieve robust predictions. 

The main simulation run has been carried out to find time 
for the oil to reach shore, where time stamps have been 
extracted for each 30 minutes. On the other hand, the 
amount of dispersion has been taken from the same 
simulation runs in which time has also been taken as a 
parameter. Overall, for the first rounds of simulation for 
time for oil to reach shore after evaluating the data 
extracted; speed of current (kts), speed of wind (kts), water 
temperature (°C), sea state (mt), water density (kg/m3), 
total amount of initial oil (t), oil density (kg/m3), surface 
tension (dyn/cm), viscosity (cSt), maximum water content 
and initial distance on shore (nm) selected as parameters 
and 110 simulation runs have been taken as data for SML 
models. 

 

Figure 2. Data distribution for the amount of oil dispersion in 

tonnes. 

 

Figure 3. Data distribution for time of oil impact on land in 

minutes. 

In the same manner, for the amount of oil dispersed; time 
passed (min), amount spilled (t), amount evaporated (t), 
amount stranded (t), amount floating mixture (t), max 
thickness (mm), slick area (km2), speed of current (kts), 
speed of wind (kts), water temperature (°C), sea state (mt), 
water density (kg/m³), oil density (kg/m³), surface tension 
(dyn/cm) initial viscosity (cSt), maximum water content, 
the initial distance of pollution to the coast (nm), viscosity 
change over time (cSt) have been considered as 
parameters. After the initial data acquisition, 1170 data 
points have been selected to be utilized in SML models. 
Figures 2 and 3 show the data distribution for the amount 
of dispersed and the time for oil to reach the shore  
respectively. For the amount of dispersed data, some 
outliers have been observed which are the results of longer 

simulations and for the time of impact, the data 
distribution although does not fit any conventional 
distribution gives a general idea of how the simulations 
resulted. 

 

Figure 4. Correlation heat map for all variables for predicting the 

amount of oil dispersion. 

Figure 5. Correlation heat map for all variables for predicting the 

time of oil impact on land. 

In Figures 4 and 5, correlation heatmaps have been created 
to visualize the pairwise correlations between all features 
across the data set. A reasonable correlation rate has been 
determined as ~0.5 and the highly correlated feature pairs 
have been identified and addressed, while features with 
weak correlation to the target variable have been kept 
even though they may not contribute significantly to the 
predictions. Hence, a feature selection process was carried 
out according to the heat map that was created. The 
features are selected based on the domain knowledge and 
statistical analysis that are used in the study. A correlation 
threshold set forth identified the features related 
meaningfully to the target variables: oil dispersion and time 
of impact on shore. A threshold of ~0.5 was selected to 
balance between features having a moderate to strong 
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correlation, and at the same time avoid risks from 
overfitting due to multicollinearity. 

3.2. Hyperparameter tuning 

Grid Search has been used for hyperparameter tuning to 
determine the optimal values of a model when applicable 
(Yang et al. 2023), (Pedregosa et al. 2011). For each 
estimator, a range of hyperparameters has been defined 
for Grid Search to look for the best combination as given in 
Table 2 and Table 3. Regarding hyperparameter ranges, a 
wide range has been tried, and as the range increased the 

performance decreased. Hence, the limited range has been 
presented in the below tables and vast granularity has been 
avoided for convenience. For all grid search applications, 
negative MSE is used for scoring and 5 folds have been used 
for splitting the data set for cross-validation. The 
significance of Grid Search, although computationally 
expensive, it ensures the models do not only work with 
given data but are generalized well into new unseen data. 

 

Table 2. Grid Search hyperparameter options for predicting the amount of oil dispersion. 

Grid Search Hyperparameters for each estimator Parameter Ranges 

Decision Tree   

Max Depth [3, 4, 5, 8, 10, 20, 30, 40, 50] 

Min Samples Split [2, 3, 4, 6, 8, 10] 

Min Samples Leaf [1, 2, 3, 4] 

Random Forest   

Number of Estimators [400, 800, 1000, 1500] 

Max Depth [3, 4, 5, 8, 10, 20, 30, 40, 50] 

Min Samples Split [2, 3, 4, 6, 8, 10] 

Min Samples Leaf [1, 3, 5, 10] 

Max Features [Auto, Square root] 

Gradient Boosting Regressor   

Number of Estimators [500, 1000, 1500] 

Learning Rate [0.01, 0.05, 0.1] 

Max Depth [3, 4, 5, 8, 10, 20, 30, 40, 50] 

Loss Function [Absolute error, quantile, squared error, huber] 

Min Samples Leaf [50, 100, 150] 

XGBoost Regressor   

Number of Estimators [500, 1000, 1500] 

Learning Rate [0.01, 0.05, 0.1] 

Subsample [0.5, 0.7, 1] 

Booster [GBTree, GBLinear] 

Max Depth [3, 4, 5, 8, 10, 20, 30, 40, 50] 

Min Child Weight [1, 2, 3] 

Base Score [0.25, 0.5, 0.75, 1] 

SVR  

C [10, 100, 200] 

Epsilon [0.01, 0.1, 1] 

Kernel [Poly, RBF, Sigmoid] 

 

4. Discussion 

SML models have been compared with mean squared error 
(MSE), coefficient of determination (0≤R^2≤1) and mean 
absolute error (MAE) performance metrics. MSE measures 
the average squared distance between actual and 
predicted values, R2 is used for assessing the quality of 
model predictions and MAE compares the absolute error 
between the actual and predicted values. After model fits, 
for the amount of oil dispersion, the best hyperparameters 
obtained from the Grid Search are given in Table 4, 
performance metric scores for each SML are given in Table 
5, and the performance comparisons are given in Figures 6, 
7, and 8. 

For the amount of oil dispersion, XGB, Random Forest, and 
Gradient Boosting have been observed to be the top 
performers among all models considered with 

R_XGB^2=0.96, R_RF^2=0.95, and R_GB^2=0.94 values 
respectively as well as having the lowest MSE and MAE 
values. All three top performers are ensemble models that 
leverage multiple learning algorithms to improve 
prediction performance. Even though the Decision Tree 
performed well enough, it was outperformed by ensemble 
models. Among others, XGBoost allows the processing of 
high-dimensional datasets with efficiency and easily 
embedded feature interactions without preselection bias, 
thus avoiding overfitting by a set of regularization 
techniques. The XGBoost algorithm is appropriate, 
especially for datasets with complicated relationships 
among input features, because of its iteratively minimized 
prediction error through the optimization of residuals in its 
gradient boosting mechanism. Grid-search 
hyperparameter tuning ensures optimal parameter 
selection to improve its predictive capability further. Such 



6  ASAN 

characteristics enable XGBoost to model nonlinear 
relationships that are innate in the oil spill dataset: viscosity 
changes and interaction among environmental factors, 
such as sea state and oil density. With high-performance 
results, ensemble models can be considered to be a 
candidate DSS as an alternative to PISCES simulations for 
rapid prediction with reliability for predicting oil dispersion. 

For the time of oil impact on shore, the best 
hyperparameters obtained from the Grid Search are given 
in Table 6, performance metric scores for each SML are 
given in Table 7, and the performance comparisons are 
given in Figures 9, 10, and 11. 

 

Figure 6. R2 score comparison of each estimator for the amount 

of oil dispersion. 

 

Figure 7. MSE comparison of each estimator for the amount of 

oil dispersion. 

 

Figure 8. MAE comparison of each estimator for the amount of 

oil dispersion. 

 

Table 3. Grid Search hyperparameter options for predicting the time of oil impact on land. 

Grid Search Hyperparameters for Each Estimator Parameter Ranges 

Decision Tree   

Max Depth [3, 4, 5, 10, 20, 30, 40, 50] 

Min Samples Split [2, 3, 4, 6, 8, 10] 

Min Samples Leaf [1, 2, 3, 4] 

Random Forest   

Number of Estimators [400, 800, 1000, 1500] 

Max Depth [5, 10, 20, 40, 50] 

Min Samples Split [2, 3, 6, 8, 10] 

Min Samples Leaf [3, 4, 5, 10] 

Max Features [Auto, Square root] 

Gradient Boosting Regressor   

Number of Estimators [50, 100, 500, 1000] 

Learning Rate [0.1, 0.15, 0.2] 

Max Depth [3, 4, 5, 8, 10, 20, 30, 40, 50] 

Loss Function [Absolute error, quantile, squared error, huber] 

Min Samples Leaf [1, 3, 5, 10] 

Min Samples Split [2, 4, 6, 8] 

Subsample [0.5, 0.7, 1.0] 

XGBoost Regressor   

Number of Estimators [50, 100, 500, 1000] 

Learning Rate [0.01, 0.05, 0.1, 0.2] 

Subsample [0.5, 0.7, 1] 

Colsample by tree [0.5, 0.7, 1] 

Booster [GBTree, GBLinear] 

Max Depth [3, 4, 5, 8, 10, 20, 30, 40, 50] 

Min Child Weight [1, 2, 3] 

Base Score [0.25, 0.5, 0.75, 1] 

SVR   

C [10, 100, 200] 

Epsilon [0.01, 0.1, 1] 

Kernel [Poly, RBF, Sigmoid] 
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Figure 9. R2 score comparison of each estimator for the time of 

oil impact on shore. 

Time of oil impact on shore research has been carried out 
with a small data sample as mentioned before. Hence the 
results obtained are subject to improvement. Only 
Gradient Boosting has been observed to perform well with 
given data with R_GB^2=0.704. Although the performance 
score is lower than expected, it is indicative of a strong fit 
to data with the lowest MSE and MAE scores as well. 
Ensemble models showed promising results for predicting 
the time of oil impact on shore same as the amount of oil 
dispersion prediction with the exclusion of Random Forest. 

 

Figure 10. MSE comparison of each estimator for the time of oil 

impact on shore. 

 

Figure 11. MAE comparison of each estimator for the time of oil 

impact on shore. 

 

Table 4. Grid Search results for estimators for the amount of oil dispersion 

SML Regression Model Optimized Hyperparameters after Grid Search 

SVR C=200; epsilon=0.1; kernel = RBF 

Decision Tree Max depth=5; min samples leaf=1; min samples split=3 

Random Forest Estimators=400; Max depth=10; min samples leaf=1; min samples split=3; max features= square root 

Gradient Boosting Estimators=1500; learning rate= 0.1; loss function=squared error; max depth=5; min samples leaf=100 

XGB Estimators= 1500; learning rate=0.05; max depth=3; min child weight=1; subsample=1; booster=gbtree; base score=1 

Table 5. Performance metric scores for each SML model for the amount of oil dispersion 

SML Regression Model MSE R2 MAE 

Linear Regression 11822,14 -0.086847 52,483630 

Polynomial Regression degree 2 16726,19 -61,254360 100,052274 

Lasso Regression α= 0,0001 9409,278 0.499493 49,33748 

Ridge Regression α= 0,0001 9409,284 0.499492 49,33757 

Lasso Regression α= 0,001 9409,216 0.499496 49,33664 

Ridge Regression α= 0,001 9409,283 0.499493 49,33755 

Lasso Regression α= 0,01 9408,602 0.499529 49,32826 

Ridge Regression α= 0,01 9409,265 0.499493 49,33733 

Lasso Regression α= 0,1 9402,631 0.499846 49,24441 

Ridge Regression α= 0,1 9409,093 0.499503 49,33509 

Lasso Regression α= 1 9369,238 0.501623 48,54825 

Ridge Regression α= 1 9407,389 0.499593 49,31275 

Lasso Regression α= 10 9842,174 0.476466 43,82178 

Ridge Regression α= 10 9392,214 0.5004 49,09507 

Lasso Regression α= 100 11561,68 0.385 39,97093 

Ridge Regression α= 100 9344,653 0.50293 47,4382 

Lasso Regression α= 1000 14044 0.252958 44,34885 

Ridge Regression α= 1000 9863,075 0.475354 44,67469 

SVR 15883,71 0.155098 38,501 

Decision Tree 4822,661 0.743468 13,90511 

Random Forest 949,599 0.949488 7,517505 

Gradient Boosting 1191,176 0.936638 17,24098 

XGB 828,707 0.955919 6,777389 

 

It can be discussed that for oil spill behavior prediction, 
tree-based models outperform linear and polynomial 
regression models as well as SVR. Regularization also did 

not benefit regarding performance since a wide range of α 
values have been tested with none of them performing 
well. Tree-based ensemble models, mainly Gradient 
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Boosting and/or XGB, can serve as quick and effective DSS 
as an alternative to PISCES. While the PISCES serves as a 
valuable tool for visually simulating oil spill scenarios, it is 
worth noting that this simulation process can be time-
consuming. In situations requiring swift and immediate 

response, the utilization of Gradient Boosting emerges as a 
highly valuable approach for expeditious decision-making 
and the prediction of oil spill behavior. 

 

Table 6. Grid Search results for estimators for the time of oil impact on shore. 

SML Regression Model Optimized Hyperparameters after Grid Search 

SVR C=200; epsilon=0.1; kernel = RBF 

Decision Tree Max depth=3; min samples leaf=4; min samples split=2 

Random Forest Estimators=1000; Max depth=5; min samples leaf=4; min samples split=2; max features= auto 

Gradient Boosting Estimators=50; learning rate= 0.2; loss function=huber; max depth=3; min samples leaf=10; min samples split=2; 

subsample= 1 

XGB Estimators= 50; learning rate=0.1; max depth=5; min child weight=3; subsample=0.5; booster=gbtree; base score=1; 

colsamlpe bytree=1 

Table 7. Performance metric scores for each SML model for the time of oil impact on shore. 

SML Regression Model MSE R2 MAE 

Linear Regression 58740,882286 -20,655910 138,343622 

Lasso Regression α= 0,0001 9660,976163 0.421533 75,071723 

Ridge Regression α= 0,0001 9660,982922 0.421533 75,071873 

Lasso Regression α= 0,001 9660,876227 0.421539 75,069761 

Ridge Regression α= 0,001 9660,949639 0.421535 75,071230 

Lasso Regression α= 0,01 9659,945540 0.421595 75,050049 

Ridge Regression α= 0,01 9660,617279 0.421555 75,064800 

Lasso Regression α= 0,1 9651,792903 0.422083 74,861490 

Ridge Regression α= 0,1 9657,340705 0.421751 75,000713 

Lasso Regression α= 1 9602,074530 0.425060 73,711481 

Ridge Regression α= 1 9628,941944 0.423452 74,380531 

Lasso Regression α= 10 9708,940289 0.418661 77,001600 

Ridge Regression α= 10 9590,047414 0.425780 73,825956 

Lasso Regression α= 100 17123,963067 -0.025325 108,279747 

Ridge Regression α= 100 11522,261521 0.310086 85,268750 

Lasso Regression α= 1000 17123,963067 -0.025325 108,279747 

Ridge Regression α= 1000 15745,280553 0.057226 103,575249 

Decision Tree 10476,396063 0.372709 73,988470 

Random Forest 9173,914970 0.450697 71,717453 

Gradient Boosting 5107,329803 0.704190 49,573632 

XGB 5963,364088 0.642934 51,573956 

SVR 8422,224413 0.495706 63,193655 

Linear Regression 58740,882286 -20,655910 138,343622 

 

5. Conclusions 

The potential impacts of oil spills can escalate into severe 
environmental disasters if prompt and well-informed 
decisions are not implemented.  The Oil Spill Contingency 
and Response (OSCAR) system, developed by the 
Environmental Technology Department of the Norwegian 
IKU Petroleum Research Institute, the Search and Rescue 
and Emergency Response Automation System (YAKAMOS) 
developed by the Scientific and Technological Research 
Council of Türkiye (TÜBİTAK), the Potential Incident 
Simulation Control and Evaluation System (PISCES), and the 
GNOME (General NOAA Operational Modeling 
Environment) system developed by the National Oceanic 
and Atmospheric Administration (NOAA), among others, 
provide critical support to decision-makers for the effective 
and execution of maritime emergency response. These 
systems utilize meteorological data (e.g., wind, air and sea 
temperature), oceanographic data (e.g., seawater density, 

surface currents, wave conditions, depth), maritime traffic 
dynamics, and pollutant and response equipment data 
(e.g., viscosity, density, barrier height, skimmer capacity). 
The integration of static data, which must be preloaded and 
regularly updated, alongside real-time dynamic data is vital 
for accurately representing the incident scene. Therefore, 
it is essential for institutions and organizations that provide 
such data (e.g., meteorological offices, 
oceanographic/hydrographic agencies, coast guard radars, 
vessel traffic service radars/AIS, police radars, satellite 
surveillance systems) to ensure seamless real-time data 
integration into decision-support systems. This extensive 
data input and the necessity for its real-time processing 
demand substantial organizational effort and time. While 
the Potential Incident Simulation Control and Evaluation 
System (PISCES) serves as an effective Decision Support 
System (DSS) for addressing oil spill incidents at sea, it's 
important to acknowledge that the duration required to 
obtain simulation results can be impractical in certain 
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urgent situations. This study introduces an alternative 
approach by employing supervised machine learning 
techniques as a means to expedite the estimation of critical 
parameters such as the extent of oil dispersion and the 
time it takes for oil to reach coastal areas. Unlike PISCES, 
which excels in scenario-specific customization and in-
depth application, machine learning models offer the 
distinct advantage of providing rapid results for standard 
initial actions and adaptability to a wide range of scenarios. 
This approach aims to strike a balance between precision 
and expeditious decision-making in managing oil spill 
incidents. 

With hyperparameters optimized with Grid Search, for 
estimating the amount of oil dispersion, XGB (R^2=0.96), 
Random Forest (R^2=0.95), and Gradient Boosting 
(R^2=0.94) have been observed to be top performers and 
for estimating time for oil to reach shore, Gradients 
Boosting (R^2=0.704) gave satisfactory results, with room 
to improve on with more data. The findings of this study 
demonstrate the superiority of tree-based models over 
other models, with ensemble models surpassing individual 
decision trees in terms of prediction performance. 

While ensemble learning approaches, such as XGBoost and 
Gradients Boosting, performed extremely well, further 
applications of these techniques might still be limited due 
to computational resources and sizeable datasets, 
especially for real-time applications or less number of 
datasets. Moreover, reliance on synthetic data based on 
simulations may limit the validity of the results under field 
conditions. While the performance of ensemble models 
was good, their interpretability is lower compared to the 
simpler models, which may present some challenges for 
decision-makers who seek clear explanations of 
predictions. These limitations point toward avenues of 
future research involving the development of interpretable 
ensemble methods and validation with real-world 
datasets. 

In conclusion, while PISCES offers valuable capabilities for 
visually simulating oil spill scenarios, it's important to 
acknowledge its inherent time-consuming nature. In 
contrast, ensemble models, which emerged as the top-
performing techniques in this research, stand out as 
powerful alternatives for expedited decision-making and 
prediction of oil spill behaviors. As a foundational study, 
this exploratory research showcased that supervised 
machine learning models can be trained as complete 
decision-making tools for immediate and efficient 
responses to critical incidents such as oil spills in the near 
future with sufficient. 
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