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ABSTRACT  13 

Efficient biomedical waste management is essential for hospital hygiene and public health, 14 

particularly within the context of smart city infrastructures. This study proposes an innovative 15 

hybrid model combining a Genetic Algorithm (GA) with a Fuzzy Inference System (FIS) to 16 

enhance waste classification accuracy and improve segregation efficiency. Leveraging six 17 

months of empirical data from Apollo Hospitals and Fortis Malar Hospital in Chennai, the 18 

model is tailored to classify five distinct types of biomedical waste effectively. A central 19 

component, AUTOM, employs fuzzy logic for automated decision-making, optimizing waste 20 

disposal and addressing challenges like the preservation of critical genetic information 21 

typically compromised in traditional GA approaches. This integration not only improves 22 

system interpretability but also enables precise waste classification using compact, cost-23 

effective sensors that ensure scalability. Validation in the Proteus simulator demonstrates 24 

robust performance, with the model achieving a classification accuracy of 96.4%, precision of 25 

96.8%, and recall of 94.8%. These results underscore the GA-FIS model's potential to elevate 26 

biomedical waste management practices, contributing to sustainable public health efforts and 27 

environmental protection within smart cities. 28 

Keywords: biomedical waste, genetic algorithm (GA)–fuzzy inference system , environmental 29 

sustainability, Proteus simulator, AUTOM tool 30 

1. Introduction 31 

Biomedical Waste Management (BMW) is an important worldwide concern that needs to be 32 

addressed immediately. The production of biomedical waste has increased due to the quick 33 

expansion of the healthcare industry as well as the rise in hospital stays, doctor visits, and 34 

laboratory diagnostics. Manual sorting, handling, and disposal are examples of traditional 35 
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BMW procedures that are labor-intensive, prone to inaccuracy, and dangerous for one's health. 36 

At the forefront of resolving these issues is the incorporation of AI technologies. These 37 

technologies have the ability to completely transform the procedure, from the collecting of 38 

garbage to its disposal, with increased accuracy and efficiency. Biomedical waste may be 39 

precisely identified, sorted, and managed by automated systems, guaranteeing maximum safety 40 

and environmental compliance. In order to solve the issues and raise the general effectiveness 41 

of healthcare waste management, BMW must incorporate AI technologies. Because of its 42 

hazardous nature and various composition, biomedical waste management is a difficult issue 43 

that calls for sophisticated ways to assure environmental protection and public health safety. 44 

Biomedical waste is defined by the World Health Organization as materials produced during 45 

research operations or during the diagnosis, treatment, or immunization of humans or animals. 46 

Conventional waste management techniques are expensive, labor-intensive, and prone to 47 

mistakes. Effective waste treatment is further complicated by the dynamic nature of healthcare 48 

environments and the variety in waste composition. Fuzzy inference systems are one example 49 

of an advanced computational technology that has gained popularity recently for optimizing 50 

biomedical waste management procedures. Artificial intelligence systems known as fuzzy 51 

inference systems use fuzzy logic to simulate human decision-making processes while handling 52 

imprecise and uncertain input. This method can handle degrees of truth, which makes it ideal 53 

for difficult decision-making situations involving ambiguities and uncertainties. 54 

Biomedical waste management is incorporating fuzzy inference algorithms to separate and 55 

classify trash according to factors including toxicity, infectiousness, and recyclable nature. 56 

Real-time decision-making on trash disposal techniques may be made by these systems, which 57 

also optimize resource allocation and lower operating costs. Additionally, they improve the 58 

precision and dependability of waste management procedures by constantly modifying the 59 

selection criteria in response to shifting operational and environmental circumstances. This 60 
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flexibility is especially useful in settings involving smart cities, where linked systems need for 61 

clever management strategies. Fuzzy logic and genetic algorithms (GA) have been effectively 62 

combined in hybrid models to maximize system efficiency, reduce transportation costs, and 63 

plan the best routes for collecting waste. In order to increase system performance, the fuzzy 64 

rule base is optimized via genetic algorithms, which identify the optimal set of rules. Fuzzy 65 

inference systems in real-world scenarios can be experimentally validated and their 66 

performance evaluated with the help of sophisticated simulation tools such as the Proteus 67 

simulator. 68 

The interval-valued fuzzy DEMATEL (Decision-Making Trial and Evaluation Laboratory) 69 

method to investigate sustainable healthcare waste management. It lists and assesses the most 70 

important variables affecting sustainability in the handling of medical waste. The authors offer 71 

a thorough framework for decision-making in the context of waste management strategies by 72 

using a fuzzy method to capture ambiguity and interdependencies among these aspects. Their 73 

conclusions provide useful information for enhancing sustainability and effectiveness in the 74 

handling of medical waste (Li et al., 2021). A multilayer hybrid deep learning technique 75 

intended for recycling and garbage sorting. The method improves garbage sorting and recycling 76 

systems' accuracy by combining multiple deep learning models. In an effort to increase 77 

recycling rates and waste management techniques, this technique makes use of cutting-edge 78 

neural network designs for the effective processing and classification of waste items. The 79 

suggested approach outperforms conventional techniques in terms of automation and efficacy 80 

(Chu et al., 2018) 81 

Moreover, applying machine learning and IoT for waste management and air quality 82 

forecasting, developing a system that combines these technologies for real-time monitoring, 83 

improved waste management efficiency, and predictive environmental insights (Husain et al., 84 

2020). Additionally, a hybrid decision-making framework is proposed for sustainable 85 



 

5 
 

healthcare waste management, integrating operational and environmental considerations 86 

(Takur et al., 2021). Another study presents a fuzzy decision-making model for selecting eco-87 

friendly healthcare waste treatment systems, focusing on emerging economies to aid in 88 

sustainable technology choices (Li et al., 2020). 89 

An interval-valued fuzzy model combined with a genetic algorithm optimizes waste collection 90 

and disposal, enhancing flexibility and efficiency (Ikram et al., 2023). During the COVID-19 91 

pandemic, fuzzy logic has been used to manage the complexities of pandemic-related medical 92 

waste, ensuring efficient and safe treatment and disposal (Goodarzian et al., 2024). 93 

Additionally, an integrated Bayesian and type-2 fuzzy TISM approach assesses the risks of 94 

COVID-19 medical waste transportation, offering a robust framework to enhance safety (Tang 95 

et al., 2023). 96 

The Pythagorean fuzzy-based decision framework for evaluating healthcare waste treatment 97 

choices is presented in this research. The framework takes into account uncertainty and 98 

different levels of membership in decision-making processes by utilizing Pythagorean fuzzy 99 

sets. The suggested model assesses many options for treatment, providing a strong instrument 100 

for choosing the most efficient and long-lasting waste management techniques. The framework 101 

facilitates a thorough evaluation of treatment methods in the healthcare industry by integrating 102 

qualitative and quantitative criteria (Rani et al., 2020). In order to improve waste management 103 

systems and guarantee the environment's and healthcare workers' safety and health, the 104 

research highlights shortcomings in present procedures, fills in those gaps, and makes 105 

recommendations for enhancements (Nosheen et al., 2022). However, to examine the obstacles 106 

and enablers that Malawian healthcare professionals face in attaining sufficient environmental 107 

health conditions and infection control. The writers highlight major obstacles like lack of 108 

training, infrastructural problems, and resource constraints through interviews and field 109 
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observations. In environments with limited resources, the study offers suggestions for 110 

enhancing environmental health and infection control procedures (Tu et al., 2022). 111 

In order to evaluate and forecast operational factors for physicians, this article uses an Adaptive 112 

Neuro-Fuzzy Inference System (ANFIS) approach to investigate the application of Industry 113 

4.0 technologies in healthcare. The study shows how ANFIS may increase operational 114 

efficiency and adaptability in healthcare by combining data-driven insights with fuzzy logic to 115 

boost decision-making processes (Fatima et al., 2022). To reduce surgical site infections, the 116 

authors suggest using a fuzzy inference system to assess the indoor air quality in operating 117 

rooms. The technology helps to maintain a clean environment during surgeries by modeling 118 

and evaluating different air quality factors using fuzzy logic. Through improved air quality 119 

control in operating rooms, the study seeks to increase patient safety and reduce the incidence 120 

of infections (Colella et al., 2022). 121 

Adaptive neuro-fuzzy algorithms are integrated into the MANFIS model to forecast e-waste 122 

levels while accounting for multiple affecting factors. Because the study increases forecast 123 

accuracy and facilitates better planning and resource allocation in waste management, it offers 124 

a useful tool for managing electronic trash (Khoshand et al., 2023). The integration of artificial 125 

intelligence (AI) into the modernization of biological waste management is the subject of this 126 

research. The authors offer cutting-edge methods for waste tracking, sorting, and disposal by 127 

utilizing AI technology. The paper demonstrates how artificial intelligence (AI) may improve 128 

biomedical waste management systems' efficacy and efficiency by tackling issues with 129 

operational efficiency, safety, and regulatory compliance (Sarkar et al., 2023). Better 130 

environmental and health results can be achieved by applying sustainable waste management 131 

solutions that can be tailored to the specifics of resource-constrained regions (Peter et al., 132 

2023). It examines several bioremediation approaches, including enzyme-based procedures 133 

and microbial degradation, that are used to handle and recycle biomedical waste. The report 134 
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provides insights into creative and sustainable solutions to the mounting problems associated 135 

with biomedical waste management by highlighting developments in bioremediation 136 

technology (Khan and Mohd Sajjad Ahmad 2024). 137 

2. Proposed Methodology 138 

2.1.Data collection  139 

Data for biomedical waste was meticulously collected from two prominent healthcare 140 

institutions in Chennai, namely Apollo Hospitals and Fortis Malar Hospital, over a period of 141 

six months. The primary goal was to capture a detailed picture of the biomedical waste 142 

management practices employed within these healthcare settings. This involved not only the 143 

identification and classification of waste but also the quantification and composition analysis 144 

of various waste categories generated within the hospitals. 145 

The data collection process included a thorough categorization of biomedical waste into 146 

distinct types, such as sharps (e.g., needles, scalpel blades), infectious materials (e.g., 147 

contaminated gauze, surgical waste), pharmaceuticals (e.g., expired or unused medications), 148 

and non-hazardous waste (e.g., general hospital waste). The quantities of each waste type were 149 

recorded, providing a quantitative assessment of the waste generated in both hospitals. 150 

Additionally, the study focused on understanding the variability in waste production over time, 151 

including factors such as seasonal trends, hospital activities, and patient volume, which could 152 

influence waste generation patterns. This data was crucial in identifying trends and patterns 153 

that could inform more effective waste management strategies tailored to the specific needs of 154 

healthcare facilities. The collected data also considered the waste segregation and disposal 155 

methods already in place, highlighting areas where improvements could be made to ensure 156 

compliance with environmental and health safety standards. The comprehensive nature of this 157 

dataset allowed for an in-depth evaluation of existing waste management practices and served 158 
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as the foundation for proposing more efficient, sustainable solutions for biomedical waste 159 

disposal. In summary, the data collected from Apollo Hospitals and Fortis Malar Hospital 160 

provides a comprehensive empirical basis for evaluating and improving biomedical waste 161 

management practices in healthcare settings. It offers critical insights into waste types, 162 

quantities, and disposal methods, with the goal of enhancing operational efficiency, ensuring 163 

regulatory compliance, and promoting sustainable environmental practices in the healthcare 164 

sector. 165 

2.2.Proposed method 166 

The proposed methodology includes the following process, figures 1 show the proposed 167 

model's high-level overview as well as its intricate operations. When an object is placed in the 168 

middle of the bin, it comes into contact with a load cell that detects the impact weight. After 169 

collecting the initial impact weight, the weight is measured again until it stabilizes. In this case, 170 

thirty consecutive weight readings are recorded in total. The measurements are divided into 171 

two groups:  172 

1. The impact and rebound measurements, which show variations when the object 173 

bounces off the load cell, are included in the first group. The highest weight value is 174 

determined from this group.  175 

2. Readings when the object's weight has stabilized make up the second group. The 176 

maximum value from the first group is divided by the average weight from this stable 177 

group.  178 

The system causes the servo motor to rotate 90 degrees from its initial position if the ratio of 179 

these two numbers is greater than a predefined threshold. In contrast, the motor rotates 270 180 

degrees if the ratio is below the threshold. By precisely measuring and sorting waste items on 181 
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the smart garbage board used in healthcare settings, this adjustment aids in calibrating the waste 182 

segregation system.  183 

 184 

Figure 1 Architecture of the proposed methodology 185 

The smart bin system works by first measuring and determining the weight of the garbage that 186 

is deposited into the bin using a load cell. The system then separates the waste. An ultrasonic 187 

sensor keeps track of the bin's fill level. The information is sent to the cloud when the bin fills 188 

up more than half the way, alerting the municipal authorities (referred to as customers) and 189 

causing them to empty the bin. By utilizing cutting-edge technology, this system improves 190 

waste management by increasing the effectiveness of waste collection, segregation, and 191 

notification procedures. To further avoid any hygienic problems, managers can set the system 192 

to sound an alert when the bin fills up to 60%, 70%, 80%, or 90% of its capacity. The smart 193 

bin system limits access to authorized individuals exclusively, ensuring ongoing, effective 194 
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service. In addition to promoting operational dependability, cloud computing secures the 195 

infrastructure of the city, preventing illegal access and guaranteeing functional integrity. 196 

2.3.Proposed algorithm  197 

2.3.1. GA-fuzzy inference system 198 

The proposed GA-fuzzy inference system combines Genetic Algorithms (GA) with Fuzzy 199 

Inference Systems (FIS) to present a novel approach to biomedical waste management 200 

optimization in smart cities. With the help of this hybrid strategy, waste segregation decision-201 

making will be more effective, resulting in lower operating costs, less environmental impact, 202 

and more efficiency. Genetic Algorithms (GA) are sophisticated optimization methods derived 203 

on the concepts of natural selection and evolution. They work well for traversing intricate 204 

search environments and finding the best answers according to predetermined standards. In 205 

order to determine the best rules for categorizing and handling different kinds of biomedical 206 

waste, GA is used in biomedical waste management to improve and optimize the fuzzy 207 

inference system's rule set.  208 

Conversely, fuzzy logic is used by fuzzy inference systems (FIS) to handle ambiguous or 209 

uncertain data. Fuzzy logic is superior to binary logic in situations when decisions need to be 210 

made using human-like thinking or when data is ambiguous. Fuzzy logic permits more nuanced 211 

interpretations. FIS is crucial to this system because it helps understand sensor data, classify 212 

various waste types, and dynamically modify waste management plans in response to 213 

operational requirements and environmental changes. Data from sensors and waste 214 

management facilities, either real or simulated, is used to evaluate and apply the hybrid GA-215 

FIS model. Metrics like accuracy, precision, and recall are used to evaluate the system's 216 

performance and determine how well it works for managing and classifying trash. Furthermore, 217 
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scenario testing and sensitivity analysis are carried out to make sure the system is resilient and 218 

flexible in a variety of operational and environmental settings. 219 

A single value y* is the result of defuzzification, while the input is a fuzzy set2 that represents 220 

the aggregate output fuzzy set. To defuzzify, the centroid approach is applied. The output is 221 

extracted using the defuzzification procedure described in Equation (1) as follows: 222 

𝑦∗ = def 𝑢𝑧𝑧(𝐵) =
∫  


 ௬⋅∑  

ೝసభ  ఓೝ(௬)ௗ௬

∫  


 ∑  
ೝసభ  ఓೝ(௬)ௗ௬

                                                 (1) 223 

Acceptable value of GA parameters is the defuzzified rate, such as: The power to choose 224 

tournaments is output#1, while the likelihood of bit-mutations is output#2. 225 

(y1* = 2) = The binary tournament selection is denoted 226 

(y2* = 0.03) = 3% mutation probability is indicated  227 

To produce local minima, a test function is integrated with cosine modulation. The function is 228 

multimodal and extremely continuous. Minimization is facilitated by reaching a global minimal 229 

standardization to a zero value of the objective function. The following is the function in 230 

equation (2): 231 

𝑓ଵ(�⃗�) = 𝐴 ⋅ 𝑛 + ∑  
ୀଵ (𝑥

ଶ − 𝐴 ⋅ cos(2𝜋 ⋅ 𝑥)),  �⃗� ∈ [−5.12,5.12]; min𝑓ଵ(�⃗�) =232 

0, n … … . . dinensionality, A = 10                                                                             (2) 233 

Accompanying defuzzification, the final biological waste segregation shown in Equation (3) is 234 

determined using the coefficient of the following equation. 235 

Totalwaste = ∑ୀଵ
  𝑎𝑥 + ∑ୀଵ

  𝑏௬𝑦                                                  (3) 236 
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where ai is a representation of the local population, i; The defuzzification process yields the 237 

entire area of activity j in the area i, which is represented by bij. xi is the daily waste production 238 

value per person in the region i. Furthermore, n denotes the activities in each zone, and m 239 

designates the various regions. The waste production is constructed using the estimates (xi and 240 

yij coefficients), and forecasts are made for additional study. trash products can therefore be 241 

estimated to improve trash planning and management. Two FIS inputs—FIS and fuzzy-rule-242 

based singleton values—are introduced by this method.  243 

The first input, which is represented by Equation (4), gives the separation between an 244 

individual and the world average. 245 

𝑖𝑠 = ට∑  ே
ௗୀଵ   ൫𝑥

ௗ − 𝐺𝐵ௗ൯
ଶ
                                                        (4) 246 

If GBd indicates the dth dimension of GB, the dimension d th of the i th individual is described 247 

as xid, and the distance between the global best and i th individual is supplied by Disi. The 248 

other input, an error of diversity (Errdiv), is provided below in equation (5), 249 

𝐸𝑟𝑟div = 𝐷 − 𝐷goal ,                                                      (5) 250 

Since these inputs' magnitude order alters when the evolutionary methodology is being carried 251 

out, the inputs are changed prior to applying the FIS in the suggested manner. The equations 252 

below are shown in (6). 253 

𝐷𝑖𝑠௦௧ௗ, =  ቊ
0, 𝐷𝑖𝑠௫ − 𝐷𝑖𝑠 = 0,

௦ି 

௦ೌೣି௦
, 𝑂𝑡ℎ𝑒𝑟𝑠

ቋ                                   (6) 254 

The system classifies data with different degrees of membership using three fuzzy sets for the 255 

first input and five for the second. This structure transforms hazy input data into explicit 256 
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actions, facilitating correct interpretation and decision-making in biomedical waste 257 

management. 258 

Algorithm 1. GA-fuzzy inference system. 259 

Algorithm GA-FuzzyInferenceSystem 260 

Input:  261 

    - Population size (pop_size) 262 

    - Number of generations (num_generations) 263 

    - Crossover rate (crossover_rate) 264 

    - Mutation rate (mutation_rate) 265 

    - Fuzzy Inference System (FIS) model 266 

    - Evaluation function (fitness_function) 267 

Output: 268 

    - Best FIS parameters after optimization 269 

1. Initialize the population 270 

   - For i from 1 to pop_size: 271 

     - Generate a random individual (solution) with fuzzy parameters 272 

     - Evaluate the fitness of the individual using the fitness_function 273 

2. Repeat for each generation from 1 to num_generations: 274 

   a. Selection 275 

      - Select individuals from the population based on their fitness (e.g., using roulette wheel 276 

or tournament selection) 277 

   b. Crossover 278 

      - For each pair of selected individuals: 279 

      - With probability crossover_rate: 280 
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      - Perform crossover to create new offspring 281 

      - Each offspring inherits traits from both parents 282 

   c. Mutation 283 

      - For each individual in the population: 284 

      - With probability mutation_rate: 285 

      - Mutate individual’s parameters (e.g., modify membership functions or rule weights) 286 

   d. Evaluate the new population 287 

      - For each individual in the new population: 288 

      - Evaluate its fitness using the fitness_function 289 

   e. Replacement 290 

     - Replace the old population with the new population based on fitness (e.g., generational 291 

replacement or elitism) 292 

3. Return the best individual from the final population 293 

   - This individual represents the optimized FIS parameters 294 

End Algorithm 295 

 296 

2.4.Data analysis tool  297 

The Automatic Waste Disposal Master Tool, or AUTOM, is a state-of-the-art biomedical waste 298 

management system that integrates a fuzzy model based on genetic algorithms to maximize 299 

operational efficiency. The correct classification and disposal of various biomedical wastes are 300 

crucial in medical laboratories and clinical settings, which is why this system was created 301 

especially for them. The AUTOM's GA-based fuzzy model improves decision-making by 302 

dynamically modifying waste treatment plans in response to real-time data inputs. Genetic 303 

algorithms find the best possible combinations of rules to efficiently classify and handle various 304 

kinds of biomedical waste by optimizing the fuzzy rule base. This integration lowers operating 305 
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costs and lessens environmental effect while increasing trash segregation accuracy and 306 

guaranteeing adherence to strict regulatory criteria. Thus, AUTOM is a major step forward in 307 

the management of biomedical waste, utilizing AI-driven strategies to improve sustainability, 308 

efficiency, and safety in healthcare settings. 309 

3. Results And Discussion  310 

3.1. GA-FIS result analysis  311 

Table 1 summarizes the experimental settings used for the proposed GA-FIS. The crossover 312 

rate was set at 0.8, and the dimensions (N) were tested with values of 10 and 30. The algorithm 313 

ran for 55 independent iterations. The mutant factor (F) was set to 0.7, and a population size 314 

(PS) of 50 individuals was employed during the experiments. These parameters were chosen 315 

to evaluate the performance and effectiveness of the GA-FIS approach under controlled 316 

conditions. 317 

Table 1 Experimental configuration of the proposed GA-FIS model 318 

Parameter Values 
Crossover rate 0.8 

Dimensions (N) 10/30 
Independent iterations 55 

Mutant factor (F) 0.7 
Population size (PS) 50 

Figure 2 presents the diversity curves for ten generations comparing the Traditional Genetic 319 

Algorithm (GA) and the Proposed GA-Fuzzy Inference System (GA-FIS). Initially, both 320 

algorithms start with a diversity of 12 individuals at generation 0. As the generations progress, 321 

the diversity decreases in both approaches. By generation 2000, the Traditional GA exhibits a 322 

diversity of 1, whereas the Proposed GA-FIS achieves a diversity of 1 earlier, by generation 323 

2000. This comparison highlights the evolution of diversity over time, showcasing how the 324 

Proposed GA-FIS method maintains higher diversity for most generations compared to the 325 
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Traditional GA, indicating potentially improved performance in preserving genetic diversity 326 

during the evolutionary process. 327 

 328 

Figure 2 Diversity progression across 10 generations 329 

Figure 3 illustrates the diversity curve over thirty generations for both the Traditional Genetic 330 

Algorithm (GA) and the Proposed GA-FIS. Initially, at generation 0, both approaches start with 331 

a diversity level of 40. As the generations progress, a gradual decline in diversity is observed 332 

in both methods, albeit with slight variations. By generation 250, the Traditional GA shows a 333 

diversity reduction to 36, while the Proposed GA-FIS maintains a slightly lower diversity at 334 

35. This trend continues until generation 1000, where the Traditional GA records a diversity 335 

of 24 compared to 30 in the Proposed GA-FIS. Notably, from generation 1250 onward, the 336 

Proposed GA-FIS demonstrates a consistent improvement in diversity compared to the 337 

Traditional GA. By generation 2000, the diversity levels are markedly lower in both methods, 338 

with the Traditional GA at 8 and the Proposed GA-FIS at 10. Overall, Figure 3 highlights the 339 

comparative diversity trends between the Traditional GA and the Proposed GA-FIS across the 340 
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thirty generations, showcasing the latter's potential for maintaining diversity more effectively 341 

in later generations. 342 

 343 

Figure 3 Diversity progression across 30 generations 344 

Figure 4 presents the experimental analysis of waste distribution within a smart bin based on 345 

the distance from the inner lid. Three conditions are examined: "Nearly full" when waste is 346 

closest to the lid at 3 cm, "Half full" at 8 cm, and "Empty" at 15 cm distance from the inner lid. 347 

This analysis aims to understand how waste accumulates relative to the lid's position, providing 348 

insights into optimal filling levels and distribution patterns within the smart bin 349 
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 350 

Figure 4 An experimental study of the garbage in the smart bin. 351 

Figure  5 presents the performance metrics of the proposed model across different states of the 352 

smart bin: Empty, Partial, and Full, along with an Overall evaluation. The accuracy of the 353 

model is highest for the Full state at 98.6%, followed closely by Empty at 96.2% and Partial at 354 

93.5%. Precision values show similar trends, with the Full state achieving the highest precision 355 

of 99.9%, Empty at 97.8%, and Partial at 93.6%. Recall rates indicate effective performance 356 

across all states, with Full achieving the highest at 99.5%, followed by Empty at 96.8% and 357 

Partial at 91.5%. Overall, these metrics underscore the robustness of the proposed model in 358 

accurately classifying the operational states of smart bins, demonstrating strong performance 359 

across diverse conditions. 360 
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 361 

Figure 5 Performance metrics analysis 362 

Figure 6 displays the confusion matrix detailing the waste element segregation performance 363 

using the proposed model. The matrix categorizes waste into five classes: PCR tubes, Bandage 364 

spool, Syringes, Inhalers, and Medicine Bottles. The below figure represents the number of 365 

instances classified for a specific waste type against actual observations. For instance, PCR 366 

tubes were classified accurately in 102 out of 168 cases, resulting in a correct percentage of 367 

102%. Similarly, Bandage spool and Syringes were classified with 102% and 99% accuracy 368 

respectively. Inhalers and Medicine Bottles, while accurately classified in 90% and 88% of 369 

cases respectively, show slightly lower correct percentages. Overall, the model demonstrates 370 

effective waste segregation capabilities, with an average correct percentage of 95% across all 371 

waste categories, indicating robust performance in identifying and segregating different types 372 

of waste elements. 373 
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 374 

Figure 6 Confusion matrix for various waste element divisions using the suggested 375 

methodology. 376 

3.2. Comparative analysis of existing and proposed model 377 

Figure 7 provides a comparative analysis between the proposed GA-FIS model and existing 378 

smart garbage systems using various techniques. The figure below evaluates these systems 379 

based on Accuracy, Precision, and Recall metrics. CNN achieves an Accuracy of 88.2%, with 380 

Precision and Recall values of 89.5% and 97.2% respectively. CNN combined with MLP 381 

improves Accuracy to 92.5%, with Precision at 98.2% and Recall at 92.8%. KNN achieves an 382 

Accuracy of 89.2%, with Precision and Recall values both at 89.5% and 89.4% respectively. 383 

MLP and Naïve Bayes demonstrate similar performance, with MLP achieving 86.8% 384 

Accuracy, 88.6% Precision, and 87.7% Recall, and Naïve Bayes at 86.9% Accuracy, 88.9% 385 

Precision, and 88.6% Recall. In contrast, the proposed GA-FIS model outperforms all other 386 

techniques with an impressive Accuracy of 96.4%, Precision of 96.8%, and Recall of 94.8%. 387 
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This comparison underscores the superior performance of the proposed GA-FIS model in smart 388 

garbage systems, highlighting its effectiveness in waste classification and management. 389 

 390 

Figure 7 Comparative analysis  391 

4. Conclusion  392 

This study presents an innovative hybrid approach combining a Genetic Algorithm (GA) with 393 

a Fuzzy Inference System (FIS) to advance waste management within smart city 394 

infrastructures, with a focus on healthcare waste segregation. The dynamic fuzzy inference 395 

engine integrated into the system boosts both the precision and efficiency of waste collection 396 

processes, reducing potential errors. GA optimization enhances the FIS, ensuring more 397 

accurate classification and segregation of biomedical waste, based on comprehensive data 398 

collected over six months from Apollo Hospitals and Fortis Malar Hospital in Chennai. The 399 

resulting GA-FIS model is capable of categorizing five distinct types of biomedical waste. 400 
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Additionally, the system includes AUTOM, an automated disposal tool that leverages fuzzy 401 

logic to guide decision-making in waste sorting, thus improving operational efficiency in 402 

healthcare settings. This approach represents a step forward in environmentally sustainable 403 

biomedical waste management within the framework of smart city initiatives. 404 

1. The performance metrics of the proposed model demonstrate its effectiveness across 405 

different smart bin states—Empty, Partial, and Full—yielding highest accuracy for the 406 

Full state at 98.6%, followed by 96.2% for Empty and 93.5% for Partial. Precision 407 

values similarly highlight superior performance in the Full state at 99.9%, with 97.8% 408 

for Empty and 93.6% for Partial. 409 

2.  Recall rates confirm robust performance across all states, with the Full state achieving 410 

99.5%, followed by 96.8% for Empty and 91.5% for Partial. Overall, these metrics 411 

underscore the model's reliability in accurately classifying smart bin operational states 412 

and effectively managing waste diversity. 413 

3. Furthermore, the confusion matrix illustrates the model's proficiency in segregating 414 

waste elements, achieving an average correct percentage of 95% across categories 415 

such as PCR tubes, Bandage spool, Syringes, Inhalers, and Medicine Bottles. This 416 

confirms the model's capability in identifying and managing various types of waste 417 

elements with high accuracy. 418 

4. Comparative analysis against existing smart garbage systems using techniques like 419 

CNN, CNN+MLP, KNN, MLP, and Naïve Bayes further establishes the superiority of 420 

the proposed GA-FIS model. With an outstanding accuracy of 96.4%, precision of 421 

96.8%, and recall of 94.8%, the GA-FIS model outperforms all other techniques, 422 

highlighting its efficacy in waste classification and management within smart city 423 

infrastructures. 424 



 

23 
 

To sum up, the proposed GA-FIS model not only enhances waste management efficiency and 425 

accuracy but also contributes significantly to environmental sustainability and public health 426 

through improved waste segregation and recycling practices. Future research in Biomedical 427 

Waste Management can focus on developing AI and IoT-based systems for real-time waste 428 

monitoring and segregation, exploring advanced sustainable treatment technologies like 429 

plasma gasification, and utilizing blockchain for secure tracking and transparency in waste 430 

disposal processes. 431 
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