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Air pollution is one of the serious environmental problem that has an impact on ecosystems and 

human health worldwide. The prediction of air pollution can provide significant information that 

will permit all parties to take right initiatives. Predicting air quality is considered as a popular 

research area. A potential solution to air pollution has been suggested through the application of 

numerous time-series and artificial intelligence (AI) methods. These models are used with Internet 

of Things (IoT) devices in a cloud environment to forecast the air quality parameters. However, 

there exist several challenges such as overfitting issues, inaccurate real-time updates, and low 

precision. In this paper, an IoT cloud-based Air Pollution Monitoring System using Deep Learning 

(IoT-CAPM-DL) model under various meteorological situations is proposed to address the 

existing problems. Data collected from sensors are preprocessed to enhance its quality by 

eliminating null values, handling missing data, and normalization. Then, a robust Compact Split-

based Stacked VectormapConv Bidirectional long short term Bahdanau Attention (CSplitStack-

VBA) network is used to predict air quality parameters. A Bobcat Optimization Algorithm (BcOA) 

is used to tune the hyper-parameters of prediction model. The entire implementation is carried out 

using the Python platform and different kind of performance measures are calculated. The finding 

shows that the IoT-CAPM-DL model attains better MAE and RMSE value of 0.0076 and 0.0051. 

Thus, the experimental outcomes prove that the IoT-CAPM-DL model performed better in the 

prescribed dataset and produced significant results than existing approaches. 

Keywords: Air pollution, Internet of Things, Vector map convolution, Bahdanau attention, Bobcat 

optimization algorithm, Cloud environment 

1. Introduction 

Over the past years, the world has become more intelligent and increasingly connected with the 

expansion of Internet of Things (IoT). Idrees et al. (2020), Liao et al. (2020), and Ullo et al. (2020) 



 

 

published work related to the IoT sensor based air pollution predictor. IoT is deliberated as a 

wireless network of intelligent sensors that has the capability to collect and transmit data through 

embedded devices. The five main parts of an IoT devices are normally a processor, sensors, 

memory module, communications module, and power supply. Singh et al. (2021) discussed a 

gateway connects the sensors; it enables communication between the sensors and offers processing 

and storage abilities. The gateway can be hosted on edge or in the cloud. Time-series data 

generation from IoT devices, comprising robotics, sensors, and machines, is gaining popularity. 

Rapid data generation is a result of practical applications like air pollution monitoring. 

For further analysis, the data are sent to a cloud or edge processing center. Owing to the detrimental 

effects on human health, air pollution has gained greater attention globally. As a result, it has 

become increasingly significant to monitor and forecast the air quality around people in the past 

few years. IoT is broadly applied in various fields to improve human health by connecting various 

sensors in diverse locations. Feng et al. (2024) explained air pollution is a major global concern 

and has numerous detrimental health effects. The World Health Organization (WHO) has 

estimated that ambient air pollution approximately caused over 7 million deaths worldwide in 

2019, which is greater than 15% of all deaths expressed by Maio, S et al. (2023). 

Wu et al. (2023) analyzed several areas have set up networks for monitoring air quality in real-

time and combined a significant amount of monitoring data, which offers the fundamental data 

desirable for precise air pollutant prediction. Shin et al. (2023) derived the temporal dependencies 

still make it challenging to forecast the concentration of pollutants in a city. At any time interval, 

both the nearby and far-off historical time intervals and external causes have an influence on the 

pollution levels. Consequently, in order to offer an accurate prediction of air quality, an efficient 

model that fully extract and learn space and time dependencies as well as external inputs is 



 

 

essential. Knowledge-driven and data-driven methods are the two general categories used to 

predict air quality. 

Knowledge-driven models are capable to accurately assess the concentration of air pollutants since 

they combine both chemical and physical mechanisms to stimulate the processes of pollutant 

emission, diffusion, transformation, and transportation. Yet, these models are not supportive for 

the inspection of air quality issues at microscales, like in metropolitan regions. Because, they 

strongly depend on setting parameters that are hard to achieve and necessitate prior knowledge. 

Accordingly, data-driven techniques deliver an alternate method for accomplishing the predictive 

examination of the pollutant concentration in future by Liu et al. (2022). In contrast to knowledge-

driven models, these models do not necessitate prior knowledge and are merely based on 

correlations between dependent variables and pollutant concentration data. 

Shallow machine learning (ML), statistical, and deep learning (DL) techniques are the three 

subcategories of data-driven models by Maltare et al. (2023), and Ahmed et al. (2024). Time-series 

analysis is utilized by statistical models to predict future values based on the historical observed 

data. These models are efficient in dealing linear features however they are incompetent in 

capturing complex non-linear features. In contrast to shallow ML models, DL models have the 

capability to automatically identify important features and take unprocessed data as input for end-

to-end prediction by Zhang et al. (2024), Prado-Rujas et al. (2024). DL architectures, a type of 

ML, have proven state-of-the-art outcomes in broad environmental prediction problems because 

of their strong generalization, potential non-linear mapping capabilities, and flexible model 

structure. Recurrent neural networks (RNNs) provides great benefit in handling with sequence 

learning challenges by Saravanan, D et al. (2023). 



 

 

Thereby, Liu et al. (2023) exposed to acquire the temporal dynamics in pollutant sequence, RNNs 

and their variants, including bidirectional LSTM (BiLSTM) and long short-term memory networks 

(LSTM) networks are presented. But, the limited utilization of the spatial relationships within the 

monitoring network by RNN-based models has potentially obstructed their capability to process 

spatiotemporal data. Encouraged by convolutional neural networks (CNNs) potential for 

extracting spatial features, it has turn out to be dominant to utilize CNNs and RNNs to predict air 

quality. The most recent successor of CNN by Wang et al. (2024) is residual neural network 

(ResNet), which permits longer structures for learning deep abstract spatial relationships. 

Nevertheless, this model developed by Shaban et al. (2024) may need a considerable amount of 

inference time in order to handle new data. With the intension of better optimizing urban 

atmospheric forecasting, this research Motivates to develop a hybrid DL model based on the IoT 

Cloud in air pollutant monitoring network. The proposed model offers decision makers with 

correct and timely information on air quality trends by using cloud computing and DL. The main 

aim of the proposed work is 

• To develop an IoT cloud-based Air Pollution Monitoring System using Deep Learning 

(IoT-CAPM-DL) under various meteorological situations for predicting the air pollution. 

The Objectives of the proposed work is provided below as follows: 

• To employ a Compact Split-based Stacked VectormapConv Bidirectional long short term 

Bahdanau Attention (CSplitStack-VBA) network, which combines compact split-attention 

(CSplitA), vectormap CNN, and stacked BiLSTM, and Bahdanau attention for extracting features 

and forecasting the air quality parameters. 

• To tune the hyper-parameters of prediction model using a bio-inspired metaheuristic 

Bobcat Optimization Algorithm (BcOA) for minimizing the error rate.  



 

 

• To validate the working of IoT-CAPM-DL model by comparing with state-of-the-art 

methods.  

The scope of the proposed work is allows to make well-informed decisions that lowers the levels 

of air pollution and meets the air quality standards. The rest of the paper is aligned as follows. 

Section 2 deliberates the works related to the research proposed. Section 3 introduces the proposed 

IoT-CAPM-DL model. The performance of the IoT-CAPM-DL model for air quality prediction is 

assessed with simulated results in Section 4, and finally, the paper concludes and establish future 

directions in Section 5. 

2. Related works 

Bhushankumar Nemade and Deven Shah et al. (2022) suggested an IoT-based air pollution 

prediction system based on deep learning modified neural network (DLMNN) classifier. First, the 

H-ANFIS algorithm was utilized in the sensor nodes to identify the problematic node. MPCA 

algorithm was employed to extract features from the sensed data and remove unnecessary features. 

Next, the data was balanced using Entropy-HOA, and pre-processed using HDFS and replacement 

of missing attribute. After that, the pre-processed data was provided to DLMNN classifier, which 

could optimize the weight using pity beetle algorithm (PBA) for prediction. However, the 

complexity of this model was higher.  

Shilpa Sonawani and Kailas Patil et al. (2024) recommend an IoT-based air quality monitoring, 

warning, and prediction system that could perceive indoor air quality parameters such as CO, NO2, 

PM2.5, NH3, O3, pressure, temperature, etc. Here, the multiheaded CNN-gated recurrent unit 

could identify the pollution concentration for upcoming hour. Moreover, the model employed a 

transfer learning (TL) approach if there was a limited availability of data for prediction. The 

findings showed that the performance enhancement of 55.42% had attained for prediction with 



 

 

insufficient data. However, the overfitting problem could minimize the generalization ability of 

this model.   

A combined air-quality prediction model based on the ARIMA-CNN-LSTM with dung beetle 

optimizer (DBO) was introduced by Jiahui Duan et al. (2023). To evade the blinding issue in 

hyperparameter setting of CNN-LSTM, ARIMA model was initially used to fit the linear portion 

of the data. Next, DBO was used to find the CNN-LSTM model's hyperparameters. As a result, 

the four cities had corresponding root mean square value (RMSE) values of 7.594, 14.94, 7.841 

and 5.496; and R2 values of 0.989, 0.962, 0.953 and 0.953. However, this model needs to consider 

different influencing factors to enhance the model performance.  

Subramanian Deepan & Murugan Saravanan et al. (2024) suggested using seasonal autoregressive 

integrated moving average (SARIMA) transductive LSTM (TLSTM) for air quality index 

prediction. In order to predict values that characterize historical trends regarded as seasonal 

patterns, a SARIMA model was employed. Furthermore, a TLSTM model acquired long-term 

dependencies for predicting air quality index by learning dependencies through recurrent memory 

blocks. Further, the TLSTM had maximized the accuracy close to test sites. The experimental 

results showed that the SARIMA-TLSTM model had accomplished a greater accuracy of 93%. 

However, the time complexity of this model was higher.  

Shelly Sachdeva et al. (2024) suggested an integrated approach for predicting the air quality index 

using meteorological data and pollutant concentration. There were four modules in the framework 

for predicting air pollution. The first module had forecasted the concentrations of hazardous gases 

and particulate matter pollutants. Based on the historical air quality index data and pollutant data, 

the second module had predicted the air quality. By meteorological data and other data, the third 

module estimated air quality index. The output of second and third module were combined in the 



 

 

fourth module to compute air quality index. The findings showed that the mean absolute error 

(MAE) for prediction was only 7.09. However, the model would need to reduce the computation 

complexity and improve the performance in terms of different performance indicators.  

Periasamy, S., et al. (2024) developed a system based on transfer learning and quality indicators 

in recurrent network that is lightweight and has a skip connection to find the quality of air. By 

including skip contacts between the decoder and the linear forecasting layer, the suggested model 

lessens the decoding load.This study need to improve with larger datasets and more parameters 

will be added. Sundarapandi, A.M.S. et al. (2024) this study introduces a new prediction technique 

that combines a tree structural simple recurrent unit (LDTSRU) with a light weighted dense 

network. The input meteorological variables are first converted into grayscale images using a 

lightweighted dense network, which then looks for any noteworthy patterns within the variables. 

Problem statement: Forecasting the concentrations of air pollutants at a specific location and time 

is a primary challenge. Several egression or classification has been used to predict concentration 

or categorize air quality. One significant problem is the inaccuracy in prediction since the 

conventional techniques struggle to capture nonlinear, complex relationships in pollution data, 

thereby tending to discrepancies between actual and predicted air quality levels. Several traditional 

methods rely on static model that cannot adapt to varying environmental conditions, or new data, 

which minimize their responsiveness to real-time variation in air quality. Furthermore, advanced 

machine learning and artificial intelligence methods are not often used to their full potential to 

improve forecast accuracy. Also, the high computational burden particularly of advanced 

approaches also limits their use especially in low-resource areas. To fully exploit the immense 

potential of air quality forecast in smart cities, a number of challenges, including model 



 

 

interpretability, data accuracy, and the requirement for continuous model improvement should be 

addressed.  

3. Proposed methodology 

The potent tool that can assist businesses, governments, and individuals in managing and 

monitoring the quality of the air in their daily lives is an IOT- cloud based air pollution monitoring 

system. This system measures air pollutants using sensors and sends real-time data to a cloud 

server. Then, the data are analysis and visualization in accordance with environmental standards, 

and the application is allowed to remotely monitor the quality of air. The IoT-CAPM-DL model 

has considered various meteorological situations and it is modelled to measure several air quality 

parameters and pollutants in real time. Sensor nodes (SNs), WiFi module, gateway and cloud are 

used in the proposed system. The sensor nodes are positioned at various locations to collect 

information on the quality of the air, and wireless communication is utilized to transfer the data to 

the gateway. The SNs’ data is aggregated via the gateway and sent to the cloud server for further 

processing and analysis. After storing the collected data in cloud, the raw data undergoes pre-

processing to enhance its quality by eliminating null values, handling missing data, and 

normalizing data using L2-standardization. Then, a robust Compact Split-based Stacked 

VectormapConv Bidirectional long short term Bahdanau Attention (CSplitStack-BA) network is 

developed for extracting features and forecasting the air quality parameters.  In addition, the hyper-

parameters of CSplitStack-VBA network can be tuned using Bobcat Optimization Algorithm 

(BcOA) to enhance the forecasting performance. The block diagram of IoT-CAPM-DL model is 

given in Figure 1.  
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Figure 1: Block diagram of IoT-CAPM-DL model 

3.1 Pre-processing 

Preprocessing is a significant process that help to reduce data noise, which eventually speed up 

processing and increases the applicability of deep learning algorithms. Null values and missing 

data are the two most problems in extracting data and monitoring applications by Wang et al. 

(2022). Null value removal, missing data handling, and normalization based on L2-standardization 

are among the several operations carried out in IoT-CAPM-DL model during the data 

preprocessing step. To maintain data integrity, the rows or columns with significant number of 

null values is removed. For missing values, the missing value imputation technique is used by Niu 

et al. (2021). The L2-standardization normalizes the dataset so that the sum of squares of all values 

will equal to one by Benmamoun et al. (2024). The below equation illustrates L2-standardization 

in which y  specifies the dataset's feature values in Equ (1). 
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After pre-processing, the pre-processed data are used to extract the significant features and then 

performs prediction.   



 

 

3.2 Feature extraction and air quality prediction 

In IoT-CAPM-DL model, compact split-based stacked vectormapconv bidirectional long short 

term Bahdanau attention (CSplitStack-VBA) network is used to extract features and predict the air 

quality parameters. CSplitStack-VBA network combines the strength of compact split-attention 

(CSplitA), CNN with vector map convolution, and stacked bidirectional long short term network 

(BiLSTM), and Bahdanau attention for improving air quality parameter forecasting. Each 

component of CSplitStack-VBA network plays a significant role in processing spatial and 

temporal data corresponds to air quality and enable accurate prediction. Furthermore, the benefit 

of stacking integration in CSplitStack-VBA network is that it allows several base learners to be 

integrated and fully utilize their differences, providing more thorough information during the 

model training process. Stacking integration can improve the resilience and performance of a 

model while reducing variance when compared to a single model. The architecture of CSplitStack-

VBA network is provided in Figure 2. 
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Figure 2: Architecture of CSplitStack-VBA network 

3.2.1 Compact split attention module 

The role of CSplitA model that improves the process of feature extraction by splitting feature maps 

into various groups and employing attention within each group has employed. The deep network 

architecture uses large channel shared groups for feature extraction. Moreover, this model utilizes 

the same convolutional processes with the same receptive field size for each group. In order to 

optimize the structure and enhance its applicability while reducing the overall number of 

parameters in the entire network, the CSplitA module has two feature groups ( 2=Q ). When these 

two groups are isolated from the input features, they undergo various transformation jG . The two 

groups use a single 11  convolution followed by single 33  convolution. For increasing the 

representation across channels, the other group’s ( 2G ) output feature maps can be subjected to 

additional convolution after adding the results of the first group ( 1G ). In this way, the network's 

reception area can be increased and information from both separated groups can be gathered. 

Therefore, a more robust capability to extract both local and global information from feature maps 

is presented by the CSplitA module. The following is a mathematical expression for the fusion 

feature maps in Equ (2): 
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where, YJ ,  and E  resemble the output feature map scales. Channel-wise statistics designed by 

means of global average pooling are employed to gather the global spatial information. It is 

formed by compressing the results of the transformation across spatial dimensions, and thd  

component through in Equ (3): 
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Channel-wise soft attention has employed to aggregate a weighted fusion characterized through a 

cardinal group representation since the split weighted combination can capture important data in 

feature maps. Furthermore, the feature map channel can be identified as follows in Equ (4): 
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where, jb  describes the (soft) assignment weight that can be expressed in Equ (5): 
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where, 
d

j  is measured by applying two 11  convolutions with ReLU activation and BatchNorm, 

it exemplifies the weight of global spatial information T  to the thd  channel. As a result, the entire 

CSplitA model is simulated using an ordinary residual structure, and the output feature map is 

comparable to the input feature maps. Then, the result Z  is calculated by the skip connection: 

YWZ += . Otherwise, the skip connection can undergo an additional transformation u . For 

example, u  can be the convolution combined with stride or pooling and convolution. 

3.2.2 CNN with vector map convolution 

CNNs with vector map convolution offer a reliable method for managing and utilizing spatial 

and directional data, improving performance in applications that demand deep geometric and 

contextual knowledge. CNN is considered as a well-known deep neural network (DNN) that 

extracts complicated features and learns from the input data by employing convolutional 

operations in some of its layers rather than matrix operations. Typically, CNN encompasses three 

layers such as a convolutional layer, a pooling layer, and a fully-connected (FC) layer. After the 

network obtains the time-series data as inputs, the convolutional layer utilizes the pre-processed 



 

 

data to extract complex features. Then, the result is fed to the activation function and the pooling 

layer. By using the average or max-pooling technique, the latter lowers the dimension of feature 

map. In order to upsurge learning stability and evade overfitting issue during training, batch 

normalization (BN) and dropout are generally added to the network. The convolution of the 

preceding input feature map 
1−m

jy (the thj input feature map of thm )1( −  layer, and the 

convolution kernel 
m

jkx  which links thj  and thk  feature map yields the feature map m

ky of the 

convolutional layer by applying a nonlinear activation function (.)g . The calculation process is 

exemplified by the following equation in Equ (6): 
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Where, kN  indicates the number of inputs in thk  feature map, m

kc   resembles the kernel bias, and 

)(  indicates the convolution operation.  

3.2.3. Vector map convolution 

Vector map convolution is a specific form of convolution employed in CNN. It involves employing 

convolution filters to vector data for extracting significant features in air quality prediction. Instead 

of scalar multiplication, the convolution encompasses vector arithmetic (such as dot products, 

norms). The weight sharing ratio in vector map convolution is represented as 
1

P
, where P  

signifies the vectormap dimension vmDi . Assume 3

1 2 3[ , , ]inVe v v v=  be the input vector and 

3

1 2 3[ , , ]   =  specifies the weight vector with 3P = . A permutation   is performed on the 

inputs to make each vector multiplied through each weight vector element in Equ (7): 
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A new vector, 3Ve  is formed by performing circularly right shifted permutation to 3

inVe . The above 

equation can be utilized to find the weight 3( )   permutation. Thus, the output vector 
outVe  is 

given in Equ (8): 

3 3 3 3 3 2 3 3[ . , ( ). , ( ). ]out in in inVe Ve Ve Ve    =                                          (8) 

Where, " ." indicates dot product. The elements of 3

inVe  and 3 are combined linearly to provide 

the outputs 3

outVe . Let [ , , ]FVe A B C=  be the weight filter matrix for the vectormap and 

[ , , ]hVe X Y Z=  be the input vector after linear combination. Then, the vectormap convolution 

between 
FVe  and 

HVe  for 3vmDi =  in Equ (9): 
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Where, LM  represents the learnable matrix specified as matrix vm vmDi Di
LM


 , which has been 

initialized by employing in Equ (10): 
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Any dimensional hypercomplex convolution can be utilized by selecting vmDi  and allocating a 

new constant matrix vm vmDi Di
LM


  matching vmDi . The mechanism used for vectormap weight 

initialization is comparable to the quaternion and complex weight initialization. 

3.2.3 Bidirectional long short term network 

BiLSTM builds an inverse LSTM layer on top of the long short-term neural network in order to 

process reverse time series. Its strong sequence modeling capabilities designates LSTM. It can 

effectively retain and transmit long-term dependency information while selectively forgetting 



 

 

irrelevant data by applying memory units and gating mechanisms. This tackles the gradient 

vanishing and exploding issues that conventional RNNs encounter, permitting them to perform 

exceptionally well in challenging tasks like time series prediction and natural language processing.  

Among these, the following formulas are employed to determine the functions and gates inside 

LSTM neurons in Equ (11), Equ (12), Equ (13), Equ (14), Equ (15), Equ (16):  

)],[( 1 ITTIT BXHWI += −                                                   (11) 

)],[( 1 FTTFT BXHWF += −                                                    (12) 

)],[tanh(~
1 cTTcT BXHWc += −                                                   (13) 

)~
1 TTTTT cIcFc += −                                                             (14) 

)],[( 1 OTTOT BXHWO += −                                                         (15) 

)tanh( TTT cOs =                                                                 (16) 

Where, T  indicates the input sequences, TX  resembles the input data of the present time step, 

1−TH  indicates the hidden state of preceding time step, IW  and IB  specify the input gate's weights 

and biases, and   states the Sigmoid activation function. Equation (11) demonstrates that the input 

gate is utilized for controlling the updation of new input information. Equation (12) characterizes 

the forgetting gate, which regulates whether the preceding time step memory is forgotten. The cell 

state updated through the input and forgetting gate is characterized by Equation (13), where Tc~  

designates the current time step’s candidate cell state. The cell state updated by means of the input 

gate, forgetting gate, and candidate cell state is characterized by Equation (14). The output gate 

that controls the outcome of the current time step's hidden state is exposed in Equation (15). 

Through the updated gate and the output cell state, Equation (16) displays how to compute the 

hidden state of present time step, where Ts  indicates the hidden state of present time step.  
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Figure 3: Structure of BiLSTM  

Figure 3 depicts the structure of BiLSTM. Here, the input sequences of three successive time steps 

are employed. x  indicates the input sequence set, such as the feature maps that vector map 

convolution and the attention mechanism have processed. A set of output sequences sent to the 

next FC layers is designated by s . The forward and reverse LSTM units are characterized by d

and u . The bi-directional design of BiLSTM improves neural network performance and long-term 

temporal dependencies to produce more accurate prediction outcomes by strengthening its capacity 

to handle nonlinear time series. BILSTM has a computational efficiency issue since it necessitates 

bidirectional processing. By giving distinct weights to various features, the attention mechanism 

improves the perception and application of significant information by simulating how humans 

swiftly extract important information from huge amount of data, increasing processing efficiency 

and exactness of perceptual information. This makes more important features have a greater impact 

on the outcomes and minimize the computation complexity. 

3.2.4 Bahdanau Attention 

A technique that is often used in sequence-to-sequence models is Bahdanau Attention (BA), which 

provides distinct weights to various features. The encoder feature maps serve as keys k  and values 

v , while the decoder LSTM generates a query vector TQ  at each time step T  based on its present 



 

 

hidden state. A scoring function is employed to calculate the attention scores, and the softmax 

function is then employed to normalize the results and acquire attention weights. The context 

vector, which delivers targeted information is computed as a weighted sum of the encoder feature 

maps and concatenated with the input of decoder LSTM in Equ (17). 

))).(tanh(),( BKQwKQScore ITIT +=                                       (17) 

Then, the attention weights T  are attained by normalizing these scores by the softmax function 

in Equ (18): 

)),(max( kQscoresoft TT =                                             (18) 

By utilizing the attention weights, the context vector TC  is calculated as a weighted sum of encoder 

feature maps in Equ (19): 

 =
=

P

I IITT VC
1 , .                                                         (19) 

Where, TV  indicates the thI  value vector from the encoder feature maps, and P  resembles the 

number of feature maps. In order to provide the model with significant information during quality 

parameter prediction, the context vector TC  is concatenated with the decoder LSTM's input TX  

at each time step T . 

3.3. Hyper-parameter tuning 

 In IoT-CAPM-DL model, the bobcat optimization algorithm (BcOA) is employed in 

CSplitStack-VBA network to update the parameters for optimizing the loss function. The BcOA 

is one of the population-based optimizer that influences the members’ search capacity to obtain 

appropriate solution for optimization problems in an iteration-based process. The design 

inspiration for BcOA resembles that the problem-solving space relates to the bobcats' wildlife 

habitat and their location within the habitat corresponds to the BcOA members’ location in the 

problem-solving area. Consequently, in BcOA, the values for the decision variables are determined 



 

 

by each bobcat (hyperparameters) as a population member based on the location it occupies in the 

issue solving space. Thus, each bobcat's location characterizes a potential solution to the problem, 

which can be mathematically described as a vector. Together, bobcats comprise the algorithm's 

population, which can be mathematically signified by a matrix in accordance with Equation (20).  
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The primary bobcats’ position is randomly initialized using the below equation in Equ (21),: 

, .( )j d d d dy LB s UB LB= + −                                               (21) 

where, P  indicates the number of bobcats, s  resembles a random number in the interval [0,1], m  

characterizes the number of decision variables, dUB  and dLB  specifies the upper and lower 

bounds of thd  decision variable, Y  states the population matrix, jY  signifies the thj  bobcat 

(candidate solution), and djy ,  resembles its thd  dimension (decision variable). Equation (22) states 

that a vector can be utilized to signify the set of evaluated values for the fitness function in Equ 

(22). 

)( onLossFunctiMiniG j =                                                   (22) 

where, jG  specifies the computed fitness function depending on 
thj  bobcat. The best BcOA 

member resembles to the best assessed value for the fitness function, and the worst BcOA member 

resembles to the worst evaluated value for the fitness function.  

The population members' locations are updated during the exploration phase using a simulation of 

bobcats tracking and moving behavior in the direction of prey during hunting. Equation (23) is 



 

 

used to define the set of candidate prey for each bobcat, which is the location of other population 

members with a higher value for the fitness in Equ (23). 

}:{ jlandGGYcp jllj = , where Pj ,...,2,1=  and },...,2,1{ Pl                (23) 

where, lY  represents the population member with higher fitness value than the thj  bobcat, lG  

represents its fitness value, and jcp  specifies the set of potential prey positions for thj  bobcat. 

Using Equation (24), a new location is determined for every BcOA member. If this new position 

increases the fitness value based on Equation (25), it replaces the responding member's previous 

position in Equ (24) and Equ (25). 
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where, kjs ,  indicates the random numbers with interval [0,1], kjJ ,  specifies the numbers randomly 

selected as 1 or 2, jsp  implies the chosen prey by thj  bobcat, kjsp ,  specifies its thk dimension, 

1

,

Q

kjY  resembles the new location computed for the thj  bobcat based on exploration phase, 
1

,

Q

kjy  

indicates its thk dimension, and 
1Q

jG  specifies its fitness function value. 

During the exploitation phase, the population members' positions is updated based on the chasing 

behavior of bobcat. Equation (26) is used to define a new location for each BcOA member close 

to the hunting location depending on the modeling of bobcat’s location change during the chasing 

process. Based on Equation (27), the corresponding member's previous position is replaced with 

this new one if the value of fitness raises. 
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where, 
2

,

Q

kjY  resembles the new location computed for the thj  bobcat depending on exploitation 

phase, 
2

,

Q

kjy  designates its thk dimension, and 
2Q

jG  specifies its fitness function value. The 

pseudocode of BcOA for parameter tuning is provided in Algorithm 1.  

Algorithm 1: Pseudocode of BcOA for parameter tuning 

Start 

Initialize the size of population P , maximum number of iteration U , 

fitness function and other variables 

Create an initial population matrix randomly using Equation (21) 

Compute the fitness function using Equation (22) 

For 1=u  to U   

    For 1=j  to P  

Phase 1: Exploration phase (tracking and moving close to prey) 

    Compute the set of prey for 
thj  member of BcOA using Equation (23) 

    Compute new location of 
thj  BcOA member using Equation (24) 

     Update 
thj  member of BcOA using Equation (25) 

Phase 2: Exploitation phase (chasing to catch prey 

    Compute new location of 
thj  BcOA member using Equation (26) 

     Update 
thj  member of BcOA using Equation (27) 

End 

Choose the best candidate solution obtained so far 

End  

Output the best solution (optimal value of hyperparameters)  

End 

 4. Results and discussion 

The experimental outcomes of both IoT-CAPM-DL and prevailing techniques on the air quality 

dataset are discussed in this section. The University of Utah Air Pollution Monitoring Network 

dataset Salt Lake City provided the dataset, which was gathered between 2019-07-26 and 2021-



 

 

05-14. The python programming language has been used to implement the proposed IoT-CAPM-

DL. The input of IoT-CAPM-DL comprises of time series window of preceding air quality 

measurements, which encompasses dissimilar air quality indicators like PM2.5, PM10, CO, SO2, 

O3 and NO2, meteorological data, temporal elements and geographical characteristics. The 

meteorological data includes humidity, temperature, air pressure, wind speed and direction. Time-

related features encompass days, hours, months and seasonal trends. The output is the predicted 

value of air pollution index. The effectiveness of the IoT-CAPM-DL is compared with recently 

published research articles for air quality prediction. The hyperparameter tuning of IoT-CAPM-

DL method is given in Table 1.  

Table 1 Hyperparameter tuning of IoT-CAPM-DL method 

Parameters Values 

No of epochs 100 

Initial learning rate 0.01 

Batch size 32 

Maximum iterations 100 

Activation Function ReLU 

Dropout rate 0.2 

Optimizer BcOA 

4.1 Dataset description 

 This air quality dataset was created using 25 pollution sensors from Salt Lake City, Utah, 

USA's Air Pollution Monitoring Network, which are requested from the University of Utah's 

linked group [32]. Each air quality sensor provides a packet of data for 60 seconds (supposing that 

the monitor is operating ordinarily). Each pollution monitor has environmental sensors, like a 

temperature and humidity sensor (Texas Instruments HDC1080), an optical particle counter 

(Plantower PMS3003), and a sensor for identifying reducing and oxidizing gases 

(SGXSensorTechMiCS4514). Conferring to the device utilized to take the readings (one row per 

device per hour), the readings in this dataset are aggregated and averaged across an hour. The FEM 



 

 

Tropospheric Ozone Equipment at the Hawthorne Monitoring Site, run by the Utah Department of 

Air Quality (DAQ), could provide the desired data. It is delivered for every 60 minutes. A DAQ 

system's hourly ozone values are attached to the relevant dataset row. Every one of the twenty-five 

air pollution sensors has more than twenty-five sets of ozone. 

4.2 Performance indicators 

The performance of the IoT-CAPM-DL method for air quality prediction is measured using the 

mean absolute error (MAE), mean absolute percentage error (MAPE), RMSE, and the coefficient 

of determination (R2‐Score).  

Mean absolute percentage error:  MAPE is defined as a relative statistic that expresses the average 

value of a relative error as a proportion of the true value. The expression of MAPE is given as 

follows in Equ (28): 
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Where, p  resembles the total number of data points or time steps, Qj  specifies the expected value 

and Bj  indicates the real value.  

Mean absolute error: MAE determines the average magnitude of detection errors while 

disregarding their directions. It is deliberated as the average of the absolute differences between 

the actual and predicted values for every sample in the test set when every individual differences 

partake similar weight in Equ (29). 
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Root mean square error: The RMSE metric, which is measured by the standard deviation of the 

prediction errors, designates how far the data points are from the regression line. The prediction 

becomes more misaligned if the value is higher in Equ (30). 
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Where, u  indicates the total number of data points. 

R2‐Score: A metric known as the R2 Score is employed to assess how well a linear regression 

technique calculates variations in a dependent variable from variations in the independent 

variables. 

4.3 Performance comparison  

In the experimental investigation, the IoT-CAPM-DL method has used the metrics RMSE, MAPE, 

MAE, and R2-Score to measure the performance of the IoT-CAPM-DL method. The result of IoT-

CAPM-DL method is contrasted with the existing long short term memory (LSTM), support vector 

machine based regression (SVMR), gradient boosted tree regression (GBTR) and hybrid LSTM 

recurrent neural network (LSTM-RNN) models. In addition, other existing models are employed 

for comparison.   

4.3.1 Comparison with different evaluation metrics 

During the initial experiment, the IoT-CAPM-DL method is evaluated on PM2.5 on the employed 

dataset and computed the level of pollution in terms of RMSE, MAPE, MAE, and R2-Score. The 

comparative assessment of IoT-CAPM-DL method using different performance indicators like 

RMSE, MAPE, MAE, and R2-score is provided in Figure 4. The existing methods, including gated 

recurrent units (GRU), transformer, hybrid particle swarm optimization based HPSO-LSTMRNN, 

hybrid LSTM+RNN+genetic algorithm (GA), and hybrid LSTM+RNN+ant colony optimization 

(ACO) are used for comparison. The results show that the IoT-CAPM-DL model is significantly 

better, as demonstrated by its lower MAE and RMSE values, which signifies enhanced accuracy 

and less differences from actual data. The accurate predictions of model with a low percentage 

error are emphasized by the lower MAPE, which is crucial for dependable forecasting. The 



 

 

maximum R2 score value designates that the IoT-CAPM-DL model is useful in capturing 

discrepancies in air quality and determines that it fits the data well. The CSplitStack-VBA 

approach, which incorporates BcOA for tuning parameters and the stacked neural network for 

catching temporal correlations, is responsible for the improved performance. This exemplifies the 

model's dependability and flexibility in predicting changes in air quality. The performance of the 

IoT-CAPM-DL method using different performance indicators is provided in Table 2. 

 

 

  
(a) MAE (b) MAPE 

 
 

(c) RMSE (d) MAPE 

Figure 4: Comparative assessment of IoT-CAPM-DL method (a) RMSE, MAE, MAPE and R2-

score 

Table 2 Performance of IoT-CAPM-DL method using different performance indicators 



 

 

Parameters Transformer GRU Hybrid 

LSTM+RNN+ACO 

Hybrid 

LSTM+RNN+GA 

HPSO-

LSTMRNN 

Proposed 

RMSE 0.0074 0.082 0.0089 0.0105 0.0184 0.0051 

MAE 0.0237 0.0197 0.0185 0.0165 0.0082 0.0076 

MAPE 5874*109 3594*109 3021*109 2894*109 2002*109 1996*109 

R2-score 0.0591 0.0784 0.0874 0.0890 0.1227 0.1234 

 

The effectiveness of IoT-CAPM-DL method in predicting air quality dynamics is demonstrated in 

Figure 5. The model has trained over 20 epochs, and the data is depending on information collected 

on the specified date. The graphical representation clearly illustrates the assessment of predicted 

and actual values, permitting for a visual assessment of the model's precision and ability to identify 

patterns in the air quality data. Besides, the model's ability to predict air quality is enhanced by 

utilizing 20 epochs, which implies the dataset has processed 20 times throughout training. 

 

Figure 5: Prediction of IoT-CAPM-DL based on predicted and actual pollution level 

The MAE results for IoT-CAPM-DL model and the existing models are displayed in Figure 6. The 

IoT-CAPM-DL model outperforms other existing methods such as LSTM, GBTR, SVMR and 

HPSO-LSTMRNN with MAE results of 1.92, 2.05, 2.53, 3.13, and 3.5 for 2 hours, 4 hours, 6 

hours, 8 hours, and 10 hours. Among the existing methods, HPSO-LSTMRNN obtained MAE 



 

 

value of 2.12 for 2 hours, 2.25 for 4 hours, 2.89 for 6 hours, 3.65 for 8 hours, and 4.12 for 10 hours, 

and it is closer to the proposed method. The IoT-CAPM-DL model performs better when the MAE 

value is lower.  

The RMSE results for the IoT-CAPM-DL model and the prevailing models are displayed in Figure 

7. In comparison to LSTM, GBTR, SVMR and HPSO-LSTMRNN models, the IoT-CAPM-DL 

model yields RMSE scores of 0.74, 0.87, 1.12, 1.46, and 2.30 for 2 hours, 4 hours, 6 hours, 8 

hours, and 10 hours. Among the existing methods, HPSO-LSTMRNN obtained better RMSE 

values of 1.13 for 2 hours, 1.45 for 4 hours, 1.97 for 6 hours, 2.25 for 8 hours, and 2.87 for 10 

hours and it is closer to IoT-CAPM-DL model. A lower RMSE of IoT-CAPM-DL model indicates 

that the model is performing better. 

  

Figure 6: MAE comparison from 2 hour to 

10 hour  

Figure 7: RMSE comparison from 2 hour 

to 10 hour 

The MAPE outcomes of IoT-CAPM-DL model for the first two hours in the range of 15–30, 30–

40, 40–70, and 70+ are displayed in Figure 8. According to "WHO" standard guidelines, PM 2.5 

in the restricted range of 0 to 20 has less effect on the human body because of its lower value. In 

the same way, the MAPE outcomes for the first four hours in the range of 15–30, 30–40, 40–70, 

and 70+ are displayed in Figure 9. The graphical representation indicates that the IoT-CAPM-DL 

prediction approach performs better in terms of MAE, MAPE and RMSE errors as well as model 

expressiveness with various models. 



 

 

 
 

Figure 8: MAPE results for first 2 hour  
Figure 9: MAPE results for first 4 hour 

4.3.2 Assessment for k-fold cross validation 

The analysis of k-fold cross-validation is essential for examining an air-quality dataset. For 

effective public health management and environmental monitoring, air quality prediction depends 

heavily on the robustness and dependability of predictive models. The k-fold cross-validation is 

especially supportive to handle the complexity and inherent unpredictability of air quality data. 

Datasets on air quality usually reveal variations throughout time and space. This unpredictability 

can be helped and considered when training and evaluating models by including a range of data 

points from different sources. Besides, a model's generalizability across various contexts and time 

periods is evaluated by K-fold cross-validation through systematically rotating different subsets of 

the dataset for testing and training. Also, the k-fold cross-validation analysis is indispensable for 

getting a trustworthy and unbiased assessment of the model's accuracy, which increases the 

forecasts' accuracy for actual air quality conditions. When handling the complexities of fair quality 

datasets, the findings from K-fold cross-validation increase the comprehensive evaluation of the 

model's performance. 

Table 3 Analysis of k-fold cross validation 

Model Fold RMSE MAE MAPE R2-score 

1 0.014 0.010 4.0% 0.93 

2 0.017 0.013 4.8% 0.89 



 

 

Hybrid 

LSTM + 

RNN + GA 

…… …… ….. ….. ….. 

10 0.020 0.015 5.8% 0.84 

Avg. 0.018 0.013 5.2% 0.87 

Hybrid 

LSTM + 

RNN + ACO 

1 0.015 0.011 4.2% 0.92 

2 0.016 0.012 4.5% 0.91 

…… ……. …… …. …. 

10 0.020 0.015 5.8% 0.84 

Avg. 0.018 0.013 5.2% 0.87 

HPSO-

LSTMRNN 

1 0.012 0.009 3.5% 0.95 

2 0.014 0.010 3.8% 0.94 

…… ……. …… …… …… 

10 0.015 0.011 4.0% 0.93 

Avg. 0.013 0.010 3.8% 0.94 

Proposed 1 0.011 0.008 3.2% 0.91 

2 0.012 0.009 3.5% 0.93 

…… …… …… …… …… 

10 0.014 0.010 3.7% 0.92 

Avg. 0.012 0.009 3.7% 0.93 

 

The outcomes of a 10-fold cross-validation for IoT-CAPM-DL and existing models in air quality 

prediction are shown in Table 3. Every row resembles to a fold, presenting metrics like MAE, R2 

Score, MAPE, and RMSE. The average performance over all folds is exposed by the "Avg" row. 

With an average RMSE of 0.012 and MAE of 0.009, the IoT-CAPM-DL model continuously 

establishes increased accuracy in predicting air quality levels and showing a decrease in prediction 

errors. The model's accuracy is emphasized by the average MAPE of 3.7%, which displays a lower 

level of error. A better level of explained variance and dependability in the predictions is 

designated by the R2 score of 0.93. The existing models show poorer performance with higher 

average higher RMSE, MAPE, and MAE, and lower R2 scores. The IoT-CAPM-DL model’s 

dependability and effectiveness are emphasized by its strong and constant performance in air 

quality prediction. 

5. Conclusion 



 

 

This paper contributes to a novel IoT-CAPM-DL model for predicting air quality by addressing 

the existing problems. To ensure the data quality, the IoT-CAPM-DL starts with pre-processing 

the collected data stored in cloud. After pre-processing, the significant features are extracted and 

predicted air quality index using CSplitStack-VBA network. The optimal parameters selected 

through BcOA supported the CSplitStack-VBA network to minimize the error and maximize the 

performance. The performance of IoT-CAPM-DL model is evaluated by means of different 

performance indicators and it accomplished 1996*10^9 of MAPE, 0.0051 RMSE, 0.0076 MAE 

and 0.1234 R2-score, respectively. Overall, the proposed IoT-CAPM-DL model accomplishes 

better than the prevailing approaches across all performance indicators and contributes to a robust 

framework for predicting air quality and enhancing the understanding of air pollution dynamics to 

mitigate its effect on public health and environment. However, the continuously processing and 

transmitting IoT data can be resource intensive. This challenge is resolved by modelling a quality 

of service (QoS) aware and energy efficient protocol as future work. In addition, experimenting 

with other hybrid optimization strategies for hyper-parameter tuning can accomplish efficient 

neural network configuration. 

Data Availability Statement: Dataset, (2023). https://ieee‐dataport.org/documents/university‐utah‐

airu‐pollution‐monitoring‐network‐salt‐lakecity‐ut‐2019‐07‐26‐2021‐05‐14 
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