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Abstract: Precise and dependable forecasting of Particulate Matter 2.5 (𝑃𝑀2.5) and 𝑃𝑀10 levels hold 3 
significant importance for the public's ability to proactively mitigate exposure to air pollution and for 4 
informing governmental policy responses. Nonetheless, predicting PM2.5 and PM10 concentrations 5 
presents considerable challenges due to the complex dynamics of atmospheric flows. In existing 6 
mainstream research, most air pollution prediction models presently employ a single predictor, hence 7 
limiting the potential for enhancing stability and accuracy. This study proposes a pioneering 8 
methodology for forecasting 𝑃𝑀2.5 𝑎𝑛𝑑 10 concentration levels by integrating a Modal Auto former 9 
system with the Sequential-to-Sequential predictive model. The Seq-2Seq network model leverages 10 
sequential learning and square transformation of Long Short-Term Memory (LSTM) techniques for 11 
improved accuracy in 𝑃𝑀2.5 𝑎𝑛𝑑 10concentration prediction. Additionally, the incorporation of a 12 
Modal Auto former enhances the predictive capabilities by efficiently capturing nuanced variations in 13 
atmospheric conditions. The proposed Seq-2Seq LSTM network predictor is given a weight, and the 14 
Adaptive Beetle Feelers Optimization (ABFO) algorithm is utilized for weight optimization to attain 15 
the best prediction results. Through rigorous experimentation and validation, the proposed approach 16 
demonstrates superior performance compared to traditional methods using Air Quality Data in India 17 
from Kaggle, offering a promising avenue for precise 𝑃𝑀2.5 𝑎𝑛𝑑 10 concentration forecasting with 18 
practical implications for air quality management and public health initiatives. The Proposed seq-2seq 19 
LSTM model achieved 10.211 RMSE for PM2.5, 10.321 RMSE for PM10, 5.641 MAE for PM2.5, 20 
5.764 MAE for PM10, 0.976 R2 for PM2.5, and 0.945 R2 for PM10. 21 

Keywords: Air Quality, Adaptive Beetle Feelers Optimizer, Deep learning, Modal Auto Former, PM 22 
Concentration Forecasting.  23 

1. INTRODUCTION 24 

The exponential growth of the world's economy has increased concerns pertaining to the issue 25 
of air pollution [1]. Exhaust emissions, primarily resulting from the burning of fossil fuels, have 26 
significantly contributed to an increase in atmospheric pollutants. The term PM2.5 refers to particulate 27 
matter that has a diameter of 2.5 micrometres or less. These small, lightweight, and inhalable 28 
pollutants can last in the atmosphere for prolonged periods and provide a substantial risk to human 29 
health when found in substantial amounts. The World Health Organization (WHO) suggests that the 30 
average annual 𝑃𝑀2.5 concentrations should not surpass 5 µg/m³. The primary contributors of 𝑃𝑀2.5 31 



 

 

emissions are the combustion of solid waste, road vehicles, and power plants [2]. As per the WHO, 32 
the global yearly mortality rate associated with air contamination is estimated to be more than seven 33 
million, and this rate is steadily increasing. WHO states that PM is a widely used proxy measure for 34 
air pollution. There exists substantial data supporting the adverse health effects linked to exposure to 35 
this contaminant. Sulfate, nitrates, ammonia, sodium chloride, black carbon, mineral dust, and water 36 
are the primary constituents of PM [3].  37 

The top five countries with the highest levels of pollution in 2023 were: 38 

• Bangladesh's 𝑃𝑀2.5 concentration (79.9 µg/m3) exceeds the WHO 𝑃𝑀2.5 yearly limit by 39 
more than 15 times. Bangladesh's elevated pollution levels can be attributed to the country's 40 
continuous traffic, construction operations, and industrial emissions, specifically from brick 41 
kilns that heavily depend on coal. 42 

• Pakistan's 𝑃𝑀2.5 concentration (73.7 µg/m3) exceeds the WHO 𝑃𝑀2.5 yearly limit by more 43 
than 14 times. 44 

• India's 𝑃𝑀2.5 concentration (54.4 µg/m3) exceeds the WHO 𝑃𝑀2.5 yearly limit by more than 45 
tenfold.  46 

• Tajikistan's 𝑃𝑀2.5 concentration (49.0 µg/m3) exceeds the WHO 𝑃𝑀2.5 yearly limit by more 47 
than 9 times.  48 

• The 𝑃𝑀2.5 concentration in Burkina Faso (46.6 µg/m3) exceeds the WHO 𝑃𝑀2.5 yearly limit 49 
by more than 9 times.  50 

Out of a total of 134 nations and regions, 124 (92.5%) surpassed the annual PM2.5 recommendation 51 
value of 5 µg/m3 set by the WHO. 52 

 53 

1.1. Air Pollution in India 54 

India is one of the most rapidly expanding economies globally; however, its rapid process of 55 
urbanization and industrialization has had adverse effects on the country's environment and the well-56 
being of its citizens. The country has seen significant water pollution, soil degradation, and poor air 57 
quality due to human activities, resulting in a substantial number of premature deaths annually. In the 58 
year 2023, New Delhi emerged as the capital city with the highest level of pollution globally, as 59 
evidenced by its average 𝑃𝑀2.5 concentration of 92.7 µg/m³. Subsequently, the capital city of 60 
Bangladesh, Dhaka, followed. Begusarai, located in northeastern India, has the highest 𝑃𝑀2.5 levels 61 
globally, with an average 𝑃𝑀2.5 concentration of around 119 µg/m³. 62 

The monthly 𝑃𝑀2.5 concentrations in urban areas of India exhibited comparable trends from 2020 to 63 
2023, with the winter months consistently exhibiting the greatest concentrations. During the specified 64 
time frame, the city of Delhi had the highest mean PM2.5 concentration, surpassing 255 μg/m³ in 65 
November 2023. According to data from 2023, Delhi had the third-highest mean PM2.5 concentration 66 
among cities in India, ranking below Begusarai and Guwahati.  The prevalence of severe air pollution 67 
in India might have adverse health consequences for the nation's populace. Fine particulate 68 
contaminants can extensively infiltrate the pulmonary system, leading to respiratory complications 69 
and perhaps leading to premature mortality. By 2022, almost 96 percent of India's inhabitants were 70 
subjected to hazardous levels of atmospheric contamination as shown in Figure 1. 71 
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Figure 1. Map View of Air Quality in India (March 2024) 73 

PM10 aerosols, which are PM with a size of 10 μm or less, are a kind of air pollutant that contributes 74 
to the decline in air quality. PM10 originates from a combination of natural and human activities, and 75 
its constituents are classified as primary (emitted directly) and secondary (produced in the 76 
atmosphere) in the natural environment. A considerable proportion of PM10 sources can be attributed 77 
to human activities. Several variables influence atmospheric PM10 concentrations, including local 78 
sources, dispersion, transportation, land-use patterns, geography, and meteorological conditions. The 79 
ambient air concentration of PM10 in Delhi, India's capital, was recorded at 181 micrograms per 80 
cubic meter in 2021. The pollutant levels remained consistently elevated for more than ten years. A 81 
higher quantity of particulate matter in the atmosphere has been linked to a wide range of physical, 82 
environmental, and health problems. 83 

Fine particulate matter (PM2.5) and Inhalable particulate matter (PM10), which have aerodynamical 84 
dimensions lower than 10 and 2.5 µm, are widely recognized as significant pollutants [4]. Increased 85 
levels of PM2.5 and PM10 in the environment provide substantial health hazards, which may result in 86 
respiratory infections and conditions related to cardiopulmonary dysfunction, hence providing serious 87 
consequences to human health [5]. 88 

The precise prediction of air pollution provides significant early indicators and assists in the decision-89 
making process for both governmental and public entities in addressing instances of severe pollution 90 
[6,7]. Hence, there is a pressing requirement for reliable and accurate prediction of ambient PM2.5 91 
and PM10 levels to improve air quality and protect public health. The accurate forecasting of PM 92 
levels, including PM10 and PM2.5, over an extended period is an essential element in endeavours to 93 
comprehend and address the widespread problem of air pollution. PM comprises microparticles 94 
floating in the atmosphere and originates from several origins including automotive emissions, 95 
industrial operations, construction activities, and natural occurrences such as dust storms and 96 



 

 

wildfires. The presence of these particles presents notable health hazards due to their ability to 97 
infiltrate the respiratory system, resulting in respiratory and cardiovascular ailments, alongside several 98 
other harmful health consequences. 99 

The significant threat posed by air pollution, particularly the concentrations of PM2.5 and PM10, to 100 
public health and environmental sustainability is acknowledged. Accurate forecasting of these 101 
concentrations is considered crucial for proactive mitigation strategies and informed policy responses. 102 
However, limitations in accuracy and stability are often encountered by existing forecasting models 103 
due to the complexities of atmospheric processes. It is observed that traditional forecasting 104 
approaches typically rely on single predictors, which may not adequately capture the intricate 105 
interactions that drive air pollution dynamics. Consequently, a pressing need is identified for novel 106 
methodologies that can improve the precision and reliability of PM2.5 and PM10 concentration 107 
forecasts. This research addresses this need by proposing a novel methodology that integrates a Modal 108 
Autoformer system with a Seq-2-Seq predictive model. This innovative approach is intended to 109 
overcome the shortcomings of traditional forecasting methods by leveraging advanced techniques in 110 
sequential learning and optimization. 111 

The novelty of this research present in the integration of a Modal Auto-former system with a Seq-112 
2Seq LSTM network, enhanced by ABFO for weight optimization. Unlike traditional models that rely 113 
on single predictors, this approach captures complex atmospheric dynamics and variations in PM 114 
levels, significantly improving the accuracy and stability of PM2.5 and PM10 forecasting, as 115 
validated on Indian air quality data. By combining the capabilities of the Seq-2-Seq model with the 116 
nuanced insights provided by the Modal Autoformer, the proposed methodology aims to increase the 117 
accuracy and robustness of PM2.5 and PM10 concentration anticipation. Furthermore, the utilization 118 
of the ABFO algorithm for weight optimization is intended to further refine the forecasting process, 119 
enabling more precise estimations of air pollutant levels. Through experimentation and validation 120 
using real-world Air Quality Data from India, the research seeks to indicate the superior performances 121 
of the research model to the conventional approaches. By providing a more reliable means of 122 
forecasting PM2.5 and PM10 concentrations, the developed methodology has the potential to have 123 
significant implications for air quality management and public health initiatives.  124 

The main contributions of this work are: 125 

• The study proposes a novel methodology by integrating a Modal Autoformer system with the 126 
Seq-2Seq predictive model. This integration aims to increase the accuracy of forecasting 127 
PM2.5 and PM10 contamination levels. 128 

• Incorporating a Modal Autoformer to further enhance the predictive capabilities of the model 129 
by efficiently capturing nuanced variations in atmospheric conditions. This enables the model 130 
to capture subtle changes in atmospheric dynamics, leading to more accurate predictions. 131 

• Employing the ABFO algorithm to optimize the weights of the proposed predictor. This 132 
adaptive optimization approach dynamically adjusts the weights based on the model's 133 
performance, leading to improved forecasting results. 134 

• Through rigorous experimentation and validation using Air Quality Data from Kaggle, the 135 
proposed approach demonstrates superior performance compared to traditional methods. The 136 
improved accuracy of PM2.5 and PM10 concentration prediction offers a promising avenue 137 
for precise air quality management and public health initiatives. 138 

Section 2 describes the research data and methodology. The research methodology is evaluated and 139 
explained in section 3. Finally, the work is concluded.  140 

2. LITERATURE REVIEW 141 

There are three main categories of existing approaches used for predicting air pollution 142 
concentrations: numerical models, statistical models, and artificial intelligence (AI) techniques. 143 
Numerical models are utilized to replicate the intricate differential equations that control the physical 144 
and chemical mechanisms of pollutants present in the atmosphere. Notable instances of such models 145 
encompass Weather Research and Forecasting coupled with Chemistry (WRF-Chem) and Community 146 



 

 

Multi-scale Air Quality (CMAQ). Nevertheless, the efficacy of these models is strongly dependent on 147 
comprehensive and frequently conflicting pollutant emission data, necessitating significant 148 
computational resources due to their intricate nature. On the other hand, statistical models like 149 
autoregressive integrated moving average (ARIMA) and autoregressive moving average (ARMA) 150 
rely on data and need minimal processing resources. However, they may encounter difficulties when 151 
dealing with nonlinear relationships and stationary data assumptions. AI models, such as artificial 152 
neural networks (ANN), random forest (RF), extreme gradient boosting (XGB), and support vector 153 
regression (SVR) have the capability to effectively capture intricate nonlinear relationships. However, 154 
these methods frequently need manual feature engineering and may encounter difficulties when 155 
dealing with extensive datasets because of data redundancy problems. Deep learning (DL) algorithms 156 
have recently gained attention as a possible method for predicting air pollution. This is because they 157 
possess the ability to learn on their own and effectively handle intricate nonlinear mappings. 158 

Zhang et al. [8] provided a reliable prediction method that enables precise multi-steps forward 159 
forecasting of PM10 and PM2.5 levels. Following this, the corrected inputs were modelled using the 160 
convolution neural networks (CNN) based on residuals and has the ability to extract features. 161 
Ultimately, the effectiveness of this system was thoroughly evaluated by using five accuracy measures 162 
and two extra statistical tests. The STA-ResCNN model demonstrated a significant reduction in root 163 
mean square error (RMSE), ranging from 5.595% to 15.247% and 6.827% to 16.906%, for the 164 
average of 1- to 4-hour forward forecasts of PM2.5 and PM10 in three prominent cities, respectively. 165 
Yu et al. [9] provided a DL architecture called SpatioTemporal (ST)-Transformer, which utilized 166 
multi-head attention. The purpose of this design was to enhance the accuracy of spatiotemporal 167 
forecasts for PM2.5 concentration in areas exposed to wildfires. This model utilized the sparse 168 
attention method that focused on useful data across variable, temporal, and spatial dimensions. 169 

Faraji et al., [10] introduced a model that integrated 3D CNN and GRU to predict the concentration of 170 
PM2.5 on an hourly and daily basis. The model demonstrated superior performance in comparison to 171 
ANN, GRU, LSTM, ARIMA, and SVR. Ding et al. (2011) proposed a CNN-LSTM method to predict 172 
PM2.5 concentrations by leveraging spatiotemporal correlations. The methods were utilized for 173 
extracting the spatial characteristics and temporal relationships of the inputs. The method 174 
demonstrated superior performances than the multilayers perceptron (MLP) and individual LSTM 175 
models. The accuracy of prediction was improved by including spatiotemporal correlation.  176 

The spatial and temporal information were gathered using either a CNN or DNN architecture in [12] 177 
and [13]. In brief, the models possessed notable capabilities in their capacity to integrate geographical 178 
and temporal data, hence enabling precise prediction of PM2.5 air quality and concentration. 179 
Nevertheless, the majority of the models exhibited limitations in terms of short-term projections, with 180 
many models being restricted to certain locations or contaminants. Moreover, certain models may 181 
incur significant computing costs because of their intricate designs. Additional investigation was 182 
required to cultivate more effective and precise models that can be implemented on a broader scope. 183 
The study [14] introduced a balanced methodology of sampling to mitigate the issue of unbalanced 184 
data to increase the accuracy of PM2.5 prediction. Most enhancements derived from the LSTM 185 
architecture mostly focussed on feature extraction.  186 

The research in [15] employed the BiLSTM method, which deviated from conventional LSTM by 187 
incorporating two distinct hidden layers to process the sequences in both the backward and forward 188 
directions. This approach effectively addressed the temporal and spatial correlations presented in the 189 
information and facilitated the modelling of intricate nonlinear associations within meteorological 190 
factors and air quality parameters. The study [16] employed a hybrid approach using principal 191 
component analysis (PCA), an attention mechanism, and long short-term memory (LSTM). Peralta et 192 
al., [17] provided a technique that utilized the LSTM recurrent network model to forecast the 193 
concentration of PM2.5 at any given geographical location. This method can forecast PM2.5 194 
concentration for the upcoming day in a newer place where data were unavailable by considering air 195 
pollutant historical values and meteorological parameters (wind speed, temperature, relative humidity, 196 
and direction) assessed at stations fixed for monitoring.  197 



 

 

The research in [18] introduced the CE-AGA model, which integrated the attention-based GRU with 198 
the convolutional encoders with adaptive gated activations. This model was specifically designed for 199 
predicting air quality. Several studies have employed transfer learning techniques to exploit pre-200 
trained methods for associated operations, hence enhancing the efficacy of prediction models. The 201 
LSTM model was employed by Gul et al. [19] and Waseem et al. [20], who employed both partial 202 
fine-tuning of the parameters or structure. The utilization of the LSTM model facilitated the 203 
representation of temporal relationships, while the extensive array of trials conducted on diverse real-204 
time monitoring of air quality data sets from many stations enhanced the applicability of the findings. 205 
Nevertheless, many research works failed to offer a comprehensive examination of the LSTM model’s 206 
interpretability or the characteristics it acquired from air pollutant data were crucial for predicting 207 
based on DL models.  208 

The methodology presented by Wang et al. [21] utilized LSTM, RF, and PSO. Particle Swarm 209 
Optimization (PSO) facilitated rapid convergence of the model to the optimal solutions, especially in 210 
search space with a high number of dimensions and intricate, nonlinear interactions among variables. 211 
The integration of PSO and ESN has the potential to achieve superior performance in the prediction of 212 
time series by capitalizing on ESN's proficiency in handling sequential information and PSO's test in 213 
conducting global search. The research in [22] proposed a DL hybrid approach that integrated the 214 
Particle Swarm Optimization and slime mould algorithm (SMA) into the adaptive neuro-fuzzy 215 
inferences system (ANFIS) for predicting PM2.5 levels. 216 

Table 1. Analysis of Reviewed Studies 217 

Study Approach Application Advantages Disadvantages 

[8] Residual-based 

CNN with feature 

extraction 

PM10 and PM2.5 prediction - Improved accuracy 

- Comprehensive 

assessment of 

performance 

- Computational 

complexity 

- Reliance on 

detailed pollutant 

emission data 

[9] Multi-head 

attention-based 

deep learning 

Spatiotemporal predictions 

of PM2.5 concentrations in 

wildfire-prone areas 

- Sparse attention 

mechanism for useful 

contextual information 

- Limited to specific 

scenarios 

- May require large 

datasets to train 

effectively 

[10] 3DCNN-GRU PM2.5 concentration 

forecasting 

- Best results compared 

to other models 

- Computational 

complexity 

[11] CNN-LSTM PM2.5 prediction based on 

spatiotemporal correlations 

- Enhanced prediction 

accuracy through spatial 

and temporal feature 

extraction 

- Complexity in 

architecture 

[12]; 

[13] 

CNN or DNN 

architecture 

PM2.5 concentration 

predictions 

- Incorporates temporal 

and spatial data for 

precise predictions 

- Limited to short-

term predictions 

- Computational 

expense due to 

complex 

architectures 

[14] LSTM with a 

balanced sampling 

approach 

PM2.5 concentration 

prediction with imbalanced 

data 

- Addresses imbalanced 

data for improved 

prediction 

- Limited analysis of 

interpretability 

- Complexity in 

feature extraction 

[15] BiLSTM model Handling temporal and 

spatial correlations in data 

for air pollution prediction 

- Handles spatial and 

temporal correlations 

effectively 

- Computational 

complexity 

[16] PCA, attention 

mechanism, 

LSTM 

PM2.5 concentration 

prediction with feature 

extraction and attention 

mechanism 

- Incorporates principal 

component analysis for 

feature reduction 

- Attention mechanism 

for improved focus on 

relevant features 

- Complexity in 

architecture 



 

 

[17] LSTM recurrent 

network model 

Space-time prediction of 

PM2.5 concentration 

considering historical air 

pollutant and meteorological 

data 

- Predicts PM2.5 

concentrations at new 

locations using historical 

data 

- Relies on the 

availability of 

historical data 

- Limited to fixed 

monitoring station 

locations 

[18] Attention-based 

GRU and 

convolutional 

encoder 

Air quality prediction using 

adaptive gated activation 

and transfer learning 

- Utilizes attention 

mechanism and transfer 

learning for improved 

prediction 

- May require large 

datasets for transfer 

learning 

- Computational 

complexity 

[19]; 

[20] 

LSTM model Air quality prediction using 

LSTM neural networks 

- Models temporal 

dependencies effectively 

- Generalizable results 

due to experiments on 

multiple datasets 

- Limited 

interpretability of the 

LSTM model 

- Complexity in 

training and tuning 

parameters 

[21] LSTM, RF, PSO PM2.5 prediction using 

PSO, RF, LSTM. 

- PSO aids in fast 

converging to optimal 

solutions 

- Combined strengths of 

PSO and ESN for time 

series forecast. 

- Computational 

complexity 

[22] DL hybrid method PM2.5 prediction using 

SMA, PSO, and ANFIS 

- Novel hybrid model for 

PM2.5 predictions 

- Complexity in 

combining different 

algorithms 
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From the above review, Traditional methods struggle for capturing the complex, nonlinear relations 219 
between input variables and PM concentrations. LSTM can automatically extract relevant features 220 
from raw data, learning complex representations that improve prediction accuracy. However, LSTMs 221 
are more computationally expensive compared to simpler recurrent architectures like the Elman RNN 222 
due to their additional gating mechanisms and cell state management. These increased complexities 223 
could result in longer training period and higher resource demand, making them less suitable for 224 
deployment on resource-constrained devices or in real-time applications. To solve this, the seq-2seq 225 
model is introduced here to improve the PM concentration prediction accuracy.  226 

2.1. Research Gap 227 

The research into PM2.5 and PM10 forecasting has predominantly concentrated on predictive 228 
modelling and algorithmic optimization, although it is lacking in an integrated combination of 229 
approaches that consider pollutant emission characteristics, spatial distribution dynamics, and real-230 
world fuel impact analyses. Analyses of the morphology and nanostructure of emissions, as examined 231 
in studies of air pollution production, alongside the reduction properties of sustainable aviation fuels, 232 
may enhance comprehension of pollutant sources and variability [Chen et al. 2024; Gong et al. 2024; 233 
Meng et al. 2023; Xu et al. 2024]. Furthermore, employing methods for effective small-target 234 
identification in noisy environments and comprehending the factors influencing spatial pollutant 235 
distribution could improve the precision of forecasting models by addressing the complexities of 236 
dynamic atmospheric conditions and varied pollutant sources. This highlights the necessity of 237 
incorporating advanced emission analysis, spatial dynamics, and robust detection approaches into PM 238 
forecasting systems to effectively address these gaps. 239 

3. RESEARCH METHODOLOGY 240 

The proposed model employs a Seq-2seq LSTM network architecture to forecast the PM2.5 241 
and PM10 concentrations, as seen in Figure 2. Initially, the Kaggle dataset is subjected to pre-242 
processing procedures, which involve filling in missing values and normalizing the data. 243 
Subsequently, the dataset is divided into training and test sets to facilitate model training and 244 
assessment. During the training process, the Seq-2seq LSTM model is trained using each batch of 245 



 

 

training data for a predetermined number of iterations. The loss value during forward propagation 246 
inside the network is minimized by employing the Adaptive Beetle Feelers Optimization (ABFO) 247 
technique via backpropagation. After training, the test data is loaded into the seq-2seq LSTM model to 248 
get predicted values for PM2.5 and PM10. To acquire the actual expected values, the predictions are 249 
de-normalized. Ultimately, the efficiency of the seq-2seq LSTM model is assessed using diverse 250 
measures, whereby the actual projected values are compared with the true values. 251 

 252 

Figure 2. Seq-2seq LSTM-based PM concentration prediction  253 

3.1. Dataset Collection  254 

The dataset was obtained from the website https://www.kaggle.com/datasets/fedesoriano/air-255 
quality-data-in-india Fedesoriano (2022). Providing data on significant air pollutants like particle 256 
matter (PM2.5 and PM10), carbon monoxide (CO), sulfur dioxide (SO2), nitrogen dioxide (NO2), and 257 
ozone (O3), across several cities in India. The dataset often contains timestamps that correlate to the 258 
day and time of measurement, as well as pollutant concentrations measured in quantities such as 259 
micrograms per cubic meter (µg/m³). This dataset is an essential source for analysts and researchers to 260 
analyze air quality trends, investigate the impact of pollution on public health, develop predictive 261 
models for predicting air quality, and evaluate the effectiveness of air quality management strategies 262 
and policies. The metadata includes information on monitoring locations and quality control. The map 263 
view of monitoring stations in India is displayed in Figure 2. 264 

3.2. Data Pre-processing   265 

The proposed approach considers the prediction of PM2.5 as a regression issue of time series, 266 
requiring continuous time series data as input. Still, it is frequently observed in practical situations 267 
that there are disruptions in the chronological order of data, resulting in the presence of data gaps. The 268 
issue pertaining to the absence of multi-modal and multi-site air quality information can be classified 269 
into two distinct classes: the complete absence of time series recordings, and the absence of feature 270 
values within individual records. Missing data-filling software mostly uses functional design to 271 
address the two categories of missing data. To address missing values in PM concentration data, this 272 
system must calculate the coefficients of cubic polynomials that interpolate between neighbouring 273 
known data points using cubic spline interpolation. The polynomials are subsequently employed to 274 
approximate the absent values. 275 

The proposed approach produces cubic spline functions for every interval 𝑝𝑖, 𝑝𝑖+1 using the known 276 
data points specified as 𝑝𝑖, 𝑞𝑖, where 𝑝𝑖 indicates the time points and 𝑞𝑖 indicates the PM 277 
concentration values. 278 

𝐶𝑆𝑖(𝑝) = 𝑤𝑖(𝑝 − 𝑝𝑖)3 + (𝑝 − 𝑝𝑖)2 + 𝑦𝑖(𝑝 − 𝑝𝑖) + 𝑧𝑖        (1) 279 

https://www.kaggle.com/datasets/fedesoriano/air-quality-data-in-india
https://www.kaggle.com/datasets/fedesoriano/air-quality-data-in-india


 

 

The coefficients 𝑤𝑖, 𝑥𝑖 , 𝑦, 𝑧𝑖 need to be calculated. The original dataset was filled with missing values 280 
and subsequently normalized. Min-max scaling is a method that adjusts the data to fit inside the 281 
predetermined level, usually ranging from 0 to 1. The Min-Max scaling formula is as follows: 282 

𝑃𝑛 =
𝑃−𝑃𝑚𝑖𝑛

𝑃𝑚𝑎𝑥−𝑃𝑚𝑖𝑛 
           (2) 283 

Here, 𝑃 represent the initial PM concentration value, 𝑃𝑛 represent the normalized value of P, and 𝑃𝑚𝑎𝑥 284 
and 𝑃𝑚𝑖𝑛 indicate the highest and lowest values of P in the dataset. Autoformer is a transformer-based 285 
DL model. The system comprises an internal sequences decomposition unit, an enhanced 286 
decomposition structure based on the encoder-decoder, and a self-correlation mechanism. The 287 
decomposition unit utilizes the sliding average concept to extract and deconstruct the seasonal 288 
elements of time-series information. The primary aim of this process was to examine the intricate 289 
temporal patterns exhibited by a lengthy time series. To mitigate periodic oscillations and emphasize 290 
enduring trends, moving average lines are strategically incorporated. The incorporation of the sliding 291 
average effects will be accomplished by the sliding average window size manipulation. 292 

3.3. Seq-2seq LSTM Model for PM Prediction  293 

To acquire the time sequence attention of the multi-variable input data, the module of time 294 
sequence attention was employed to examine the various time data steps. Next, the input should be 295 
updated, and feature coding should be performed based on the attention received for each input data. 296 
The final projected value is obtained by fusing the matrix of encoded features with the historic data of 297 
PM2.5 concentrations and inputting it into the decoding features for decoding. A solitary LSTM unit 298 
consists of a memory cell and three gates, namely the input gate, the output gate, and the forget gate. 299 
At these gates, activation functions are utilized. A higher activation rate at the input gate indicates the 300 
need to store the input information in the memory. Conversely, a higher value at the output gate 301 
prompts the stored data release to the subsequent neurons. Lastly, a higher value at the forget gate 302 
eliminates data from the memory units. Although originally designed for neural machine translation, 303 
the Seq-2seq architecture has demonstrated its efficacy in a range of machine learning applications, 304 
such as time series prediction. The Seq-2seq model has modules, including the encoder, intermediate 305 
vector mechanism, and decoder. The input sequences are processed, and features are extracted in the 306 
encoder using LSTM cells. The context vector, which encompasses information from the complete 307 
input data, is derived from the final hidden state. The decoder consists of many LSTM units, with 308 
each unit performing calculations on its hidden state and producing output data. This paper presents a 309 
concept for the utilization of the Seq-2seq model in the prediction of PM concentration. 310 

3.3.1. Encoder 311 

In a Seq-2seq model, the encoder usually includes one or many LSTM modules. Every unit has 312 
responsibility for processing input sequences, gathering pertinent information, and transmitting it to 313 
the next unit. The mathematical expression that characterizes the functioning of the encoder is as 314 
outlined below: 315 

ℎ𝑖𝑑𝑡 = 𝑓𝑛(𝑤𝑡ℎ𝑖𝑑ℎ𝑖𝑑 ∗ ℎ𝑖𝑑𝑡−1 + 𝑤𝑡ℎ𝑖𝑝 ∗ 𝑝𝑡 + 𝑏ℎ𝑖𝑑)     (3) 316 

In this context, the variable ℎ𝑖𝑑𝑡 denotes the hidden state at time step t, 𝑝𝑡 represents the input at time 317 
step t, 𝑤𝑡ℎ𝑖ℎ𝑖  represents the weight matrix for the recurrent connections, 𝑤𝑡ℎ𝑖𝑝 represents the weight 318 
matrix for the input connections, and 𝑓𝑛 represents the activation function. 319 

3.3.2. Intermediate Vector  320 

In the Seq-2seq model, the decoder component utilizes the final hidden state generated by the encoder 321 
as its beginning hidden state. The intermediate vector, which represents the hidden state, is calculated 322 
using equation (8). The primary objective of the intermediate vector is to integrate the knowledge 323 
acquired from the complete source sequence, serving as the initial hidden state of the decoder. 324 

3.3.3. Decoder  325 



 

 

The system comprises one or many LSTM units. The trailing hidden state is passed to each LSTM 326 
cell, which then creates both the output and the current hidden state. The equation provided was 327 
utilized to calculate the hidden state at the current step t, denoted as ℎ𝑖𝑑𝑡. 328 

𝑐𝑠𝑡 = 𝑓𝑛(𝑤𝑡ℎ𝑖𝑑ℎ𝑖𝑑 ∗ 𝑐𝑠𝑡−1).       (4) 329 

The cell state at time step t and the prior time step t-1 are denoted as 𝑐𝑠𝑡 and 𝑐𝑠𝑡−1 respectively. The 330 
equation [23] provides the output at each time step. 331 

𝑂𝑡 = 𝑓𝑛(𝑤𝑡𝑠 ∗ 𝑐𝑠𝑡).          (5) 332 

The Softmax function is utilized in the sequence-to-sequence (Seq-2seq) paradigm to produce the 333 
output sequence. Furthermore, it is possible to employ an attention mechanism, such as the Bahdanau 334 
attention mechanism, to capture the correlation between the input and output sequences. This 335 
approach ensures that the input and output sequences are aligned and that important information in the 336 
input sequence is given proper attention throughout the decoding process by giving alignment values. 337 
Through the utilization of attention, the model may choose to concentrate on pertinent segments of the 338 
input sequence, hence enhancing its capacity to produce precise and contextually appropriate output 339 
sequences [24]. 340 

𝑐𝑣𝑡 = ∑ (𝜁𝑡𝑖 ∗ ℎ𝑖𝑑𝑖)𝑇
𝑖=1 .        (6) 341 

The context vector at time step t is denoted as 𝑐𝑣𝑡, where T represents the length of the input 342 
sequence. The alignment scores among the current decoder hidden state ℎ𝑖𝑑𝑖 and all the encoder 343 
hidden states ℎ𝑖𝑑𝑖 are represented as 𝜁𝑡𝑖. 344 

𝜁𝑡𝑖 =
exp(𝑒𝑠𝑡𝑖)

∑ exp(𝑒𝑠𝑡𝑘)𝑇
𝑘=1

 .        (7) 345 

Here, 𝑒𝑠𝑡𝑖 denotes the alignment energy score among the current hidden state of the decoder and the i-346 
th hidden state of the encoder. 347 

𝑒𝑠𝑡𝑖 = 𝑐𝑣𝑇 ∗ tanh(𝑤𝑡[𝑐𝑠𝑡−1, ℎ𝑖𝑑𝑖]).      (8) 348 

𝑐𝑠𝑡 = tanh(𝑤𝑡[𝑐𝑠𝑡−1, 𝑂𝑡−1, 𝑐𝑣𝑡]).       (9) 349 

The objective of ABFO is to enhance the LSTM’s learning rate. To normalize, the moving average of 350 
the gradient square is employed. This allows for the augmentation of the step size under the vanishing 351 
gradient condition, as well as the reduction of the step size for larger gradients. 352 

3.4. Adaptive BFO Algorithm for Weight Optimization  353 

Initially, a weight selection objective function is established. The training dataset is denoted 354 
as 𝑃𝑡𝑟 ∈ ℝ𝑟×𝑚, where r is the sample size and m represents the number of features. The objective 355 

values that correspond to this are represented as 𝑄𝑡𝑟 ∈ ℝ𝑟. The proportion among the fitting and 356 

validation sets is determined by the parameter x, which ranges from 0.3 to 0.95. The fitting model is 357 
assigned to the first 𝑟1 = 𝑥. r samples of 𝑃𝑡𝑟, while the remaining 𝑟2 = 𝑟 − 𝑟1 samples are utilized for 358 

validation. The fitting set is denoted as 𝑃𝑓 ∈ ℝ𝑟1×𝑚, while the validation set is denoted as 𝑃𝑣𝑎 ∈359 

ℝ𝑟2×𝑚. The objective values for these sets are 𝑄𝑓 ∈ ℝ𝑟1 and 𝑄𝑣 ∈ ℝ𝑟2, respectively. It is crucial to 360 

acknowledge that validation plays a significant role in guaranteeing the model's ability to generalize 361 
beyond the training set. This is achieved by separating the fitting set 𝑃𝑓 from the weights of the neural 362 

network W, which are directly derived using 𝑀(1: 𝑟1) and 𝑄𝑓. The neural network predictions 𝑄𝑣 for 363 

the validation set 𝑃𝑣 are derived using 𝑀(𝑟1 + 1: 𝑟) and Wt. The formula used to compute the mean 364 

absolute error (MAE) between the objective 𝑄𝑣 and the predicted values is as follows: 365 

𝑀𝐴𝐸 =
1

𝑟2
∑ |𝑄𝑘 − �̂�𝑘|.

𝑟2
𝑘=1         (10) 366 



 

 

The Mean Absolute Error (MAE) is frequently utilized in machine learning as a loss function, 367 
especially in regression tasks, due to its ability to quantify the average amount of mistakes between 368 

paired observations that reflect the same situation. Let us consider the vector is [𝑥, 𝑣, 𝑁]𝑇, where N 369 
denotes a vector that encompasses the power values of the neurons in the hidden layer, and c 370 
represents a vector that encompasses the indices of the best activation function chosen from Table 1 371 
for each neuron in the hidden layer. Algorithm 1 presents the approach in the form of an objective 372 
function. 373 

Algorithm 1 Objective function.  

Requirement: The vector 𝑝, the input data 𝑃 and the target 𝑄.  

1: process objective fn(𝑃, 𝑄, 𝑝)  

2: Divided 𝑝 into 𝑥, 𝑣 and 𝑁, and set r the rows number of 𝑃. 

3: Ensure that only the nonnegative elements are retained in 𝑁, and in v, keep only their 

corresponding activation function numbering.  

4: Compute the matrix 𝐾 under the N and v.  

5: Set 𝑟1 = 𝑝𝑟, 𝑟2 = 𝑟 − 𝑟1, 𝑃𝑓𝑖 = 𝑃(1 ∶  𝑟1, ∶), 𝑄𝑓𝑖 = 𝑌(1 ∶ 𝑟1), 𝑃𝑣𝑎 = 𝑃(𝑟1 + 1: 𝑟, ∶) 𝑎𝑛𝑑 𝑄𝑣𝑎 =

𝑄(𝑟1 + 1: 𝑟).  
6: calculate 𝑊𝑡 utilizing 𝐾(1 ∶  𝑟1) and 𝑄𝑓𝑖 by using LSTM.  

7calculate �̂�𝑣𝑎 utilizing 𝑀(𝑟1 + 1: 𝑟) and 𝑊𝑡.  

8: assign the MAE using eqn (10).  

9: end  

 374 

The optimization technique outlined in Algorithm 1 involves the minimization of the objective 375 
function by the utilization of beetle behaviour. The optimization process entails the minimization of 376 

the objective function in relation to a vector 𝜃 = [𝑥, 𝑣𝑇 , 𝑁𝑇]𝑇, where x is a parameter and v is a vector 377 
variable consisting of integer values 1, 2, 3, and 4, which correspond to the activation functions 378 
outlined in method 1. Furthermore, it should be noted that the vector N possesses an equivalent 379 
magnitude to that of v, with its elements spanning from 0 𝑡𝑜 𝑛𝑚𝑎𝑥 − 1, where 𝑛𝑚𝑎𝑥 represents the 380 

upper limit of hidden layer neurons as determined by the user. The power of the activation functions 381 

for each neuron in the hidden layer is represented by the 𝑛𝑚𝑎𝑥 + 1 values. 382 

In the suggested methodology, the position of the beetle, namely its weight value, is represented by 383 
the vector p. The objective function f(p) in algorithm 1 is used to represent the concentration of odour 384 

at position p. The lowest value of f(p) indicates the origin of the odour. Furthermore, the notation 𝑝𝑡 is 385 

employed, where t ranges from 1 to 𝑡𝑚𝑎𝑥, and t denotes the number of iterations. Thus, the lower 386 

bound 𝐿 = [0.3, 1𝑇 , 0𝑇], where 1,0 ∈  ℝ(𝑛𝑚𝑎𝑥+1) represents the vectors all-ones and all-zeros, 387 

respectively. The upper boundary, denoted as (U)=[ 0.3, 1𝑇 . [4,1]𝑇 . 𝑛𝑚𝑎𝑥]𝑇. To make sure that 𝐿 ≤388 

𝑝 ≤ 𝑈 is satisfied, the element-wise function provided for the element 𝑖 = 1, … 2𝑛𝑚𝑎𝑥 + 1 will be 389 
employed. 390 

𝑔(𝑝𝑖) = {

U𝑖, 𝑝𝑖 > U𝑖

𝑝𝑖, L ≤ 𝑝𝑖 ≤ U
L𝑖 , 𝑝𝑖 < L𝑖

        (11) 391 

Therefore, the beetle's chaotic search route defines a model of searching behaviour as follows: 392 

𝐶𝑠 =
𝛾

𝜖+‖𝛾‖′
          (12) 393 

The expression 𝛾 ∈ 𝑅𝑎2𝑛𝑚𝑎𝑥+1 denotes a random vector consisting of 2𝑛𝑚𝑎𝑥 + 1 elements, while 394 

𝜖 = 2−52. The left (𝑝𝐿) and right (𝑝𝑅) feeler are created using the following formulae to imitate the 395 
seeking behaviors of the beetle's feeler: 396 

𝑝𝑅 = 𝑔(𝑅𝑎(𝑝𝑡 + 𝜂𝑡𝐶𝑠)),      𝑝𝐿 = 𝑔(𝑅𝑎(𝑝𝑡 − 𝜂𝑡𝐶𝑠)).    (13) 397 



 

 

In this context, the sensing breadth of the feeler, denoted as 𝜂𝑡, represents the capability of the exploit 398 

at the t-th instant. Additionally, consider the probable optimal solution (i.e. weight) (𝑝𝑥): 399 

𝑝𝑥 = 𝑔 (𝑅𝑎 (𝑝𝑡 + 𝜉𝑡𝜂𝑡 sign(𝑓(𝑝𝐿) − 𝑓(𝑝𝑅𝑎)))),    (14) 400 

The notation 𝜉𝑡 denotes a step size, which signifies the rate of convergence after an increment in t 401 
during the search procedure. Following this, the behaviour of detection may be characterized as 402 
follows: 403 

𝑝𝑡+1 = {
𝑝𝑥 , 𝑓(𝑝𝑥) ≤ 𝑓(𝑝𝑡)

𝑝𝑡 , 𝑓(𝑝𝑥) > 𝑓(𝑝𝑡)
        (15) 404 

The subsequent section delineates the updating regulations pertaining to 𝜂 and 𝜉. 405 

𝜂𝑡+1 = 0.991𝜂𝑖 + 0.001,   𝜉𝑡+1 = 0.991𝜉𝑖      (16) 406 

The fundamental requirements must be known for the aforementioned methodology are as follows: 407 

𝑝0 = [1 − 𝑦, 2 − 𝑦, … . ,2𝑛max + 1 − 𝑦]𝑇,      (17) 408 

Where 𝑦 = 𝑅𝑎((2𝑛max + 1)/2). 409 

Subsequently, the Seq-2seq LSTM method utilizes the whole training data set to identify and produce 410 

the optimal ratio 𝑥∗ among the fitting and validation sets, the ideal weight (Wt), the optimal power 411 

value (𝑁∗), and the optimal activation function for each neuron in the hidden layer (𝑣∗). The proposed 412 
algorithm's pseudocode is illustrated in algorithm 2, while the flowchart is presented in Figure 3. 413 

 414 

Figure 3. Flow chart of ABFO for weight selection 415 

Algorithm 2: weight selection for seq-2seq LSTM 

Input: objective fn(𝑃, 𝑄, 𝑝) , utilize the notation 𝑝𝑡, where t=1,2, 3,…,𝑡𝑚𝑎𝑥 

Output: optimal solution  

Initialize the beetle using eqn (17) 

While(t≤max?) 

Set 𝐶𝑠 using eqn (12) and 𝑝𝑅 , 𝑝𝐿 using eqn (13)  

Calculate  𝑝𝑥 using eqn (14) Update the value 

Set 𝐶𝑠 using eqn (12) and 

𝑝𝑅 , 𝑝𝐿 using eqn (13) 

Calculate  𝑝𝑥 using eqn (14) 

𝑝𝑡+1 ← 𝑝𝑥 

 

Start 

Initialize the beetle using 

eqn (17) 

t≤max? 

𝑓(𝑝𝑥)< 𝑓(𝑝𝑡) 

𝑝𝑡+1 ← 𝑝𝑖  

Update 𝜉 and 𝜂 using eqn (16) 

and set t← 𝑡 + 1 

Return optimal weight 

𝑝 ∗← 𝑝𝑡 

End  

Yes 

No 



 

 

If 𝑓(𝑝𝑥)< 𝑓(𝑝𝑡) then 

Update 𝑝𝑡+1 ← 𝑝𝑖 , 𝑝𝑡+1 ← 𝑝𝑥 

Update 𝜉 and 𝜂 using eqn (16) and set t← 𝑡 + 1 potential solution 
Return optimal weight 𝑝 ∗← 𝑝𝑡 

The best solution is considered for Optimal weight in seq-2seq LSTM. 

End  

 416 

4. RESEARCH RESULTS ANALYSIS AND DISCUSSION 417 

4.1. Experimental Setup 418 

To assess the superiority and generalization of the method proposed seq-2seq LSTM in this 419 
paper for long-term prediction, comparative experiments were conducted using several control 420 
groups, including the general GRU module, the informer model (known for its superior short-term 421 
forecasting capabilities), the Autoformer method, and a model combining empirical mode 422 
decompositions with the GRU module (modal GRU). The completed dataset was divided into a 423 
training dataset comprising 85% of the data and a test dataset comprising the remaining 15%. For the 424 
models using non-modal decomposition and those employing modal decomposition, automatic 425 
parameter adjustment functions were incorporated. The key difference lies in the timing of parameter 426 
adjustment: for the non-modal decomposition model, adjustment happens after every prediction 427 
process completes, whereas, for the modal decomposition model, modification takes place after the 428 
predictions of all the components. Initial settings of parameters were based on the features of various 429 
models for hyperparameter tuning. The proposed seq-2seq LSTM performance is evaluated and the 430 
performance is compared with existing STA-ResCNN [8], CNN-LSTM [11] and LSTM [16] schemes. 431 
In the experiment, the model hyperparameters are configured as follows: The training process 432 
comprises 1,000 iterations with a batch size of 128 and a rejection rate set at 0.1. The model 433 
architecture includes GRU (Gated Recurrent Unit) layers with 64 hidden units, and the input data 434 
incorporates sequences of eight long-term historical data points. Training is facilitated using the Adam 435 
optimizer, with the MSE serving as the chosen loss function. The total objective function aims to 436 
minimize the MSE across the training iterations, thus optimizing the model's predictive performance. 437 

𝑂(𝑋𝑡~𝑡+𝑘, �̂�𝑡~𝑡+𝑘 
) =

1

𝑁𝑠
∑ (𝑋𝑡~𝑡+𝑘 , �̂�𝑡~𝑡+𝑘 

)𝑁𝑠
𝑖=1      (18) 438 

Where Ns was the total training samples. Three parameters were utilized to compute the differences 439 
among the actual value �̂�𝑡 of PM2.5 and the projected value 𝑋𝑡 . The PM2.5’s mean value was 440 
defined as �̅�, which includes: 441 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑋𝑡 − �̅�𝑡)2𝑛

𝑖=1         (19) 442 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑋𝑡 − �̅�𝑡|𝑛

𝑖=1         (20) 443 

𝑅2 = 1 −
∑ (𝑋𝑡−�̅�𝑡)2𝑚

𝑖=1

∑ (𝑋𝑡−�̅�𝑡)2𝑚
𝑖=1

         (21) 444 

Among these metrics, MAE and RMSE were employed to quantify the disparity among the original 445 
and predicted values. RMSE indicates the model's sensitivity to huge errors, while MAE indicates its 446 
reliability. Smaller values of both RMSE and MAE signify better predictive performance. 447 
Additionally, 𝑅2 the predictive accuracy of the model relative to the actual data. A higher 𝑅2 value 448 
indicates a more effective forecasting outcome. 449 

4.2. Comparison of Different Time Window Sizes for PM Concentrations 2.5 and 10 450 

PM2.5 and 10 concentration data are influenced by various relevant time series, although 451 
variations in all the time series values do not impact the PM2.5 concentration values. This indicates a 452 
lag effect, where the variable value at the previous moment affects the PM2.5 concentration values at 453 



 

 

the following moment with a lag. While the lag effect might be pronounced in the short period, it 454 
diminishes in the long term.  455 

 456 

Figure 4. Different Time Window Sizes Performance for PM Concentrations 2.5 457 

A smaller window size may not provide sufficient long-term memory input for the Seq-2seq LSTM 458 
model, while a larger window size may introduce irrelevant information, increasing unnecessary 459 
computational complexity. Hence, determining the optimal window size is crucial. A sliding window 460 
strategy was employed to create relative time series samples for all the records. To establish a suitable 461 
historical time window size, various values from the candidate sets [12, 16, 20, 24, 28, 32, 36, 40, 44] 462 
are selected. The changes in MAE, RMSE, and 𝑅2 of the research model were depicted in Figures 4 463 
and 6 for PM 2.5 and 10 to guide the selection process. As illustrated in figure 4 and 5, if the size of 464 
the window was less than 36, both the MAE and RMSE evaluations decreased while the 𝑅2 465 
evaluation value improves with increasing window size. This trend is attributed to the limited 466 
historical feature information inputted to the model when the window size is too small, resulting in 467 
lower prediction performance. Conversely, as the size of the window increases gradually, the research 468 
model receives more historical data as input, enabling it to capture additional nonlinearities and 469 
dependencies within the sequence, thereby enhancing predictive ability. However, when the size of 470 
the window surpasses 36, the values of MAE and RMSE start to increase, while the evaluation value 471 
of 𝑅2 decreases before stabilizing. This phenomenon occurs due to the excessive input of unnecessary 472 
information with larger window sizes, leading to increased noise and interference with the model's 473 
performance. Consequently, in the experiment, the historical time window size was set to 36 to 474 
achieve the optimal balance between capturing relevant historical features and mitigating noise 475 
interference.  476 



 

 

 477 

Figure 5. Different Time Window Sizes performance comparison for PM concentrations 10 478 

The overall performance of the proposed scheme in terms of RMSE, MAE and 𝑅2 are depicted in 479 
table 2. It shows the performance numeric evaluation and is compared with the current scheme's 480 
numeric values. It shows the proposed seq-2seq LSTM attained better performance results compared 481 
to current schemes. The proposed seq-2seq LSTM models are relatively easier to train and tune 482 
compared to complex convolutional architectures like STA-ResCNN. This simplicity in model design 483 
and training process may lead to faster convergence and better generalization performance and it’s 484 
known for their ability to handle noisy data and missing values effectively.  LSTM's robustness to 485 
such noise can result in more reliable predictions compared to STA-ResCNN.  486 

Table 2. Overall Performance Comparison Among PM Concentration Prediction Schemes  487 

Methods  RMSE (𝝁𝒈/𝒎𝟑) MAE(𝝁𝒈/𝒎𝟑) 𝑹𝟐 

 PM 2.5 PM 10 PM 2.5 PM 10 PM 2.5 PM 10 

Proposed seq-2seq LSTM 10.211 10.321 5.641 5.764 0.976 0.945 

STA-ResCNN 11.971 12.232 6.938 7.24 0.828 0.834 

CNN-LSTM 12.659 12.896 7.296 7.542 0.762 0.745 

LSTM 13.536 13.876 7.781 8.122 0.668 0.675 

 488 

4.3. RMSE performance comparison 489 

Figure 6 shows the RMSE performance comparison among the proposed seq-2seq LSTM 490 
model and compared with existing PM concentration prediction schemes like STA-ResCNN, CNN-491 
LSTM and LSTM. It shows the RMSE of proposed and existing schemes for PM 2.5 and PM 10, and 492 
the results show that the proposed scheme attained less RMSE compared to others. The proposed seq-493 
2seq LSTM is designed to handle sequential data with varying lengths and time lags. PM 494 
concentration prediction involves forecasting future values based on historical observations, which 495 
aligns well with the sequential nature of LSTM models. The model's ability to retain relevant 496 
information over time enables it to make accurate predictions, resulting in lower RMSE. As well as it 497 
has a high capacity to learn complex temporal patterns present in PM concentration data. They can 498 
capture both short-term fluctuations and long-term trends, allowing them to adapt to the dynamic 499 
nature of air quality data. This capacity to learn intricate patterns contributes to the model's ability to 500 
achieve lower RMSE. 501 



 

 

 502 

Figure 6. RMSE performance comparison among PM concentration schemes   503 

4.4. MAE performance comparison 504 

Figure 7 shows the MAE performance comparison among the proposed seq-2seq LSTM 505 
model and compared with existing PM concentration prediction schemes like STA-ResCNN, CNN-506 
LSTM and LSTM. It shows the MAE of proposed and existing schemes for PM 2.5 and PM 10, and 507 
the results show that the proposed scheme attained less MAE compared to others. The proposed 508 
model has a high capacity to learn complex relationships between input features and target variables. 509 
PM concentration prediction often involves capturing intricate relationships between various 510 
environmental factors, such as weather conditions, geographic features, and pollutant emissions. The 511 
LSTM's ability to learn these relationships can lead to more accurate predictions and hence lower 512 
MAE. As well as it offers interpretability by allowing analysts to understand the importance of 513 
different features in predicting PM concentrations. PM concentration data may have irregular time 514 
intervals between observations due to factors such as sensor sampling frequency or data collection 515 
schedules. The proposed seq-2seq LSTM model can handle irregular time intervals effectively, 516 
allowing them to maintain predictive accuracy without requiring interpolation or resampling of the 517 
data. 518 



 

 

 519 

Figure 7. MAE performance comparison among PM concentration schemes   520 

4.5. 𝑹𝟐 performance comparison 521 

 522 

Figure 8. 𝑹𝟐 Performance comparison among PM concentration schemes 523 

Figure 8 shows the 𝑅2 performance comparison among proposed seq-2seq LSTM model and 524 
compared with existing PM concentration prediction schemes like STA-ResCNN, CNN-LSTM and 525 
LSTM. It shows the MAE of proposed and existing schemes for PM 2.5 and PM 10, and the results 526 



 

 

show that the proposed scheme attained high 𝑅2 compared to others. PM concentration data may have 527 
irregular time intervals between observations due to factors such as sensor sampling frequency or data 528 
collection schedules. The proposed model can handle irregular time intervals effectively, allowing 529 
them to maintain predictive accuracy without requiring interpolation or resampling of the data. This 530 
flexibility in handling irregular time intervals contributes to higher 𝑅2 values. As well as it is known 531 
for its capability for generalizing well to unknown data. By capturing initial data patterns, it can make 532 
predictions accurately even on data points not seen during training, leading to 𝑅2 values on test or 533 
validation datasets. For the above reasons, the proposed scheme attained better performances 534 
compared to others. 535 

The proposed model offers significant advantages in air pollutant concentration prediction, exhibiting 536 
improved accuracy and strong predictive capability compared to existing models. By integrating 537 
advanced techniques such as Modal Autoformer and Seq-2Seq LSTM, the model achieves 538 
comprehensive forecasting by capturing detailed variations in atmospheric conditions. However, 539 
computational complexity and potential challenges in model interpretability may limit its scalability 540 
and utility in decision-making processes. The limitation of the research is its dependence on the Indian 541 
air quality dataset, which could limit the model's generalizability to regions with different atmospheric 542 
conditions and pollutant sources. As compared to the current models results, the developed research 543 
model has gained lower RMSE and MAE, and better R2 results. However, there is potential to 544 
improve the results by capturing variations in concentrations of PM. The obtained results indicate that 545 
the research model's predictive capability could slightly reduce in highly or extreme dynamic weather 546 
conditions. Additionally, the computational complexity of integrating Modal Auto-former and Seq-547 
2Seq LSTM networks, along with ABFO optimization, could pose challenges for real-time 548 
applications in resource-constrained environments. Additionally, the model's performance could be 549 
perceptive to the quality and integrity of input data, requiring robust preprocessing and handling of 550 
missing values for accurate predictions. Addressing these limitations through further research and 551 
refinement could enhance the model's applicability in real-world air quality forecasting scenarios. 552 

5. CONCLUSION 553 

This research presented a novel system for predicting PM2.5 and PM10 concentration levels 554 
by combining a Modal Autoformer with the Seq-2Seq predictive model. The Seq-2Seq model 555 
employed sequential learning and square transformation methods to improve accuracy in 556 
concentration prediction, while the integration of a Modal Autoformer capture subtle variations in 557 
atmospheric conditions. The developed model optimized by the ABFO algorithm exhibited enhanced 558 
performance relative to conventional techniques. The optimized research model was validated through 559 
extensive testing with Air Quality Data from Kaggle repository. The results demonstrated the model's 560 
potential for accurate forecasting of PM2.5 and PM10 concentrations with significant implications for 561 
air quality management and public health activities. The Proposed seq-2seq LSTM model achieved 562 
10.211 RMSE for PM2.5, 10.321 RMSE for PM10, 5.641 MAE for PM2.5, 5.764 MAE for PM10, 563 
0.976 R2 for PM2.5, and 0.945 R2 for PM10. The achieved results demonstrated the proposed 564 
model's superiority in PM2.5 and PM10 concentration prediction compared to existing methods. This 565 
was evidenced by lower RMSE and MAE values, alongside higher R² scores, signifying enhanced 566 
accuracy and predictive power.  567 

In future, the research will investigate additional enhancements to the predictive model, such as 568 
incorporating attention mechanisms or exploring alternative deep learning architectures to capture 569 
complex patterns in the data more effectively. The research will focus on improving the 570 
generalizability by evaluating various datasets with different atmospheric conditions. Further the 571 
research will address the data quality issues with advanced preprocessing methods and the model can 572 
be optimized with advanced optimization technique for enhancing overall prediction accuracy. 573 
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