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Abstract 

Air quality prediction is crucial for environmental monitoring and public health. This 

work presents a new prediction model called Attentive Self-Calibrated Optimized U-Net 

(ASCO-UNet) for air quality prediction using a one-dimensional convolutional neural network 

(1D- CNN). The proposed model resembles U-Net architecture which is used in image 

segmentation tasks popularly. The proposed model uses the strength of U-Net’s encoder-

decoder design to capture both local and global features effectively. To enhance the model's 

performance, we integrate attention mechanisms to focus on the most relevant features. In 

addition, the self-calibrated convolutions are applied to adjust the convolutional filters to 

improve feature representation. The parameters of the proposed model are fine-tuned using the 

Frilled Lizard Optimization (FLO)  algorithm for optimal performance. Experimental results 

show that the ASCO-UNet outperforms traditional models, including LSTM, GRU, and 

Transformer-based models with significant improvements in validation loss, Mean Absolute 

Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE). The ASCO-

UNet achieves a loss of 1.7263, MAE of 0.9390, MSE of 2.980, and RMSE of 1.7263, 

outperforming benchmark methods such as Transformer-based models and GRU+Attention.  
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1 Introduction  

Air pollution is the mixing of any chemical, physical or biological agent in an indoor 

or outdoor atmosphere that changes the quality of the environment [1]. Air quality is mainly 

correlated to the earth’s climate and ecosystems globally. The different origins of air pollution 

are classified into multiple areas like transport, industrial activities, waste burning, power 

production, building construction and agriculture. Air pollution is life life-threatening issue 

across all countries [2].  

Air pollution is a critical health which can lead to premature death, exacerbating 

conditions like asthma and cardiovascular diseases. Cardiovascular diseases include heart 

attacks and strokes. Air pollution is also affecting the development of children. It can cause 

low infant birth weight, wheezing, coughing, and shortness of breath [2]. Research continues 

to reveal new connections between air pollution and various health issues. The figure shows 

the risk factors arranged based on disability-adjusted life years (DALYs). DALYs is a measure 

of disease burden. Figure 1 shows that air pollution is a major element for making humans' 

poor health.  

 

Figure 1: Risk level of air pollution by WHO [3] 

To effectively control air pollution, innovative techniques are required which integrate 

both predictive measures and control strategies. The key elements of these techniques include 

regulatory measures, technological advancements, public awareness campaigns, predictive 

modelling, and international cooperation. Predictive modelling is an essential tool in air 

pollution control strategies. The data from air quality monitoring stations can forecast pollution 



 

 

levels and identify potential pollution events before they occur. The invention of Internet of 

Things (IoT) based technologies supports continuous data collection in air quality monitoring 

stations. These stations continuously collect real-time data on various pollutants such as PM2.5, 

PM10, NO2, SO2, CO, and O3. Then, the predictive models use collected and extracted 

relevant features for future prediction. This model is based on Machine Learning (ML )and 

Artificial Intelligence(AI) to analyse patterns and trends [3]. The accurate and timely 

predictions allow authorities to identify pollution hotspots and implement necessary actions 

such as traffic restrictions, temporary shutdowns of industrial facilities and public 

advisories[4]. 

In this work, an innovative model based on 1D-CNN is proposed for accurate air 

pollution prediction. The novelty of the ASCO-UNet model lies in the integration of attention 

mechanisms and self-calibrated convolutions within a U-Net-inspired architecture, enabling 

enhanced feature representation and adaptability. Additionally, the use of the Frilled Lizard 

Optimization (FLO) algorithm for parameter tuning ensures optimal performance in air quality 

prediction tasks. Moreover, the attention mechanism and self-calibration strategies are added 

to improve the performance further. The remaining sections of the paper are ordered as follows. 

Section 2 explores related works in air pollution prediction models. Section 3 explains the 

proposed air quality prediction architecture. Section 4 details the experimental results and 

section 5 gives the conclusion. 

2 Related work 

Maleki, H. et al. [5] developed a PM2.5 prediction model using an artificial neural 

network (ANN). The ANN model included nine factors in the input stage, thirty neurons in the 

hidden stage, and finally one in the output stage. Similarly, Nikpour, P. et al. [6] developed a 

Gelato model that combines ANN with XGBoost for air quality prediction. 

Y. Han,  et al [7] proposed a fusion-based model for air quality prediction. The proposed 

model uses an attention-layer strategy to learn the influential historical features from input data. 

The prediction results from different learning models are combined to produce a final 

prediction result. Z. Qi, et al [8] presented a new feature extraction technique to process the air 

quality data. The proposed approach extracts spatial-temporal features from pollution data to 

increase overall prediction accuracy.   



 

 

In their study, X. Yi, et al [9] developed a short-term air pollution prediction model 

using a deep neural network. The hyperparameters of the network are tuned using a genetic 

algorithm. Results show that the deep learning model betters the previously proposed time 

series model, achieving an average error of 4.52% on the test set. An air quality prediction 

model based on a recurrent neural network is proposed by K. Gu, et al [10]. The recurrent 

model considers multiple metrological data for the accurate prediction of air quality. In deep 

learning, Self-Supervised Learning (SSL) has gained more attention due to the processing 

capability of unlabeled data to learn useful representations. The Graph Neural network-based 

model combined with SSL is introduced by J. Han, et al [11] for air pollution forecasting. 

Compared to another model, the graph-based model effectively learns contextual patterns to 

improve the prediction accuracy.  

Autoencoder-based PM 2.5 forecast model is developed by C. -Y. Lo et al [12]. An 

autoencoder-based prediction model consists of an autoencoder architecture combined with 

predictive layers. The autoencoder learns a compressed representation of the pollution data. 

The experimental results show that the autoencoder-based prediction model is more accurate 

in forecasting air quality. A three-stage model for air quality prediction was proposed by Sun, M. et 

al [13]. It involves a backpropagation neural network with swarm optimization for the empirical 

analysis of the air quality dataset. B. Liu, et al [14] developed a gated recurrent unit (GRU) model for 

air pollution prediction in Beijing station. Compared to the LSTM model, the GRU model has an 

additional gate of RESET gate to remove the irrelevant features for further processing. Results show 

that the GRU model increased the prediction accuracy by 0.2% on the Beijing live dataset. Likewise, 

L. Wang et al [15] proposed a Bidirectional-GRU model for PM2.5 prediction. Compared to the GRU 

model, the Bi-GRU model processes the data in both forward and reverse directions and improves the 

data learning capacity. Federated Learning is a decentralized ML approach that allows multiple models 

to jointly train a model without sharing their raw data. It enables the aggregation of model updates from 

different sources to build a robust prediction model. Abimannan et al [16]  proposed an air pollutant 

prediction model based on federated learning and compared it with other models.  

The stacking-based LSTM model is suggested by N. Jin et al [17] for air quality 

forecast. The stacking of the LSTM layer is used to learn the temporal features of air pollution 

data deeply without any additional complexity. The results show that the daily average value 

of AQI can be accurately calculated with an error rate of 7.45 and a correlation of 89.6%. 

Similarly, the LSTM model combined with an autoencoder is introduced by X. Xu et al [18] 

for PM2.5 prediction. Experiments on datasets show that the proposed model betters other 

models, increasing performance by 6.2% to 8.5% compared to sole LSTM models. 



 

 

X. Meng, et al [19] proposed a deep learning model based on a dual attention 

mechanism for air quality prediction. The attention mechanism in the learning model is used 

to selectively process the input data based on the priority level. The integration of the attention 

mechanism considerably reduces mean square error (MSE) from 0.035 to 0.027. The 

parameter-tuned deep learning model is constructed by J. Wang et al [20] for air quality 

forecast. The parameters like epochs, learning rate and filter sizes are tuned by a modified 

particle swarm optimizer. J. Qiao, et al [21] introduce a prediction model using graph 

convolution. Graph Convolution technique processes and analyses the data as graphs. Unlike 

CNNs, graph convolution is designed to handle data where the relationships between entities 

are represented as a graph. 

H. A. D. Nguyen et al [22]., propose an LSTM-combined Bayesian neural network for 

PM2.5 prediction. To improve the spatial correlation extraction property, a new type of 

activation function is introduced.  Periyanan, A. et al [23] proposed a Modified GRU model 

based on new activation functions. The new activation function includes additional parameters 

to control the slope for positive and negative values. 

Sigamani, S. et al [24] presented an air quality prediction model using a Deep Feedforward 

Neural Network (DFNN). The parameters of the DFNN model were tuned using Fractional 

Tangent Two-Stage Optimization. 

Ghufran Isam Drewil et al [25] introduced an LSTM model combined with a Genetic Algorithm 

(GA). The learning rate of the LSTM model was tuned using GA. Similarly, Srivastava, H. et 

al [26] developed an LSTM model called Xavier Reptile Switan-h-LSTM to increase the 

accuracy of air quality prediction. Likewise, Baron, Sam B. et al [27] used an LSTM model 

with Model-Agnostic Meta-Learning (MAML) to explicitly target air quality parameters. 

Q. Shao et al [28] proposed a three-fold prediction model for air quality analysis. 

Initially, the data is pre-processed with Variational Mode Decomposition. Then, the CNN 

model is used for feature extraction. Finally, the XGBoost is applied for the final prediction. 

The proposed model is verified in Nanjing real-time data sets. Results show that the model 

achieves a 21.89% decrease in RMSE and a 20.05% decrease in MAE.  

A hybrid model-based CO forecast model is presented by S. Du, et al [29].  The 

proposed model includes 1D-CNNs and Bi-directional Long long-term memory networks (Bi-

LSTM) to learn the spatial-temporal features from air pollution data. The outcomes show that 

the CNN+LSTM model has at least 1.1 times lower error rate than the existing models. 



 

 

Similarly, W. Zheng et al [30] proposed a CNN-combined LSTM model for air quality 

assessments. 

 

 

 

 

3 Proposed System Architecture 

The proposed air quality prediction model is constructed using a 1D-CNN similar to 

the U-Net architecture. This model is designed to effectively capture both local and global 

features through its encoder-decoder structure. The proposed model includes attention 

mechanisms and self-calibrated convolutions for effective feature representation and to 

increase prediction accuracy. In addition, the FLO is applied for best parameter tuning. The 

overall architecture is shown in Figure 2. 

Figure 2: Overall architecture 

3.1 Encoder-Decoder Architecture 

.  The architecture of the proposed Attentive Self-Calibrated Optimized  U-Net (ASCO 

-UNet) is shown in Figure 3 The encoder consists of multiple 1D convolutional layers to reduce 

the temporal resolution and increase the number of feature maps. Each convolutional layer is 

followed by a ReLU activation function and a max-pooling layer to downsample the input. The 

layer receives the raw time-series data. The functions of 1D Convolutional Laye is defined as 

follows: 

Data set  
collection  

U-Net model   AQI 
Prediction    

Performance 
analysis    

AM SCC FLO 



 

 

𝑌𝑖 = 𝜎(∑ 𝑊𝑘 ∗ 𝑋𝑖+𝑘−1 + 𝑏)𝐾
𝑘=1           (1) 

Where, 𝑌𝑖 is output feature map, 𝑋𝑖 is the input feature map, 𝑊𝑘 is the k-th convolutional 

filter, b is the bias term and 𝜎 is the activation function (ReLU). The functions of the Max 

Pooling layer are as follows: 

𝑌𝑖 = max
𝑗=1…𝑝

𝑋𝑖+𝑗−1          (2) 

Where p is the pooling window size. At the bottleneck, the model captures the most 

compressed representation of the input data and keeps the essential features for reconstruction. 
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Figure 3:  Proposed ASCO -UNet 

The decoder mirrors the encoder using upsampling layers and 1D convolutions to 

reconstruct the temporal resolution. The skip connections from the encoder layers to the 

corresponding decoder layers are used to retain high-resolution features. The function of 

upsampling layers is as follows:  

𝑌𝑖 = 𝑋↾𝑖/2↿                   (3) 

Where, ↾. ↿ is the ceiling operation.  

3.2 Attention Mechanism(AM) 

The attention mechanism used  to focus on the most important features  of the input 

sequence, It improves the prediction accuracy𝑊𝑉 by weighing important features more heavily. 

The operations of attention layers are as follows: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑘
)𝑉                  (4) 

Where, Q, K and V refer to the  Query, Key, and Value matrices respectively. It can be 

computed as follows: 

𝑄 = 𝑊𝑄𝑋           (5) 

𝐾 = 𝑊𝐾𝑋           (6) 

𝑉 = 𝑊𝑉𝑋           (7) 

Where, 𝑊𝑄, 𝑊𝐾, and 𝑊𝑉 are the weight matrices. 



 

 

3.3 Self-Calibrated Convolutions (SCC) 

In existing convolutions, the static filters are applied to the input features. In contrast, 

self-calibrated convolutions dynamically modify these filters based on the input features 

themselves. The process of self-calibrated convolutions involves two main steps: generating a 

calibration feature map and applying this calibrated map to the input features. The operations 

of self-calibrated convolutions are as follows: 

𝐹 = 𝜎(𝑊1 ∗ 𝑋 + 𝑏1)          (8) 

𝑌 =  𝜎(𝑊2 ∗ (𝐹ʘ𝑋) + 𝑏2)         (9) 

Where ʘ is the element-wise multiplication.  

3.4 Frilled Lizard Optimization (FLO) Algorithm  

The Frilled Lizard Optimization (FLO) algorithm is inspired by the hunting and 

defensive behaviours of the frilled lizard [31]. This type of lizard is found in Northern Australia 

and spends most of its time in trees.  The unique behviour of a frilled lizard is moving bipedally 

when hunting or escaping predators. During movement, it aligns its head behind its tail base 

for balancing. This agile predator primarily feeds on insects and invertebrates after spotting 

prey. It finds optimal solutions based on exploration and exploitation processes. The stage of 

FLO is divided into three stages: Hunting Strategy, Retreat Strategy and Repetition Process.  

Hunting Strategy 

In the exploration phase, the algorithm mimics the hunting behavior of frilled lizards. 

It performs a global search to explore the solution space broadly. The position of candidate 

prey (CP) for each frilled lizard is expressed as follows: 

𝐶𝑃𝑖 = {𝑋𝑘: 𝐹𝑘 < 𝐹𝑖  𝑎𝑛𝑑  𝑘 ≠ 𝑖} 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2, … . . 𝑁 𝑎𝑛𝑑 𝑘 ∊ {1,2 … 𝑁}  (10) 

Where, 𝑋𝑘 is the population member and 𝐹𝑘 is its objective function value. i is the 

corresponding i th frilled lizard. The new position of frilled lizard (𝑥𝑖,𝑑
𝑃1) mathematically 

expressed as follows:  

𝑥𝑖,𝑑
𝑃1 = 𝑥𝑖,𝑑 + 𝑟𝑎𝑛𝑑(𝑃𝑃𝑖,𝑑 − 𝑅𝑥𝑖,𝑑)        (11) 



 

 

𝑋𝑖 = {
𝑋𝑖

𝑃1, 𝐹𝑖
𝑃1 < 𝐹𝑖

𝑋𝑖, 𝐸𝑙𝑠𝑒
         (12) 

Where 𝑃𝑃 is the selected prey for the ith-frilled lizard. 𝑟𝑎𝑛𝑑 is the random number 

varying from zero to one. R is the number that varies from one to two. d is the dimension of 

the search space. 𝐹𝑖
𝑃1 is the objective function. 

 

 

Exploitation Phase (Retreat Strategy) 

In the exploitation phase, the algorithm emulates the retreat behavior of frilled lizards. 

It performs a local search to explore the new solutions. The new position of frilled lizard 

(𝑥𝑖,𝑑
𝑃2) mathematically expressed as follows:  

𝑥𝑖,𝑑
𝑃2 = 𝑥𝑖,𝑑 + (1 − 2𝑟𝑎𝑛𝑑)

(𝑢𝑙𝑑−𝑙𝑙𝑑)

𝑡
       (13) 

𝑋𝑖 = {
𝑋𝑖

𝑃2, 𝐹𝑖
𝑃2 < 𝐹𝑖

𝑋𝑖, 𝐸𝑙𝑠𝑒
         (14) 

Where 𝑎𝑛𝑑 is the random number that varies from zero to one. ul and ll denote the 

upper and lower limits of the search space. t is the number of iterations.  

Repetition Process of FLO 

The FLO algorithm iteratively updates the positions of frilled lizards in the solution 

space using equations (1) to (14). Each iteration updates the positions and maintains the best 

candidate solution by comparing objective function values. The process continues until the best 

solution is found. 

3.4.1 Parameter tuning using FLO 

     The parameters of the UNet model are tuned using FLO. Initially, the models are 

trained using random hyperparameters. The MAE of the model is set as fitness functions to 

tune the parameters using FLO. The pseudocode of the proposed tuning is given below: 

Pseudocode  



 

 

Initialize the population of frilled lizards (solutions) with random positions in the search space. 

Initialize parameters such as maximum iterations, population size, and bounds of the search 

space. 

Define the objective function to evaluate the fitness of each solution, which includes: 

    - Extracting parameters (filters, kernel_size, dropout_rate) from the solution. 

    - Building and training the neural network model with the extracted parameters. 

    - Evaluating the model performance (validation accuracy) and returning it as the fitness 

value. 

FOR each iteration DO: 

    FOR each frilled lizard DO: 

        Calculate the fitness of each lizard using the objective function. 

        Identify candidate prey (solutions with better fitness) for each lizard. 

                // Hunting Strategy (Exploration Phase) 

        FOR each frilled lizard DO: 

            Select a prey randomly from the candidate prey. 

            Update the position of the lizard using: 

            new_position = current_position + random_number * (prey_position - random_number 

* current_position) 

            IF the new position is better than the current position THEN 

                Update the position of the lizard to the new position. 

            END IF 

        END FOR 

                // Retreat Strategy (Exploitation Phase) 

        FOR each frilled lizard DO: 

            Update the position of the lizard using: 



 

 

            new_position = current_position + (1 - 2 * random_number) * (upper_bound - 

lower_bound) / current_iteration 

            IF the new position is better than the current position THEN 

                Update the position of the lizard to the new position. 

            END IF 

        END FOR 

    END FOR 

        Update the best solution found so far. 

END FOR 

Return the best solution (best_params). 

// Train and evaluate the final model with the best parameters 

Extract filters, kernel_size, and dropout_rate from best_params: 

    filters = [int(best_params[]), int(best_params[]), int(best_params[]), int(best_params[]), 

int(best_params[4])] 

    kernel_size = [int(best_params[]), int(best_params[]), int(best_params[]), 

int(best_params[]), int(best_params[])] 

    dropout_rate = best_params[] 

Build and train the neural network model using the best parameters: 

    Define the neural network architecture with the extracted parameters (filters, kernel_size, 

dropout_rate). 

    Train the model on the training data. 

    Evaluate the model on the validation/test data. 

Return the final model performance. 

   The algorithm starts by initializing a population of frilled lizards. Here, each 

represents a potential solution in the parameter space of the neural network. Each lizard's 

position corresponds to the neural network parameters such as filters, kernel sizes, and dropout 



 

 

rates. The algorithm also sets essential parameters like the maximum number of iterations and 

the size of the population to control the optimization process.   The core of the optimization is 

the objective function which evaluates the quality of each solution (lizard). This function 

extracts the parameters from each lizard which builds and trains a neural network model using 

these parameters. Then, assesses the model's performance based on validation accuracy.  

    The optimization process proceeds through multiple iterations.   To refine the search 

and exploit known good solutions, each lizard updates its position by moving towards a new 

position determined by a formula involving the bounds of the search space and the current 

iteration number.    After each iteration, the algorithm updates the best solution found so far 

based on the fitness values of the lizards. This assures that the best-performing solution is 

tracked throughout the optimization process. A final model is built and trained using these 

parameters. The model's performance is then evaluated on validation or test data to determine 

its effectiveness. 

4 Experimental results  

The dataset consists of air pollution data collected from various cities across India from 

2020 to 2023. The data set visualization is shown in Figure 4. It includes several critical 

columns that detail the air quality conditions in these urban areas. The dataset includes the 

columns of City, Date, AQI, CO (Carbon Monoxide, NO (Nitric Oxide), NO2 (Nitrogen 

Dioxide), O3 (Ozone, SO2 (Sulphur Dioxide, PM2.5 (Particulate Matter 2.5), PM10 

(Particulate Matter 10) and NH3 (Ammonia). The entire data set is divided into training and 

test data sets for evaluation purposes.  



 

 

 

Figure 4: Data visualization 

Before optimization, the model is initialized with the following hyperparameters: 

convolutional layers with filter sizes of [32, 64, 64, 64, 128] and kernel sizes of [3, 3, 3, 3, 3], 

and a dropout rate of 0.2. After optimization using FLO, the final hyperparameters are 

determined as follows: convolutional layers with filter sizes of [61, 37, 57, 78, 97] and kernel 

sizes of [3, 6, 6, 5, 4], and a dropout rate of 0.11. These optimized parameters led to improved 

model performance, as reflected in the reduced mean absolute error (MAE) during validation. 

This paragraph provides a clear comparison of the parameter values before and after 

optimization, highlighting the changes and their impact on model performance. Figure 5 shows 

the fitness evaluation curve of optimization as a function of Mean Absolute Error (MAE) 

values. It is observed that the optimization process is improving the model's accuracy over 

time. The proposed model is analyzed using the following metrics. These metrics compare 

original values with predicted values: 

𝑀𝑆𝐸 =
1

𝑛
∑ (�̅� − 𝑦)2𝑛

𝑖=1            (15)  

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (�̅� − 𝑦)2𝑛

𝑖=1            (16) 

𝑀𝐴𝐸 =
1

𝑛
∑ |�̅� − 𝑦|𝑛

𝑖=1            (17)  



 

 

 

                                                         Figure 5: Fitness curve for the optimization process  

Figures  6 – 11 show the Loss and MAE values of both training and validation datasets for 

different architectures. The proposed model is compared with well-known Long Short Term 

Memory (LSTM), Gated Recurrent Unit (GRU) model and the proposed versions of Attention-

based (AB-UNet), In AB-UNeT, Self Calibrated Convolution Based UNet (SCCB-UNet) and 

Multi-Scale Dense Networks (MSD) -UNet models. The validation loss decreases initially and 

then slightly higher level than the training loss which denotes some overfitting. Likewise, the 

model based on MSD shows higher MAE and Loss rates. In the proposed model, the graph 

shows that the MAE decreases as the number of iterations increases. This indicates that the 

optimization process is improving the model's accuracy over time. Further, the initial rapid 

decrease in MAE suggests that the model is quickly learning from the data. Overall, the 

proposed versions of the UNet model show superior performance compared to all other models. 

This is evident in both the lower loss and MAE values during validation, suggesting better 

generalization and less overfitting. The measured performance values are given in Table 1. 

 



 

 

Figure 6: Loss and MAE curve of UNet model 

 

Figure 7: Loss and MAE curve of UNet model with attention 

 

Figure 8: Loss and MAE curve of UNet model with Self calibration 

 



 

 

Figure 9: Loss and MAE curve of UNet model with FLO 

 

Figure 10: Loss and MAE curve of MSD -UNet 

 

Figure  11: Loss and MAE curve of ASCO -UNet 

Table 1:  Performance analysis of diffetent prediciotn models. 

Method Loss MAE MSE RMSE 

UNET 1.8114 1.0329 3.281170 1.8114 

LSTM 2.5 1.2 6.25 2.5 



 

 

GRU 2.2 1.15 4.84 2.2 

Attention based 

(AB-UNet)  
3.8337 1.5586 14.69726 3.8337 

Self Calibrated 

Convolution Based 

UNet (SCCB-

UNet) 

2.7054 1.3725 7.319189 2.7054 

Optimized UNet  1.743268 1.160759 3.038985 1.743268 

Multi-Scale Dense 

Networks (MSD) -

UNet  

5.3340 2.8675 26.566 6.567 

Attentive Self-

Calibrated 

Optimized  U-Net 

(ASCO -UNet) 

1.7263 0.9390 2.980112 1.7263 

 



 

 

 

Figure 12:  Performance analysis 

The U-Net model achieved a loss of 1.8114 and an MAE of 1. The LSTM model 

showed a higher loss of 2.5 and an MAE of 1.2. The GRU model performed slightly better than 

LSTM with a loss of 2.2 and an MAE of 1.15. Among the U-Net variations, the AB-UNet 

shows a significantly higher loss of 3.8337 and an MAE of 1.5586. The SCCB-UNet showed 

moderate performance with a loss of 2.7054 and an MAE of 1.3725. 

The Optimized UNet which includes fine-tuned hyperparameters achieved a lower loss 

of 1.7433 and an MAE of 1.1608. The MSD-UNet showed the highest loss of 5.3340 and an 

MAE of 2.8675. The ASCO-UNet integrating attention mechanisms and self-calibrating 

convolutions optimized through hyperparameter tuning achieved the best performance among 

all models with a loss of 1.7263 and an MAE of 0.9390. This model's superior results highlight 

the effectiveness of combining these advanced techniques for capturing complex patterns in 

the data. The results are graphically shown in Figure 12. 

Table 2:  Performance analysis of different prediction models. 

Method Loss MAE MSE RMSE 

ANN  3.4567 1.6754 11.9376 3.4567 

ANN + 

XGBoost  
3.1025 1.5489 9.6273 3.1025 

DFNN  2.8594 1.4932 8.1749 2.8594 
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Modified GRU  2.4211 1.3726 6.1211 2.4211 

Three-stage 

model  
3.7124 2.5408 6.9154 3.8124 

LSTM + GA  2.1019 1.2745 4.8272 2.1019 

MAML-LSTM  2.0123 1.2017 4.5238 2.0823 

ARIMA [32] 4.3215 2.3514 13.7123 3.7021 

LSTM + 

Attention [33] 
2.1765 1.2856 5.2143 2.2834 

Transformer-

based Model 

[34] 

1.8743 1.1024 3.5829 1.8920 

BiLSTM + 

Attention [35] 
1.9123 1.1234 3.7456 1.9345 

CNN-LSTM 

[36] 
2.1546 1.3489 4.9567 2.2243 

Deep-AIR ([37] 2.0114 1.1678 4.3211 2.0123 

ELM (Extreme 

Learning 

Machine, [38] 

2.5478 1.3245 5.6879 2.3847 

GRU + 

Attention [39] 
1.8956 1.2894 3.5987 1.8973 

Hybrid Model 

[32] 
2.3465 1.4123 6.1245 2.5124 

Bayesian LSTM 

[40] 
2.0478 1.2034 4.4598 2.1143 

Self-Attention 

Transformer 

[41] 

1.9845 1.8873 3.4546 1.9421 

ASCO -UNet 1.7263 0.9390 2.980112 1.7263 

The performance comparison of the proposed model with the previously proposed model 

is given in Table 2.  The proposed ASCO-UNet model achieves the best performance when 

compared to all other models. Its effectiveness overcomes other models like ANN, Modified 



 

 

GRU, and LSTM+GA by using attention mechanisms, self-calibrated convolutions, and the 

FLO algorithm. These combinations allow the ASCO-UNet to reduce prediction error and 

increase overall accuracy. 

5 Conclusion 

In this work, a new prediction model inspired by U-Net architecture with 1D 

convolutions is proposed to increase the accuracy of air quality prediction. The proposed 

architecture learns both local and global features. In addition, the model's performance is 

analyzed by the attention modules and self-calibrated convolutions with parameter tuning. The 

results show that the proposed model achieved a better result with MAE, MSE, and RMSE 

values of 0.9390, 2.980, and 1.7263, respectively. The major advantage of the proposed 

architecture is the proper use of self-calibrated convolutions to adaptively refine feature maps 

and attention mechanisms to handle critical features. However, the model performance also 

depends on parameter tuning which shows higher computation cost and limits scalability in 

resource-constrained environments.   Future work can focus on reducing computational 

overhead by integrating lightweight attention mechanisms and searching unsupervised learning 

approaches to reduce the dependence on labeled data. Additionally, real-time deployment in 

IoT systems for air quality monitoring could further enhance its efficiency in practical 

applications. 
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