
 

 

Enhanced Deep Maxout Network for Monitoring 

Particulate Matter 2.5 and 10 Concentration in Air via 

Interpolated Data Smoothing 

Rajendran Thavasimuthu1, Saranya Arnise2, Arulkumar Varatharajan*3, Sridhar Sekar4, Reshmy A K5, 

Ajay Kumar Yadav6 

1Department of Sustainable Engineering, Saveetha School of Engineering, Saveetha Institute of 

Medical and Technical Sciences, Chennai, Tamilnadu, India. 

rajendran.thavasimuthusamy@gmail.com 

2Department of Computer Science and Engineering, Amity School of Engineering and Technology, 

Amity University, Mumbai, Maharashtra, India. mayflower55@protonmail.com  

3School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamilnadu, 

India. arulkumaran.ckpc@gmail.com 

4Department of Research, Rajalakshmi Institute of Technology, Chennai, Tamilnadu, India. 

sridhar.sse@protonmail.com 

5Department of Computational Intelligence, Faculty of Engineering and Technology, SRM Institute of 

Science and Technology, Kattankulathur, Chennai, Tamilnadu, India. malu.flower@proton.me 

6Department of Computer Application, United Institute of Management, Allahabad, Uttar Pradesh, 

India. ajaykumar.uim@gmail.com 

Corresponding Author: arulkumaran.ckpc@gmail.com 

 

  



 

 

Graphical Abstract 1 
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Abstract: Currently, most of the global population resides in metropolitan areas, where air 3 
quality standards are not properly monitored. As a result, people are constantly exposed to air 4 

contaminants that exceed the thresholds set by the World Health Organization (WHO). Air 5 
quality monitoring system is often encountering challenges such as discontinuities and 6 

missing data in time sequences, affecting the accuracy of measurements. This paper presents 7 
an innovative approach to address these issues in PM 2.5 and 10 concentration air monitoring 8 
systems proposes a novel Deep Maxout Network (DMN) architecture enhanced with 9 
Polynomial and Spline Interpolation methods to effectively handle the discontinuities in data 10 

sequences. By smoothing transition fitting curves at interval connections, the proposed model 11 
generates an optimal dataset, improving the robustness and accuracy of air quality 12 
measurements. First, the data is collected and pre-processed. Then, the features are extracted 13 

and selected by using minimum redundancy maximum relevance (mRMR). Then similar 14 
features are clustered by using Balanced Iterative Reducing and Clustering using Hierarchies 15 
(BIRCH) scheme. Finally, the PM concentration is predicted by using DMN. Experimental 16 
results demonstrate the effectiveness of the proposed approach in enhancing the reliability of 17 
Matter2.5 and 10 concentration monitoring systems using Air Quality Data in India from 18 

kaggle, providing a promising scope for precise 𝑃𝑀2.5 𝑎𝑛𝑑 10 concentration forecasting with 19 
practical implications for air quality management and public health initiatives.  20 
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Maximum Relevance, PM Concentration 2.5 and 10 forecasting.  22 

1. Introduction 23 

Air pollution is a prominent global environmental issue, and India is among the 24 
nations that experience substantial impacts from elevated concentrations of particulate matter 25 
(PM) in the environment. Particulate matter comprises micro particles that are spread out in 26 

the atmosphere. These particles are classified based on their size, with PM10 (particles 27 
measuring 10 micrometres or smaller) and PM2.5 (particles measuring 2.5 micrometres or 28 
smaller) being particularly hazardous because they can deeply infiltrate the respiratory 29 
system. Monitoring and predicting PM10 and PM2.5 levels in real-time are crucial for 30 
assessing air quality and implementing timely interventions to mitigate the adverse health 31 

effects associated with air pollution. Therefore, the development of accurate prediction 32 

models for PM10 and PM2.5 levels has become a focus of research, especially in regions like 33 

India where air pollution poses significant challenges to public health and environmental 34 
sustainability. 35 

Recently, the quick growth of industrialization has been followed by a concerning rise in air 36 

pollution, drawing global attention due to its severe impacts, resulting in the deaths of 37 
approximately 7 million people annually (Jasarevic et al. 2021) (Li et al. 2015). Among the 38 
various air contaminants, PM2.5 stands out as a particularly hazardous component, capable of 39 
penetrating the nasal passages and reaching the lungs and throat upon inhalation (Di et al. 40 

2017), posing a significant threat to human health. A study by Heft-Neal et al. in 2018 41 
revealed that PM2.5 concentrations exceeding minimum exposure levels contributed to 22% 42 

of infant deaths in 30 surveyed countries, resulting in approximately 449,000 additional 43 
infant deaths in 2015, a figure more than triple the existing estimates attributing infant 44 
mortality to poor air quality (Heft-Neal et al. 2018). Consequently, controlling and preventing 45 

air pollution has become an urgent global priority. Real-time monitoring of air pollution 46 
levels is essential to achieve this goal (Cheng et al. 2018), and the use of sensors has 47 

facilitated the collection of extensive air quality data across various applications (Xue and 48 
Chen, 2020) (Xue and Chen, 2019). 49 

1.1. Air Pollution in Indian Scenario 50 

India ranks as the second most polluted nation globally. The average life expectancy 51 

of an Indian is reduced by 5.3 years due to fine particle air pollution (PM2.5), compared to 52 
the life expectancy if the WHO recommendation of 5 ¹g/m3 were observed. Certain regions 53 
in India experience much higher levels of air pollution, resulting in a reduction in life 54 

expectancy by 11.9 years in the National Capital Territory of Delhi, which is recognized as 55 
the most polluted city globally. All 1.3 billion individuals in India reside in regions where the 56 

yearly mean level of particle pollution above the guideline set by the WHO. Specifically, 67.4 57 
percent of the population resides in places that surpass the country's own national air quality 58 

threshold of 40 μg/m3 (Fiordelisi et al. 2017). 59 

Particulate pollution poses the most significant risk to human health in India, reducing the 60 

typical Indian's life expectancy by 5.3 years. Cardiovascular disorders have a negative impact 61 
on the average life expectancy of Indians, reducing it by around 4.5 years. Similarly, infant, 62 
and maternal malnutrition decrease life expectancy by 1.8 years. The level of particulate 63 
pollution has risen throughout the course of time. Between 1998 and 2021, there was a 64 
significant rise of 67.7 percent in the average annual particle pollution, resulting in a further 65 
decrease of 2.3 years in the average life expectancy. India has accounted for 59.1 percent of 66 
the global pollution rise between 2013 and 2021. If present pollution levels remain, 521.2 67 



 

 

million individuals, which accounts for 38.9 percent of India's population, in the most 68 

polluted region of the country, are projected to have an average loss of 8 years in life 69 
expectancy compared to the WHO recommendation and 4.5 years compared to the national 70 
norm. If India were to decrease particle pollution to comply with the WHO recommendation, 71 

the inhabitants of Delhi, the capital and most populous city of India, would see an increase in 72 
life expectancy by 11.9 years. The population of North 24 Parganas, which is the second most 73 
populated area in the country, will experience an increase of 5.6 years in their life expectancy. 74 

 75 

Figure 1. Potential Gain in Life Expectancy Reduction on PM2.5 Effect from 2021 in India 76 
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Figure 2. Average PM2.5 Concentrations in India  78 

Given the heightened focus on air pollution, numerous researchers have dedicated significant 79 

efforts to studying this issue, resulting in a plethora of relevant research studies. Primary 80 
among the machine learning (ML) approaches implemented to air pollution prediction are 81 

artificial neural networks (ANNs), ensembled learning techniques, support vector machines 82 
(SVMs), and various hybrid methodologies (Mendez et al. 2023). Eventually, many current 83 

air quality prediction methodologies primarily emphasize model selection and overlook the 84 
analysis of factors driving changes in air pollution concentration. Furthermore, the recent 85 

surge in deep learning frameworks offers flexibility but can lead to the development of deep 86 
and complex models to fit datasets. Consequently, overfitting issues may arise, especially 87 
with large neural network models containing numerous parameters.  88 

This research confronts the critical issue of unreliable air quality monitoring in major cities, 89 
where people are constantly exposed to pollutants exceeding WHO safety limits. Existing 90 

monitoring systems struggle with gaps and missing data, hindering measurement accuracy. To 91 
address this challenge, this research proposes a novel solution: an Enhanced Deep Maxout 92 
Network (DMN) architecture, empowered by Polynomial and Spline Interpolation methods. 93 
This innovative approach strives to create seamless transition curves at data intervals, 94 
generating a more complete dataset and significantly improving the robustness and accuracy 95 

of air quality measurements, especially for PM2.5 and PM10 concentrations. The research 96 

aims to not only develop but also validate this novel methodology, which is pivotal for 97 

advancing air quality monitoring capabilities and facilitating informed decision-making in 98 
environmental management. Ultimately, this approach aids public health from the detrimental 99 
effects of air pollution. Furthermore, the research carries global potential, offering a solution 100 
for improving air quality monitoring systems worldwide and contributing to broader 101 
sustainable development initiatives. The main contributions of the work are: 102 

• Cleanse and preprocess the data to handle missing values, outliers, and 103 

inconsistencies. Normalize or scale the features to ensure uniformity and facilitate 104 
clustering analysis. Extract relevant features from the air quality data, including 105 



 

 

pollutant concentrations such as PM2.5, PM10, and meteorological variables like 106 

temperature, humidity, wind speed, and temporal data like time of day, day of week. 107 

• Utilize techniques such as mRMR or feature selection to reduce dimensionality and 108 
enhance clustering performance. BIRCH clustering algorithms is applied to group 109 
similar air quality patterns and identify distinct clusters representing different 110 
pollution profiles. Analyse the characteristics of each cluster to understand the 111 

underlying patterns and factors influencing air pollution levels. 112 

• Identify common features and trends within clusters, such as high pollutant 113 

concentrations during specific time periods, Incorporate the clustered information as 114 
additional features or contextual factors into air quality prediction models. 115 

• The efficiency of the proposed methodology is demonstrated by the experimental 116 
findings in enhancing the reliability of air quality monitoring systems, offering 117 
practical implications for air quality management and public health initiatives in 118 

India. 119 

The organisation of this work is as follows: section 2 describes the research methodology and 120 
section 3 evaluates the performance of proposed scheme; section 4 concludes the work.  121 

2. Related Works 122 

Prior research works have examined the forecasting of PM2.5 levels, predominantly 123 
employing numerical or statistical learning techniques. Significantly, deep learning (DL) 124 

approaches have emerged as a prominent and extensively embraced aspect of statistical 125 
learning. These strategies have been found to be helpful in overcoming issues that are often 126 
encountered by traditional models. The effectiveness of deep learning in predicting PM2.5 127 

levels is ascribed to its ability to effectively process large datasets, a critical factor in this 128 
form of prediction [2.5]. Temporal data on PM2.5 exhibits a dynamic functional connection. 129 

Deep learning has demonstrated exceptional proficiency in representing complex 130 
relationships and has displayed outstanding results in diverse time-series prediction tasks. As 131 

a result, it has emerged as the favoured method for addressing the difficulties associated with 132 
predicting PM2.5 concentrations. Deep learning is utilized as a fundamental approach in 133 

PM2.5 concentration forecasts to enhance the accuracy and efficiency of mathematical 134 
simulation approaches. This study offered a thorough examination of deep learning as the 135 

fundamental technique for forecasting the concentration of PM2.5 particles. Multiple studies 136 
have examined deep learning-based methods for forecasting PM2.5 levels, offering valuable 137 
insights from different viewpoints. 138 

The study conducted by (Liu et al. 2021) employed Q-learning for ensuring the Graph 139 

reinforcement learning Convolutional Network-Long Short-Term Memory-Gradient 140 
Recurrent Unit (GCN-LSTM-GRU) deep learning approach achieved convergence to an 141 
optimum policy with specific constraints. Q-learning was a reinforcement learning technique 142 

that was particularly useful for handling contexts with extensive or uninterrupted state spaces. 143 
Although the integration of ML and deep learning provide robust models for several 144 

applications, these models continue to have certain constraints, including limited 145 
interpretability and high computational costs. Consequently, it becomes more challenging to 146 

track and utilize these models on devices with limited resources for future utilization. 147 

The work by (Wu et al. 2024) developed a novel hybrid model was created to estimate the 148 

mass concentration of PM2.5 and PM10 with minimal reliance on on-site data. The PM10 149 
and PM2.5 concentrations in Beijing, China were estimated utilizing the Gaofen-1 satellite 150 
and Moderate Resolution Imaging Spectroradiometer (MODIS) data, with a spatial resolution 151 

of 100 m. Subsequently, the PM10/2.5 mass concentrations information from 2020 were 152 



 

 

utilized to do the spatio-temporal study aimed at examining the characteristics of particulate 153 

matter in Beijing. The ground stations provided validation for the estimation results of 154 
PM2.5, with R2 values varies from 0.91 to 0.98 and root mean squared errors (RMSE) varies 155 
from 4.51 to 17.04 μg/m3. Similarly, the ground stations validated the estimation results for 156 

PM10, with R-squared values varies from 0.85 to 0.98 and RMSE values varies from 6.98 to 157 
29.00 μg/m3. 158 

Furthermore, the studies by (Zhang et al. 2022) and (Li et al. 2022) introduced hybrid 159 

frameworks that included a Convolutional Neural Network (CNN), a Long Short-Term 160 
Memory (LSTM), and an attention mechanism. Additionally, (Zhang et al. 2022) focused on 161 
the estimation of air pollution at a fine-grained level. Implementing an attention mechanism 162 
enabled the model to selectively concentrate on significant features. DL hybrid models has 163 
several notable qualities, including their capacity to effectively capture intricate correlations 164 

and patterns inherent in data of PM2.5 concentrations, integrate Spatio temporal data, and 165 

demonstrate adaptability to diverse environment situations. Nevertheless, deep learning 166 

hybrid methodologies may want substantial computer resources, extensive data, and 167 
meticulous model optimization to get ideal outcomes. 168 

The study by (Ejurothu et al. 2023) suggested the use of clusters-based Local Hybrid Graph 169 

Neural Networks (HGNN) approach as an alternative to employing a singular GNN for the 170 
purpose of monitoring stations-wise multi-steps PM2.5 concentrations forecasts throughout 171 

the states of India. This technique acknowledged and accommodated abrupt fluctuations in 172 
PM2.5 levels caused by local weather variability. The Hybrid GNN models at the local level 173 
were composed of two components: a spatio-temporal component that incorporates the GNN 174 

and Gated Recurrent Unit layers. This unit was designed to capture the impact of wind 175 
velocity and various meteorological factors on PM2.5 concentrations. The next component 176 

was a unit for extracting meteorological features at each station to determine their influence 177 

on PM2.5 concentrations. It also examines the temporal relationship among historic data. The 178 

work by (Mohan and Abraham, 2023) developed a novel Ensemble Deep Particulate 179 
Forecaster (EDPF) model was introduced, which integrates a LSTM network, CNN, and 180 

random forests model. 181 

The study by (Gunasekar et al. 2022) introduced an optimized and sustainable hybrid model 182 
called ARTOCL. This system combined LSTM and CNN to enhance the accuracy of air 183 
quality predictions and minimize false alarms. The hybrid deep learning model presented by 184 
(Mao et al. 2023) integrated BiGRU, CNN, and fully connected layers. Both techniques have 185 

the benefit of being capable of modelling both spatial and temporal patterns. A hybrid deep 186 
learning model was developed in the work by [Chiang and Horng, 2021], which combined a 187 
stacked autoencoder (SAE), GRU, and CNN. The method underwent training using an 188 
extensive data set of air pollution data from China. It demonstrated the capability to forecast 189 

hourly concentrations of various air pollutants with a lead time of up to 24 hours. The model 190 
has notable features, such as its capacity to effectively address missing data and its 191 
exceptional predictive accuracy. Hence, the hybrid model effectively leveraged the 192 

advantages of CNN and GRU to acquire knowledge of both global and local trends in the 193 
data of time-series, rendering it highly suitable for predicting air pollutants concentrations. 194 
The CNN components of the framework acquired knowledge of local patterns within the 195 
temporal sequences of values, whilst the GRU captured longer-term relationships and trends. 196 

The study conducted by (Ding and Noh, 2023) introduced a hybrid model called Interpretable 197 
Neural Networks and a Graph Neural Network (INNGNN), which combined an interpretable 198 
neural network with a graph neural network. This model effectively captured the temporal 199 

and geographical variations in air quality and demonstrated precise prediction of air quality 200 



 

 

over many steps. The initial step was the utilization of interpretable neural networks (INN) to 201 

analyze a time series dataset, with the aim of identifying and extracting significant 202 
components that may have been neglected. Subsequently, a self-attention mechanism was 203 
employed to capture both local and global dependencies and linkages within the time series. 204 

Finally, a city map was generated utilizing a GNN to ascertain the interconnections among 205 
cities with the aim of extracting geographically specific characteristics.  206 

The study by (Zhang et al. 2023) applied enhanced complementary ensemble empirical mode 207 

decomposition (CEEMD)-LSTM models that were integrated with Fully Convolutional 208 
Network (FCN) and CNN. Convolutional layers were utilized to facilitate feature selection, 209 
hence improving the accuracy of predictions. A novel hybrid model was introduced in the 210 
work, which integrated various deep learning approaches with statistical techniques. The 211 
features were extricated, and the PM2.5 concentration was predicted using LSTM. 212 

Nevertheless, a notable limitation of the approach lies in its dependence on the 213 

meteorological data, potentially constraining its precision in regions with limited availability 214 

of meteorological monitoring stations. 215 

Table 1. Review on Analyzed Current Works 216 

Approach 

Used 

Application Advantages Disadvantages 

Q-learning, 

GCN-

LSTM-

GRU 

Air quality forecasting; 

Handling extensive or 

uninterrupted state 

spaces. 

Robust models for 

various applications; 

Effective convergence to 

optimal policy with 

specific constraints. 

Limited interpretability; 

High computational 

costs. 

Satellite 

and 

MODIS 

data 

Estimation of PM2.5 

and PM10 

concentrations in 

Beijing, China; Spatial 

resolution of 100m. 

Minimal reliance on on-

site data; Estimation 

validated against ground 

stations with high R² and 

low RMSE values. 

Reliance on satellite 

data; Limited to specific 

geographical area. 

Hybrid 

CNN-

LSTM-

Attention 

Estimation of air 

pollution at a fine-

grained level; Selective 

concentration on 

significant features. 

Effective capture of 

intricate correlations and 

patterns in PM2.5 

concentrations; 

Integration of 

spatiotemporal data. 

Substantial 

computational resources; 

Extensive data 

requirements; Model 

optimization challenges. 

Hybrid 

GNN 

Monitoring stations-

wise multi-steps PM2.5 

concentrations 

forecasts in India; 

Handling abrupt 

fluctuations due to 

local weather 

variability. 

Accommodation of local 

weather variability; 

Capturing impact of 

meteorological factors on 

PM2.5 concentrations. 

Limited geographical 

scalability; Complex 

architecture. 

EDPF 

Model 

PM2.5 concentration 

forecasting; Integration 

of LSTM, CNN, and 

random forests model. 

Combines strengths of 

LSTM, CNN, and 

random forests; Potential 

for improved predictive 

accuracy. 

Computational 

complexity. 

LSTM- Air quality prediction; Enhanced accuracy of air Computational 



 

 

CNN 

Model 

Combining LSTM and 

CNN. 

quality predictions; 

Minimization of false 

alarms. 

complexity. 

Hybrid 

BiGRU-

CNN 

Spatial and temporal 

pattern modeling; 

Integration of BiGRU, 

CNN, and fully 

connected layers. 

Modeling of both spatial 

and temporal patterns; 

Integration of global and 

local trends in data. 

Complexity in 

architecture; 

Computational resources 

requirement. 

Hybrid 

SAE-GRU-

CNN 

Hourly air pollutants 

concentration 

forecasting; 

Combination of 

stacked autoencoder 

(SAE), GRU, and 

CNN. 

Effective addressing of 

missing data; 

Exceptional predictive 

accuracy; Knowledge 

acquisition of global and 

local trends in time-

series data. 

Potential overfitting; 

Complex architecture. 

INNGNN 

Model 

Temporal and 

geographical variations 

in air quality 

prediction; 

Combination of 

interpretable neural 

network and graph 

neural network. 

Precise prediction of air 

quality over many steps; 

Identification of 

significant components 

in time series data. 

Complexity in 

architecture; Reliance on 

interpretability of neural 

networks. 

CEEMD-

LSTM-

FCN-CNN 

PM2.5 concentration 

prediction; Integration 

of CEEMD-LSTM 

models with FCN and 

CNN. 

Improved accuracy of 

predictions; Feature 

selection facilitated by 

convolutional layers. 

Dependence on 

meteorological data; 

Potential limitations in 

regions with limited 

meteorological 

monitoring stations. 

Hybrid 

Model 

PM2.5 concentration 

forecasting. 

Effective utilization of 

various deep learning 

and statistical techniques; 

Potential for improved 

predictive accuracy. 

Dependence on 

meteorological data; 

Potential constraints in 

regions with limited 

meteorological 

monitoring stations; 

Complexity in model 

integration. 

 217 

3. Data and Methods  218 

This section introduces an innovative approach to enhance the reliability of PM2.5 219 
and PM10 concentrations monitoring systems. It presents a novel Deep Maxout Network 220 

(DMN) architecture shown in fig 3, enhanced with Polynomial and Spline Interpolation 221 
methods, to effectively handle data discontinuities, thereby generating an optimized dataset 222 
for more robust and accurate air quality measurements. The system begins with data 223 
collection and preprocessing, followed by feature extraction and selection using mRMR 224 
criteria. Similar features are then clustered using the BIRCH scheme. Finally, PM 225 

concentration is predicted using the DMN architecture. Experimental results using Air 226 
Quality Data from India sourced from Kaggle repository demonstrate the effectiveness of the 227 

proposed approach, providing a promising solution for precise forecasting of PM2.5 and 228 



 

 

PM10 concentration with practical implications for air quality management and public health 229 

initiatives. 230 

 231 

Figure 3. DMN based PM Concentrations Prediction Overall Process 232 

3.1. Dataset Description 233 

The dataset was collected from the website 234 
https://www.kaggle.com/datasets/fedesoriano/air-quality-data-in-india by Fedesoriano in 235 

2022. Providing data on significant air pollutants like particle matter (PM2.5 and PM10), 236 
carbon monoxide (CO), sulfur dioxide (SO2), nitrogen dioxide (NO2), and ozone (O3), across 237 

several cities in India. The dataset often contains timestamps that correlate to the day and 238 
time of measurement, as well as pollutant concentrations measured in quantities such as 239 
micrograms per cubic meter (µg/m³). This dataset is an essential source for analysts and 240 

researchers to analyze air quality trends, investigate the impact of pollution on public health, 241 
develop predictive models for predicting air quality, and evaluate the effectiveness of air 242 

quality management strategies and policies. The metadata includes information on 243 
monitoring locations and quality control.  244 

3.2. Preprocessing using Inverse Distance Weighting (IDW)  245 

IDW interpolation can be used for data preprocessing and normalization in air quality 246 

datasets to estimate missing values or to create a continuous surface from sparse monitoring 247 
points (De Mesnard, 2013). The IDW formula for air quality datasets can be adapted as 248 
follows: 249 

𝐴𝑄(𝑝) =
∑ 𝐴𝑄𝑖/𝑑𝑥𝑛

𝑖−1

∑ 1/𝑑𝑖
:𝑥𝑛

𝑖−1

           (1) 250 

Where 𝐴𝑄(𝑝) as the estimated air quality value at location p, 𝐴𝑄𝑖 is the measured air quality 251 

value at known location i and 𝑑𝑖 as the Euclidean distance among the unknown location p and 252 
the location known i, x as the power parameter controlling the rate of distance decay and n as 253 
the number of known monitoring points used in the interpolation. 254 

From eqn. (1), the numerator represents the weighted sum of measured air quality values at 255 
known locations, where the weight assigned to each measurement is inversely proportional to 256 
the distance between the known location and the estimation location raised to the power x. 257 

The denominator represents the sum of the weights, ensuring that the weighted average is 258 

properly normalized. The power parameter x controls the rate at which the influence of 259 
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distant monitoring points decreases as distance increases. Typical values for x range from 1 to 260 

3, with larger values giving more weight to nearby points. By applying the IDW interpolation 261 
method, missing air quality data can be estimated, and the dataset can be normalized to create 262 
a continuous surface, facilitating further analysis and visualization of air quality patterns. 263 

3.3. Feature Selection using mRMR 264 

The minimum redundancy maximum relevance (mRMR) algorithm is a heuristic 265 

feature selection method that aims to identify the subset of features that maximizes the 266 
relevance to the target variable while minimizing redundancy among selected features 267 
(Radovic, et al. 2017). It does not involve solving a specific mathematical model but rather 268 
relies on ranking features based on relevance and redundancy criteria. 269 

Relevance Measure: The relevance of a feature to the target variable (e.g., PM concentration) 270 
can be quantified using a suitable metric, such as mutual information, correlation coefficient, 271 

or information gain. Mathematically, this can be represented as: 272 

𝑅(𝑃𝑖, 𝑄) = 𝑀𝐼(𝑃𝑖; 𝑄)         (2) 273 

Where 𝑃𝑖 is the i-th feature, Q is target variable, and 𝑀𝐼(𝑃𝑖; 𝑄) denotes the mutual 274 

information between 𝑃𝑖 and Q. 275 

Redundancy Measure: The redundancy between two features 𝑃𝑖 and 𝑃𝑗 can be quantified 276 

using a measure such as conditional mutual information or inter-feature distance. 277 
Mathematically, this can be represented as: 278 

𝑅𝑒𝑑(𝑃𝑖 , 𝑃𝑗) = 𝑀𝐼(𝑃𝑖; 𝑃𝑗)         (3) 279 

Where 𝑀𝐼(𝑃𝑖; 𝑃𝑗) denotes the mutual information between 𝑃𝑖 and 𝑃𝑗.  280 

mRMR Criterion: The mRMR criterion balances relevance and redundancy to rank features. 281 
It aims to maximize the relevance of selected features while minimizing their redundancy. 282 

Mathematically, the mRMR criterion can be expressed as: 283 

𝑚𝑅𝑀𝑅(𝑃𝑖) = 𝑅(𝑃𝑖; 𝑄) −
1

𝑘
∑ 𝑅𝑒𝑑(𝑃𝑖 , 𝑃𝑗)𝑘

𝑗=1        (4) 284 

Where 𝑃𝑖 is the 𝑖 − 𝑡ℎ feature, 𝑄 is the target variable, 𝑘 is the number of previously selected 285 

features, and 𝑋𝑗 represents the 𝑗 − 𝑡ℎ selected feature.  286 

Feature Ranking: Features are ranked based on their mRMR scores, with higher scores 287 

indicating greater relevance and lower redundancy. The top-ranked features are selected for 288 
further analysis or model training. 289 

Iterative Approach: The mRMR algorithm may involve an iterative approach where features 290 

are selected one at a time based on the mRMR criterion. After each feature selection step, the 291 

relevance and redundancy measures are recalculated to account for the updated set of selected 292 
features. 293 

By applying the mRMR algorithm, a subset of features highly relevant to PM concentration 294 
can be selected while minimizing redundancy among selected features, facilitating more 295 

efficient and interpretable predictive models. 296 

3.4. BIRCH Algorithm for PM Concentration Clustering 297 

After feature selection, the same profile features are clustered by using BIRCH 298 
clustering algorithms (Lorbeer et al. 2018). It is used to group similar air quality patterns and 299 



 

 

identify distinct clusters representing different pollution profiles. Ands Identify common 300 

features and trends within clusters, such as high pollutant concentrations during specific time 301 
periods, under particular meteorological conditions. Interpret the clusters in terms of their 302 
implications for air quality management and potential interventions. 303 

Assume a cluster consisting of n d-dimensional data points or objects. The clustering features 304 
(CFs) of the clusters are a three-dimensional vector that effectively summarizes data about 305 
the cluster of the objects. The CF includes three components: the centroid, the radius, and the 306 

number of points in the cluster. 307 

Centroid: This represents the center point of the cluster and is calculated as the average of the 308 
coordinates of all points in the cluster along each dimension. 309 

Radius (R): The radius of the cluster indicates the spread or dispersion of the points around 310 
the centroid. It can be computed as the maximum distance between the centroid and any point 311 

within the cluster. 312 

Number of Points: This component simply denotes the total number of data points in the 313 

cluster. 314 

The clustering feature compactly captures essential characteristics of the cluster, enabling 315 
efficient computation and storage. 316 

Additionally, BIRCH employs the Clustering Feature Tree (CF-tree) to represent a hierarchy 317 
of clusters. The CF-tree structure facilitates scalability and efficiency in handling large or 318 
streaming databases, as well as enables incremental and dynamic clustering of incoming 319 

objects. 320 

By utilizing these structures, BIRCH overcomes two significant challenges encountered in 321 

agglomerative clustering approaches: the inability and scalability to reverse or undo previous 322 

clustering decisions. The CF and CF-tree enable BIRCH to efficiently summarize clusters and 323 
organize them into a hierarchical structure, making it suitable for handling large datasets and 324 

dynamic clustering scenarios. It is defined as follows. 325 

𝐶𝐹 =< 𝑛, 𝐿𝑒𝑆, 𝑆𝑞𝑆 >          (5) 326 

where 𝐿𝑒𝑆 is the linear sum of the n points (i.e., ∑ 𝑝𝑖
𝑛
𝑖=1 ), and 𝑆𝑞𝑆 is the square sum of the 327 

data points (i.e., ∑ 𝑝𝑖
2𝑛

𝑖=1 ).  328 

The utilization of the clustering function in BIRCH allows for the concise summarization of a 329 
cluster, hence circumventing the need to retain intricate details pertaining to specific objects 330 

or points. Instead, just a constant amount of space is required to preserve the clustering 331 
features. This efficiency in space utilization is a key advantage of BIRCH. Additionally, 332 

clustering features are additive, meaning that the clustering features of the combined clusters 333 
structured by integrating two disjoint clusters (C1 and C2) can be extracted from the 334 
clustering features of the individual clusters. This property simplifies the computation of 335 
clustering features during hierarchical clustering and contributes to the scalability and 336 
efficiency of the BIRCH algorithm. The clustering among ground monitoring stations is 337 

shown in fig 4 and the pseudocode of BIRCH is described given below Table 2. 338 



 

 

 339 

Figure 4. Clusters based on BIRCH 340 

Table 2. Pseudocode of BIRCH for PM concentration 2.5 and 10 clustering 341 

Initialize BIRCH algorithm parameters: 

- max nodes per cluster 

- max leaf entries 

- clustering radius 

initialize BIRCH tree structure: 

- root = empty node 

function insert data point(pm data point): 

    current node = root 

    while current node is not leaf: 

        if pm data point is within current node's clustering radius: 

            for each child node in current node: 

                if pm data point is within child node's clustering radius: 

                    current node = child node 

                   break 

    if current node is leaf and current node has room for more entries: 

        add pm data point to current node 

    else: 

        split node(current node) 

        insert data point(pm data point) # recursively insert pm data point into newly split 

node 

function split node(node): 

    if node has reached max leaf entries: 

        split node into subclusters using a k-means clustering algorithm  

        create new child nodes for each subcluster 

        redistribute PM data points among child nodes 

        update parent node's summary information 

        if parent node has reached max nodes per cluster: 

            split node(parent node)  # recursively split parent node if necessary 



 

 

function merge clusters(): 

    recursively merge subclusters within each internal node 

    update parent nodes' summary information 

    if parent node's children are all leaf nodes: 

        merge leaf clusters(parent node) 

function merge leaf clusters(node): 

    if node has multiple leaf children: 

        combine PM data points from all leaf children 

        apply k-means clustering algorithm to form new leaf clusters 

        update parent node's summary information 

        if parent node has reached max nodes per cluster: 

            split node(parent node)  # recursively split parent node if necessary 

 342 

3.5. PM Prediction using Deep Maxout Networks 343 

The clustered data is incorporated as additional features or contextual factors into air 344 
quality prediction models, then Deep Maxout Networks (Ramkumar et al. 2022) is used for 345 
PM prediction, that leverage both historical data and cluster information to predict future air 346 
pollution levels. In a typical DMN architecture, each layer consists of multiple units, and 347 
each unit computes a linear transformation followed by an activation function. Replace the 348 

traditional activation functions (e.g., ReLU, sigmoid) with spline activation functions in one 349 
or more layers of the DMN. 350 

The syntax for the activation function of maxout is as follows: When provided with an input 351 

𝐩 ∈ ℝ𝑑, where p represents the input vector or the state of a hidden layer, let us consider the 352 

number of linear sub-units merged by a maxout activation (also known as maxout rank) as 𝑅 353 

and 𝑅 ≪ 𝑑. In this scenario, a maxout activation first calculates 𝑅 linear feature mappings 354 

q ∈ ℝ𝑑. 355 

𝑞𝑖 = 𝑤𝑡𝑖
Tp + 𝑏𝑖 , wt𝑖 ∈ ℝ𝑑  𝑖 ∈ [𝑅]      (6) 356 

Where wt𝑖 is a weight vector associated with the linear transformation. It has the same 357 

dimensionality as the input vector p, T is input vector and 𝑏𝑖 is the bias term associated with 358 
the linear transformation. Subsequently, the resultant value of the maxout hidden unit, 359 

denoted as ℎ𝑚𝑡, is provided as the highest value among the R feature mappings. 360 

ℎ𝑚𝑡(p) = max{𝑞𝑖𝑅}𝑖=1
𝑅 .       (7) 361 

Thus, suppose 𝑤𝑡𝑖
′ are independent linearly, the activation function of maxout could be 362 

viewed as carrying out a pooling operation across an input space of R dimensions. 363 

𝒜 = 𝑏 + 𝒲,          (8) 364 

This describes the computation of the matrix 𝒜 by adding the bias vector b to each column of 365 

the weight matrix 𝒲. The activation function of cross-channel max pooling selects the 366 
maximum output across different channels or feature maps, which is then forwarded to the 367 
next layer. The maxout activation distinguishes itself from standard activation units by its 368 
distinctive structure, which often functions inside a one-dimensional linear space. In the 369 

context of a fully-connected deep maxout network with l hidden layers, let us consider the 𝑙𝑡ℎ 370 

layer. If the 𝑙𝑡ℎ layer consists of 𝑁𝑙 hidden units with a maxout rank R, the output of the 𝑙𝑡ℎ 371 

layer, denoted as 𝑂𝑙, can be expressed as follows: 372 



 

 

𝑂𝑙 = {ℎ𝑚𝑡
𝑖,𝑗 (𝑂𝑙−1)}

𝑗=1

𝑁𝑙−1
 ,      (9) 373 

where the superscript 𝑙, 𝑗 of ℎ𝑚𝑡
𝑖,𝑗

 represents the 𝑗𝑡ℎ maxout unit in the 𝑙𝑡ℎ layer, and ℎ𝑚𝑡
𝑖,𝑗

 has 374 

the structure defined in (6) and (7) with (6) adapted to 𝑂𝑙−1: 375 

𝑞𝑖
𝑙,𝑗

= (wt𝑖
𝑙,𝑗

)𝐵𝑇x + b𝑖
𝑙,𝑗

,     wt𝑖
𝑙,𝑗

∈ ℝ𝑁𝑙−1,  𝑖 ∈ [𝑅].     (10) 376 

Where 𝐵 is spline activation function. 377 

3.5.1. Spline Activation Function for DMN 378 

This process maps the linear transformation output to the desired non-linear response. 379 
The spline function can be constructed using piecewise polynomial functions, such as cubic 380 
splines, with knots defining the transition points between segments. The parameters of the 381 

spline function, including the coefficients of the polynomials and the positions of the knots, 382 
can be learned during training using backpropagation. The present study focuses on the 383 
treatment of SAFs, specifically examining the simplest scenario with a single neuron 384 
possessing a flexible AF. The computation of the outcome of the SAF is performed based on 385 

a generic input 𝑝 ∈ 𝑋𝐷 using the following equation. 386 

𝑠𝑝 = 𝑤𝑡𝑇𝑝,      (11) 387 

𝑞 = 𝜑(𝑠𝑝; R),       (12) 388 

The eventual bias term, denoted as 𝑤𝑡 ∈ 𝑋𝐷, is immediately included into the input vector. 389 

The 𝐴𝐹𝜑(·) is then characterized by a vector 𝑞 ∈ 𝑋𝑄, which consists of internal parameters 390 

known as knots. The knots in the dataset reflect a subset of the 𝐴𝐹 value over Q points that 391 

encompass the whole function. Specifically, this approach assumes that the knots are evenly 392 

distributed, with a constant value of ∆𝑝 ∈ 𝑋, and symmetrically distributed about the origin. 393 

The output is calculated by performing spline interpolation on the nearest knot and its 𝑃𝑛 394 

nearest neighbors, given the value of 𝑠𝑝. The often-employed value of 𝑃𝑛 = 3, as utilized in 395 

this study, aligns with cubic interpolation. This decision is widely regarded as a desirable 396 
compromise between the localization of the output and the precision of interpolation. The 397 

normalized the margin value among 𝑞𝑖 and 𝑞𝑖+1 could be defined based on the index i of the 398 
nearest loop. 399 

𝑢 =
𝑠𝑝

∆𝑝
− ⌊

𝑠𝑝

∆𝑝
⌋ .      (13) 400 

The floor operator was denoted as ⌊
𝑠𝑝

∆𝑝
⌋. The normalized reference vector could be computed 401 

from 𝑢, while the necessary control points can be extracted from i and referred to as the ith 402 

span in the vector 𝑞𝑖. The result (12) is then calculated as: 403 

𝑞 = 𝜑(𝑠𝑝) = u𝑇Bq𝑖,       (14) 404 

The spline basis matrix is denoted as 𝐵 ∈ 𝑋(𝑃𝑛 +1)×(𝑃𝑛 +1). The Catmull-Rom Spline (CRS) 405 

with a value of 𝑃𝑛 = 3 is employed in this research, as presented below. 406 

𝐵 =
1

2
[

−1 3 −3 1
2 −5 4 −1

−1 0 1 0
0 2 0 0

]      (15) 407 



 

 

This study examines the scenario of a single hidden layer neural network, where the input is 408 

of size D, the hidden layer consists of H neurons, and the output neurons are of dimension O. 409 
Each individual neuron inside the network employs a SAF that include distinct adaptive 410 
control points, which are established autonomously throughout the training procedure. To 411 

facilitate computational efficiency, let us assume that the sample set of the splines remains 412 
consistent across all neurons, and that they possess a singular common basis matrix B. DMN 413 
architectures, when combined with spline activation functions, can effectively reduce the 414 
dimensionality of the input data while preserving important features. This can lead to more 415 
efficient processing and training, especially in scenarios with high-dimensional data. 416 

4. Results and Discussion 417 

In this section, the proposed DMN is predicted the PM concentration 2.5 and 10 and 418 

the performances are evaluated and compared with existing schemes like HGNN, INNGNN, 419 

CEEMD-LSTM in terms of RMSE, Coefficient of Determinations (𝑅2), and Mean Absolute 420 
Error (MAE). In the experimental setup, the hyperparameters of the model are set as follows: 421 
The training procedure consists of 1,000 iterations, each utilizing a batch size of 128 and a 422 
rejection rate of 0.1. The architecture incorporates GRU (Gated Recurrent Unit) layers with 423 
64 hidden units, while the input data comprises sequences of eight long-term historical data 424 

points. Training is conducted using the Adam optimizer, with the Mean Square Error (MSE) 425 

serving as the designated loss function. The primary objective is to minimize the MSE across 426 
the training iterations, thereby optimizing the predictive performance of the model. 427 

The overall performance of proposed scheme in terms of RMSE, MAE and 𝑅2 are depicted in 428 
table 2. It shows the performance numeric evaluation and compared with existing schemes 429 
numeric values. Its show the proposed DMN attained better performance results compared 430 

than exiting schemes. The proposed DMN models are relatively easier to train and tune 431 
compared to complex convolutional architectures like HGNN, INNGNN, CEEMD-LSTM. 432 

DMNs may offer advantages in terms of flexibility, efficiency in parameter learning, 433 
interpretability, and scalability, especially for tasks like PM concentration prediction. DMNs, 434 

with their maxout activation functions, offer flexibility in capturing complex non-linear 435 
relationships in the data. This flexibility allows DMNs to adapt well to various types of data 436 

and tasks, including PM concentration prediction. Due to this, the proposed DMN attained 437 
high results compared than others. 438 

Table 3. Overall Performance Comparison among PM Concentration Prediction Schemes 439 

Methods RMSE (𝝁𝒈/𝒎𝟑) MAE(𝝁𝒈/𝒎𝟑) 𝑹𝟐 

 PM 2.5 PM 10 PM 2.5 PM 

10 

PM 2.5 PM 10 

Proposed DMN 10.211 10.321 5.641 5.764 0.976 0.945 

HGNN 11.971 12.232 6.938 7.24 0.828 0.834 

INNGNN 12.659 12.896 7.296 7.542 0.762 0.745 

CEEMD-LSTM 13.536 13.876 7.781 8.122 0.668 0.675 

 440 

4.1. RMSE Performance Comparison 441 



 

 

 442 

Figure 5. RMSE performance comparison among PM concentration schemes 443 

Fig 5 shows the RMSE performance comparison among proposed DMN model and 444 

compared with existing PM concentration prediction schemes like CEEMD-LSTM, 445 
INNGNN, HGNN and Proposed DMN. Its shows the RMSE of proposed and existing 446 

schemes for PM2.5 and PM10, and the outputs show that the proposed scheme attained less 447 
RMSE compared than others. The proposed DMN is designed to handle sequential data with 448 
varying lengths and time lags. The proposed Deep Maxout Network (DMN) architecture, 449 

complemented by Polynomial and Spline Interpolation methods, offers a revolutionary 450 

solution for tackling challenges in Matter 2.5 and 10 concentration air monitoring systems. 451 
Through meticulous data collection and preprocessing, followed by feature extraction and 452 
selection using mRMR and feature clustering via BIRCH, the model optimizes the dataset for 453 

robust analysis. Leveraging its innovative design, the DMN adeptly captures complex 454 
patterns and relationships within the data, resulting in significantly improved accuracy. 455 
Evaluation using RMSE showcases the model's superiority, with PM2.5 and PM10 456 

predictions exhibiting RMSE results of 10.2111 μg/m³ and 10.321 μg/m³, respectively. These 457 
impressive results underscore the efficacy of the proposed approach in enhancing air quality 458 

measurements and informing environmental management decisions. 459 

4.2. MAE Performance Comparison 460 

Fig 6 shows the MAE performance comparison among proposed DMN model and 461 

compared with existing PM concentration prediction schemes like CEEMD-LSTM, 462 
INNGNN, HGNN and Proposed DMN. Its shows the MAE of proposed and existing schemes 463 
for PM2.5 and PM10, and the outputs show that the proposed scheme attained less MAE 464 
compared than others. The proposed DMN architecture, augmented by Polynomial and 465 
Spline Interpolation methods, presents a transformative solution to address challenges in 466 

Matter 2.5 and 10 concentration air monitoring systems. Through meticulous data 467 
preprocessing, feature extraction, and clustering using mRMR and BIRCH, the model 468 
optimizes the dataset for accurate analysis. Leveraging its innovative design, the DMN 469 
effectively captures intricate patterns in the data, resulting in significantly improved 470 
predictions. Evaluation using Mean Absolute Error (MAE) reveals remarkable performance, 471 
with PM 2.5 and PM 10 predictions exhibiting MAE values of 5.641 and 5.764 μg/m³. These 472 



 

 

outcomes underscore the robustness and effectiveness of the proposed approach in enhancing 473 

air quality measurements and facilitating informed decision-making in environmental 474 
management. 475 

 476 

Figure 6. MAE performance comparison among PM concentration schemes 477 

4.3. 𝑅2 Performance Comparison 478 

Fig 7 shows the 𝑅2 performance comparison among proposed DMN model and 479 

compared with existing PM concentration prediction schemes like CEEMD-LSTM, 480 

INNGNN, HGNN and Proposed DMN. Its shows the MAE of proposed and existing schemes 481 

for PM2.5 and PM10, and the outputs show that the proposed scheme attained high 𝑅2 482 

compared than others. The proposed DMN architecture, enriched with Polynomial and Spline 483 
Interpolation methods, presents a pioneering solution to address the complexities of Matter 484 

2.5 and 10 concentration air monitoring. By meticulously preprocessing data, extracting 485 
features, and employing clustering techniques like mRMR and BIRCH, the model optimizes 486 

dataset representation for accurate analysis. With its innovative design, the DMN adeptly 487 
captures intricate data patterns, resulting in exceptional predictive performance. The high 488 

coefficients of determination (𝑅2) of 0.976 for PM 2.5 and 0.945 for PM 10 underscore the 489 

model's remarkable ability to explain variability in the data, affirming its effectiveness in 490 
enhancing air quality measurements and enabling informed decision-making in 491 
environmental management. 492 



 

 

 493 

Figure 7. 𝑅2 Performance comparison among PM concentration schemes 494 

The evaluation using key metrics demonstrates compelling results, with a RMSE of 495 
10.211μg/m³ for PM2.5 and 10.321μg/m³ for PM10, a MAE of 5.641 μg/m³ for PM2.5 and 496 

5.764 μg/m³ for PM10, and high R² of 0.976 for PM2.5 and 0.945 for PM10. These values 497 
underscore the robustness and effectiveness of the proposed approach in enhancing air quality 498 
measurements. Furthermore, they emphasize its potential to facilitate informed decision-499 

making in environmental management and advance public health initiatives. 500 

5. Conclusion 501 

This research presents a new model to address challenges in PM2.5 and PM10 502 

concentration air monitoring systems by proposing an innovative DMN architecture enhanced 503 
with Polynomial and Spline Interpolation methods. By effectively handling discontinuities in 504 

data sequences and smoothing transition fitting curves at interval junctions, the proposed 505 
model generates an ideal dataset, thereby improving the robustness and accuracy of air 506 

quality measurements. Through a systematic process of data collection, preprocessing, feature 507 
extraction and selection using minimum redundancy maximum relevance (mRMR), and 508 
clustering of similar features using the BIRCH scheme, the paper demonstrates the 509 
effectiveness of the proposed approach in enhancing the reliability of PM2.5 and PM10 510 
concentration monitoring systems using Air Quality Data in India from Kaggle. Through 511 

meticulous data preprocessing, feature extraction, and clustering techniques such as mRMR 512 

and BIRCH, the model optimizes dataset representation for accurate analysis. Leveraging its 513 

innovative design, the DMN effectively captures intricate data patterns, resulting in 514 
exceptional predictive performance. Evaluation using key metrics reveals compelling results: 515 
a Root Mean Square Error (RMSE) of 10.211μg/m³ for PM2.5 and 10.321μg/m³ for PM10, a 516 
Mean Absolute Error (MAE) of 5.641 μg/m³ for PM2.5 and 5.764 μg/m³ for PM10, and high 517 

coefficients of determination (𝑅2) of 0.976 for PM2.5 and 0.945 for PM10. These values 518 
underscore the robustness and effectiveness of the proposed approach in enhancing air quality 519 
measurements, facilitating informed decision-making in environmental management, and 520 
advancing public health initiatives. Several avenues can be explored in future scope to 521 
enhance the proposed methodology further and its practical implications for air quality 522 
management and public health initiatives. Firstly, incorporating real-time data streams and 523 



 

 

sensor fusion techniques could enhance the timeliness and accuracy of air quality 524 

measurements. Furthermore, extending the scope of the study to include additional pollutants 525 
and considering spatial-temporal variations could provide a more comprehensive 526 
understanding of air quality dynamics. 527 
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