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Abstract 

Industrial sector is regarded as the main source of carbon 
dioxide emission, and prior studies have mostly examined 
the effects of carbon reduction policies on the 
competitiveness of industries. However, whether and how 
industrial competitiveness affects carbon emission 
intensity (CEI) remains unclear. We improve the traditional 
Environmental Kuznets Curve (EKC) and introduce 
industrial life cycle characteristics into the model. 
Additionally, we empirically investigate the impact 
mechanism of industrial competitiveness on CEI based on 
the panel data of 30 provinces in China from 2008 to 2019. 
The results show that: (1) Improving industrial 
competitiveness can significantly reduce CEI, in which 
outward foreign direct investment (OFDI) has a partial 
mediating role. (2) regional heterogeneities exist in the 
carbon mitigating effect of the industrial competitiveness, 
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as it is larger and significant in the Northeast and West, but 
it is not significant in the East and Central. (3) The 
demarcation point between the investment-driven stage 
and the innovation-driven stage is -0.6993, and the 
demarcation point between the innovation-driven stage 
and the wealth-driven stage is -0.2776. (4) The carbon 
reduction effect of the industrial competitiveness is larger 
and significant in the investment-driven stage and the 
innovation-driven stage, but it is not significant in the 
wealth-driven stage. Accordingly, for countries in the 
world, improving industrial competitiveness and then 
realizing industrial upgrading is an effective way to reduce 
carbon emission intensity. 

Keywords: industrial competitiveness; carbon emission 
intensity; outward foreign direct investment (OFDI); 

Reducing carbon emission intensity (CEI) has emerged as a 
crucial approach to foster the sustainable and high-quality 
growth of China's economy, and accomplish the objective 
of "double carbon", which means the carbon emission will 
peak by 2030 and become carbon emission neutral by 
2060. Since the Reform and Opening Up, China's long-term 
and rapid economic development has been brought, which 
is widely recognized as the "Chinese miracle". However, 
the economic mode has been overly dependent on factor 
investment and energy consumption during this past 
period, inevitably, it has resulted in some problems such as 
environmental degradation and carbon emission 
exacerbating. Nowadays, China is faced with a dual 
challenge that industrial mode is urgently needed 
transformed, and energy saving and carbon reduction is 
heavily loaded, and all sectors from societies attach great 
importance to such problems and consider methods to 
mitigate carbon emissions intensity and transform the 
industrial modes. Moreover, some official actions and 
relevant measures have been started first, China’ 
government sector has incorporated carbon intensity into 
the management framework of macroeconomic policy 
objectives. In the "14th Five-Year Plan", China has set the 
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goal of an 18% reduction in carbon intensity. And at the 
Climate Ambition Summit, president Xi has proposed that 
China's CEI would decline by almost 65% by 2030, in 
comparison to the levels recorded in 2005. 

Industry is the key sector for energy saving and emission 
reduction (Feng et al. 2018). In 2020, China's energy 
consumption from industrial sector accounted for more 
than 65% of the country's total energy consumption. 
Industrial carbon reduction is the key path to achieve the 
target of carbon dioxide peaking in 2030, so the reduction 
of industrial CEI need be given top priority. According to the 
"2020 Annual Report on the Progress of the Global Carbon 
Market", the time required for industries to achieve carbon 
neutrality is ranked as follows: electricity < transportation 
< construction < industry, which shows that achieving 
industrial carbon neutrality is a process of long-term 
strategic deployment. 

Industrial competitiveness is the combined capacity of 
industry to compete for factor inputs and achieve 
economic efficiency. Industrial competitiveness can help 
improve the efficiency of carbon reduction, so it is 
necessary to clarify the impact of industrial 
competitiveness on the carbon intensity. However, existing 
literature does not provide an in-depth discussion and 
answer. According to the model of "Diamond Theory" of 
Michael E. Porter, industrial competitiveness is formed by 
four main factors: factors of production, circumstances of 
necessity, and industries that are associated and provide 
assistance, corporate strategy and corporate structure and 
peer competition, as well as two auxiliary factors: 
government behaviors and opportunities. The interaction 
between these factors has a certain comprehensive effect 
on the magnitude of carbon emissions. 

The impact of industrial competitiveness on carbon 
intensity can be described by the extended Environmental 
Kuznets Curve (EKC), and the curve can correspond to the 
four stages of an industry's life cycle. Considering the 
nonlinear relationship between industrial competitiveness 
and the carbon intensity, we further develop the model of 
double-threshold regression to explore the demarcation 
point between the stages. We construct an evaluation 
indicator system of comprehensive industrial 
competitiveness, including scale competitiveness, 
performance competitiveness, innovation competitiveness 
and ecological competitiveness, and adopts the factor 
analysis method to measure the industrial competitiveness 
index. China has committed to the world to reach the point 
of maximum carbon emissions by 2030 and completely 
eliminate carbon emissions by 2060. This study aims to 
enhance the effectiveness of China's carbon reduction 
efforts and effectively accomplish the "double carbon" 
objective. To do this, the research focuses on analyzing 
panel data from 30 provinces in China between 2008 and 
2019. The research methodology used in this article is 
shown in Figure 1. 

The main research question of this paper is the impact of 
industrial competitiveness on CEI, and the main marginal 
contributions are as follows:(1) This paper extends the 
application of the Environmental Kuznets Curve (EKC) and 

confirms the significant contribution of industrial 
competitiveness to the reduction of CEI. (2) We find that 
industrial competitiveness reduces CEI through foreign 
direct investment. (3) We calculated the demarcation 
points of different stages of the Environmental Kuznets 
Curve (EKC). Based on these cut-off points, we can 
accurately grasp the stage of industrial development 
corresponding to each region in China, so that we can 
adopt targeted policies to improve the efficiency of carbon 
emission reduction and help China realize the "double 
carbon" goal. Other countries can also follow the research 
paradigm provided in this paper to dynamically grasp the 
corresponding stage of industrial development in their 
regions, adopt correct low-carbon development strategies, 
and improve the efficiency of global emission reduction. 

 

Figure 1 Flowchart of the research process 

1. Literature review 

1.1. Research status of literature  

Regarding the influencing factors of CEI, national scholar 
and foreign scholar have conducted a lot of research, as 
shown in Table 1. Studies have shown that economic 
growth is the main factor influencing the reduction of CEI 
(Zhang et al. 2014; Pan et al. 2019). Economic 
agglomeration can promote CEI (Yan et al. 2022), but digital 
economy can significantly reduce CEI (Chen, 2022). From 
the perspective of production factors, Zhang et al. (2020) 
using the panel data from prefecture-level cities in China, 
and Cheng et al. (2018) using panel data from 30 provinces 
in China over the years 1999 to 2015, they all found that 
technological progress plays an important role in reducing 
CEI. Chishti et al. (2023) found that positive shocks to 
human capital have a favorable impact on the efficiency of 
sustainable development. Li et al (2024) found that female 
executives would contribute to the reduction of energy 
consumption per unit of output of the firm through green 
innovation. Wang et al. (2020) found that improving 
management level and reducing industrial intermediate 
input can significantly reduce CEI. In addition, Liang et al. 
(2019) found that innovation indicators such as the number 
of patent authorizations and foreign direct investment 
have a significant negative impact on CEI. Liu et al. (2022) 
used the data of 30 provinces in China from 2000 to 2019, 
they found that green innovation inhibits CEI. Zaman et al. 
(2023) demonstrated that green technology is a key 
determinant of green economic growth by studying the G7. 
And Li et al. (2022) found that the application of industrial 
robots promotes carbon intensity reduction. From the 
perspective of related and supporting industries, 
promoting financial development and the increase of 
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financial geographic density will be accompanied by the 
marginal decreasing trend of CEI (Wang & Zheng, 2021; Yan 
et al. 2022). From the perspective of corporate strategy, Ali 
et al. (2022) found that the consumption of renewable 
energy and non-renewable energy have a positive 
influence of 0.27% and 0.75% on CEI. In addition, adopting 
carbon reduction technologies, reducing energy intensity 
(Zhang et al. 2016; Yan et al. 2018; Jiang, 2016), adopting 
alternative energy (Vujović et al. 2018), improving the 
energy structure (Dong et al. 2016), establishing an inter-
regional cooperation mechanism on carbon reduction, 
expanding foreign trade (Wang & Zheng, 2021), improving 
energy efficiency (Cheng et al. 2013; Ren et al. 2022) and 
participating in global value chains (Liu & Zhao, 2021) are 
all effective ways to inhibit CEI. From a corporate structure 
standpoint, distortions in the industrial structure would not 
only result in a rise in local CEI (Corporate Environmental 
Impact), but also generate reverse spillover effects to 
neighboring regions (You et al. 2022). The modernization 
of the industrial infrastructure has a substantial impact on 
the lowering of carbon emissions intensity (CEI).(Wang & 

Zheng, 2021), and the spillover effect of the industry 
structure is significant (Song et al. 2020). From the 
perspective of government behavior, the increase in 
urbanization rate and population density has a positive 
effect on CEI (Dong et al. 2016; Xu et al. 2022). Apart from 
this, new urbanization construction (Han et al. 2019), 
digital city construction (Yang et al. 2022), smart city 
construction (Liu et al. 2022), carbon tax policy (Liu et al. 
2021; Fu et al. 2021), carbon trading system (Tang et al. 
2021; Xuan et al. 2020; Yu & Luo, 2022), environmental 
regulation (Zhang et al. 2022), and the regional 
cooperation strategy of energy conservation and emissions 
reduction (Cheng et al. 2013) are all conducive to reducing 
CEI. 

Some scholars have studied regional heterogeneity, 
dynamic evolution and influencing factors of the CEI of 
agriculture (Pang et al. 2020; Cui et al. 2022; Zang et al. 

2022), traffic department (Huang et al. 2022; Liu et al. 
2021; Chen et al. 2022), business (Nag & Parikh, 2000). In 
addition, Azam et al. (2021) have compared the relative 
performance of the industrial, service, and agricultural 
sectors in reducing carbon, and they found that the 
economic efficiency and energy efficiency of the industrial 
sector are above the average. But there is a paucity of 
literature that limits carbon intensity to the industrial 
sector and examines the factors that influence it. Chen et 
al. (2018) found that the agglomeration of industrial 
enterprises is conducive to reducing industrial CEI. Yu et al. 
(2018) based panel data from 1995 to 2015 and found that 
there is β conditional convergence of CEI convergence of 
24 industrial sectors in China will be influenced by factors 
such as capital intensity and per-capita value addition. Zeng 
et al. (2022) found that the number of R&D personnel and 
the dependence of foreign trade have a significant negative 
effect on industrial CEI, while urban population density has 
a positive effect on industrial CEI. Fang et al. (2022) found 
that digitalization significantly reduces the CEI of 
manufacturing industry. 

1.2. Summary of literature 

In summary, research on the influencing factors of CEI is 
relatively extensive. There are analyses from different 
perspectives, including economic considerations, 
production factors, linked and supporting industries, 
business strategy, and corporate structure are all 
important components to consider, and government 
behavior. Existing literature has neglected the two factors 
of demand conditions and opportunities, which are difficult 
to be measured by separate indicators. But the above 
factors have two-way effect on each other, forming a 
diamond system of industrial competitiveness. And the 
existing literature ignores the role of OFDI in the 
benchmark regression. In addition, in order to better 
explain the conclusions of this work, we extend the original 
EKC model. 

 

Table 1  Literature Analysis on Factors Affecting CEI 

The Influencing 

Factors of CEI 

Economic Factors 
economic growth, economic agglomeration, digital economy, circular 

economy 

Production Factors 

technological progress, human capital, management level, industrial 

intermediate input, patent authorizations, foreign direct investment, 

green investment, green innovation, green technology, the application of 

industrial robots, 

Related and Supporting Industries financial development and financial geographic density 

Enterprise Strategy, Corporate 

Structure, Peer Competition 

renewable energy, carbon reduction technologies, energy intensity, 

alternative energy, energy structure, an inter-regional cooperation 

mechanism on carbon reduction, foreign trade, energy efficiency, global 

value chains; industrial structure 

Government Behavior 

urbanization rate, population density, new urbanization construction, 

digital city construction, smart city construction, carbon tax policy, 

carbon trading system, environmental regulation, the regional 

cooperation strategy 

 

Given this, study analyzes the correlation between 
industrial competitiveness and industrial CEI from a holistic 
standpoint. We take the panel data of 30 provinces in China 

as the research object to empirically study the impact of 
industrial competitiveness on industrial CEI, demonstrating 
the effect of industrial competitiveness on industrial CEI, 
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extending the EKC model, and analyzing the profile effects 
of the OFDI. At last, We provide policy recommendations 
for the reduction of industrial CEI from the perspective of 
upgrading regional competitiveness. 

2. Theoretical analysis and research hypothesis 

2.1. Industrial Competitiveness and CEI 

According to the Environmental Kuznets Curve (EKC), the 
environment deteriorates with economic growth during 
the early phase of economic development, there is a 
positive correlation between economic growth and 
environmental improvement, after a certain stage of 
development. By defining environmental upgrading as a 
reduction in carbon intensity (Tian et al. 2020), the carbon 
intensity also shows an inverted U-shaped EKC curve. Since 
technological progress is generally a gradual process that 
evolves over time, the inverted U-shaped curve is 
determined by four stages S1, S2, S3, and S4, as shown in 
Figure 2 below. Since economic growth is also a function of 
time, the two inverted U-shaped curves are not only 
applicable to the time scale but also to the economic scale. 

More than 84% of energy consumption and carbon 
emissions come from the industrial sector (Yang, 2015). 
During the first phase of industrialization, the expansion of 
scale requires the consumption of great amount of energy 
to enhance competitiveness, and there exists a direct 
relationship between economic competitiveness and 
carbon emissions. In the later stage of industrial 
development, improving industrial competitiveness 
depends mainly on technological progress, and energy-
intensive industries represented by coal are at risk of asset 
stranding, resulting in a decline in carbon emissions. That 
is, there is a negative link exists between industrial 
competitiveness and carbon emissions. Industrial 
competitiveness and total industrial carbon emissions 
show an inverted "U" curve. 

Industrial CEI is determined by both industrial carbon 
emissions and industrial economic growth. In the early 
stage of industrial development, both economic growth 
and technological progress contribute to carbon emissions. 
But industrial competitiveness have been driven more by 
the progress of carbon-intensive technology, carbon 
intensity has risen. In the late stage of industrial 
development, with the upgrading of industrial 
competitiveness through technological progress, industrial 
carbon emission decreases and the industrial economy 
grows, carbon intensity decreases. In the middle stage of 
industrial development, the high demand for energy and 
the consumption structure of coal-dominated energy lead 
to high industrial growth at the cost of high energy 
consumption and emissions. Accompanied by rising 
industrial competitiveness, industrial carbon emissions and 
the industrial economy are rising. However, the impact of 
inhibitory factors on reducing carbon emissions is less 
significant compared to the impact of economic expansion 
on increasing emissions (Zhang & Da, 2015), that is the CEI 
decreases. The calculated results of industrial CEI from 
1997 to 2019 also show that the CEI of each region has a 
decreasing trend, with different degrees of upward 
fluctuations in 2003 and 2008.This dynamic character is 

consistent with the energy conservation and and industrial 
restructuring policies of the Chinese government since the 
new century. Overall, industrial competitiveness and 
industrial CEI show an inverted "U" curve. 

The traditional EKC model is only applicable to economic 
development and carbon emission levels. Therefore, based 
on the above analysis, this study extends the inverted "U" 
curve law of total industrial carbon emission and industrial 
CEI to the industrial competitiveness scale, forming an 
improved EKC model. Compared with the traditional EKC 
model, the improved EKC model is no longer limited to the 
changes in carbon emissions intensity over time and 
economic development, but portrays the changes in 
carbon emissions intensity with the development of 
industrial competitiveness. The improved EKC model is able 
to visualize the inherent complex relationship between CEI 
and time evolution, economic growth, technological 
progress, and energy consumption with curve diagrams. In 
the stage of S1, the growth of industrial CEI is mainly driven 
by the progress of carbon-intensive technology. In the 
stage of S2, technological progress can mitigate the growth 
rate of industrial CEI to a certain extent, but economic 
growth plays a leading role in reducing industrial CEI. In the 
stage S3 and S4, industrial CEI is mainly driven by 
technological progress in carbon emission reduction. 
Combined with Porter's "four-stage theory" of industrial 
competitiveness development based on industrial life cycle 
theory, S1, S2, S3, and S4 are correspond to the factor-
driven stage, investment-driven stage, innovation-driven 
stage and wealth-driven stage in this study. Due to the 
limitation of data resources in China, the industrial 
competitiveness and industrial CEI discussed below are in 
the stage of S2, S3 and S4. Industrial CEI decreases with 
economic growth and technological progress. Therefore, 
this paper proposes:  

Hypothesis H1: The upgrading of industrial 
competitiveness can reduce CEI. 

Hypothesis H2: The influence of industrial competitiveness 
on CEI is nonlinear 

 

Figure 2 Inverted U-shaped Curve of CEI 

2.2. Industrial competitiveness, OFDI and CEI 

International industrial transfer is mainly the transfer of 
production, sales and even research and development of 
part of an industry from one economy to another by means 
of cross-economy direct investment, resulting in the 
migration of the spatial distribution of the industry. 
According to the theory of comparative advantage and 
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marginal industry expansion, sunset industries and 
marginal industries that already at a comparative 
disadvantage in its own country should be selected for 
outward foreign direct investment (OFDI), so as to promote 
the industrial transfer of the investing country, develop 
overseas markets and maximize profits. 

The gradient transfer theory points out that the degree of 
economic development of different countries and regions 
varies, and industries will be transferred from the high-
gradient countries to low-gradient countries. China's 
industry is transforming into an innovative and technology-
intensive industry, labor-intensive and resource-intensive 
industries that have lost their comparative advantage will 
be transferred overseas through OFDI. As the demand for 
raw materials for China's economic development increases 
sharply and the costs of domestic production rise rapidly, 
the development of China's resource-dependent industries 

is limited by the supply of factors of production. In order to 
break through the bottleneck of resource constraints, the 
chain of resource extraction and processing is transferred 
to the developing countries with mineral resources and 
energy. Relying on the rich mineral resources and relatively 
low factor prices in host countries, industrial enterprises 
with excessive energy use and significant emissions of 
pollutants and relatively weak capacity of technological 
innovation have gradually shifted to overseas, and it can 
guarantee the supply of China's natural resources and 
reduce the operating costs. For example, the mining 
industry has the dual non-green characteristics of limited 
internal energy conservation and external destruction of 
resource and environment, and it is a typical "marginal 
industry" in China's outward FDI. 

 

Table 2. Evaluation Index of Industrial Competitiveness 

Total index 
First-level 
Indicators 

Second-level Indicators Calculation formula Symbols 

Competitivenes

s of Industrial 

Enterprises 

above Scale 

Scale 

Competitivenes

s 

number of industrial enterprises (units) —— X1 

employment of industrial enterprises (ten 

thousand people) 
—— X2 

industrial added value(billion yuan) —— X3 

industrial sales output value (billion yuan) —— X4 

total fixed assets(billion yuan) —— X5 

total utilization of foreign capital (billion yuan) foreign capital X6 

current assets turnover (billion yuan) —— X7 

Performance 

Competitivenes

s 

total profit (billion yuan) —— X8 

revenue from main business (billion yuan) —— X9 

total assets contribution rate (%) 
( total profit + total tax + interest payments ) / 

average total assets 
X10 

cost profit rate (%) total profit / total cost X11 

total labor productivity (billion yuan / ten 

thousand people) 

industrial added value/average of all 

employees 
X12 

asset-liability ratio (%) liabilities/assets X13 

Innovation 

Competitivenes

s 

R&D investment intensity (%) R&D funding / main business income X14 

percentage of R&D personnel (%) 
number of R&D personnel/number of 

industrial employees 
X15 

R&D cost (%) 
new product development funds /main 

business income 
X16 

patent approval rate (%) 
number of valid invention patents/patent 

applications 
X17 

number of new product projects (items) —— X18 

export proportion of new product (%) 
new product export sales income / new 

product sales revenue 
X19 

Ecological 

Competitivenes

s 

investment in waste water treatment (ten 

thousand yuan) 

industrial waste water treatment projects 

completed investment 
X20 

investment in waste gas treatment (ten 

thousand yuan) 

industrial waste gas treatment projects 

completed investment 
X21 

total investment in solid waste treatment (ten 

thousand yuan ) 

industrial solid waste treatment projects 

completed investment 
X22 

Note: indicates that the second-level indicators are not required to calculate the formula, and can be obtained directly 

 

The behavior of industrial transfer above will have a 
significant effect on China's environment. Through the 
external expansion of industries, the overall resource 
consumption of domestic industries can be improved, 
thereby improving the quality of the environment. OFDI 

has brought green spillovers to China and improved air 
pollution (Zhou et al. 2019; Zhou & Li, 2021). OFDI improves 
China's total factor energy efficiency and reduces carbon 
emissions (He et al. 2023). Besides, increasing OFDI has a 
catalytic effect on China's economy, improves total factor 
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economic efficiency (Pan et al. 2022) and promotes the 
growth of total factor productivity (Pan et al. 2020). OFDI 
reduces China's carbon emissions while bringing about 
economic growth, thereby reducing carbon intensity. In 
addition, the greater the industrial competitiveness of a 
region, the greater its capacity for OFDI. Accordingly, this 
paper proposes: 

Hypothesis H3: Industrial competitiveness affects CEI 
through OFDI. 

3. Research design 

3.1. Model setting 

To test the relationship between industrial 
competitiveness and CEI, the model of linear regression 
equation (1) and the model of double panel threshold 
regression equation (2) are developed:  

it 0 1carbon compet controlsit it i t it     = + + + + +  (1) 

( ) ( )

( )

1 1 2 2 1

3 2

carbon compet compet

compet controls

it it it it it

it it it i it

I q I q

I q

    

    

=  +  

+  + + +  

(2) 

Among them: carbonit is the CEI, competit is the industrial 
competitiveness, controls are a set of control variables. I(·) 
is an indicator function, when the conditions in 
parentheses are satisfied, the value is 1, otherwise 0. qit is 

the threshold variable of industrial competitiveness, 1 and 

2 is the threshold value to be estimated. µi represents the 

individual fixed effect, t represents the time-fixed effect, 

and it represents the random disturbance. 

To test the mechanism of industrial competitiveness 
affecting CEI, the mediation model of "chain reaction" is 
constructed on the basis of equation (1). Equation (3) takes 
OFDI as the explained variable used to assess the 
immediate impact of industrial competitiveness on 
outward foreign direct investment (OFDI).. Equation (4) is a 
model that introduces OFDI into the baseline model. 

0 1OFDI compet controlsit it it i t it     = + + + + +  (3) 

0 1 2carbon compet OFDI controlsit it it it i t     = + + + + +  (4) 

3.2. Variable settings and measurements 

3.2.1. Measurement of industrial competitiveness 

Drawing on the research of He and Zhang (2018), we 
constructs an evaluation indicator system of 
comprehensive industrial competitiveness, including scale 
competitiveness, performance competitiveness, 
innovation competitiveness and ecological 
competitiveness. Under the framework of the first-level 
indicators, the specific indicators should not only reflect 
the characteristics of the first-level indicators, but also the 
data availability of second-level indicators is considered. 
The precise indicators are shown in Table 2 below: 

After establishing the evaluation index system of industrial 
competitiveness, it is necessary to assign weights to each 
indicator scientifically. Although the large number of 
indicators can help us measure regional industrial 
competitiveness more accurately, it increases the 
complexity of statistical processing. Especially the 
correlation covariance among indicators, which carries a 
lot of repetitive information and is not conducive to 
measurement. In order to compress the indicators and 
minimize the information loss, the factor analysis method 
of panel data in multivariate statistics is used to extract 
common factors from the variable group, thus reducing the 
number of variables to achieve the purpose of dimension 
reduction. 

The original data is standardized to eliminate the 
differences in magnitudes and dimensions between 
variables, and then KMO and Bartlett Sphericity tests are 
performed to determine whether the indicators are 
appropriate for doing factor analysis. The findings are 
shown in Table 3. The KMO score of 0.883 suggests that 
factor analysis is appropriate to be performed. Bartlett is to 
test whether the data come from the population subjected 
to a multivariate normal distribution. The sig value is 
0.000<0.05, which indicates that the data come from the 
population subjected to a multivariate normal distribution, 
and there are common factors among the indicators, which 
is suitable for further analysis. 

Table 3. KMO and Bartlett Tests 

KMO Sampling Suitability Quantity 0.883 

Bartlett Sphericity 

Test 

Approximate Chi-square 3752.562 

df 231 

sig. 0.000*** 

 

Table 4. Interpretation of the Total Variance 

Component 
Initial Eigenvalue Extraction of the Square Sum of Loads 

Total Variance Proportion Cumulative % Total Variance Proportion Cumulative % 

1 9.756 44.347 44.347 944.753 42.943 42.943 

2 3.167 14.394 58.741 282.490 12.840 55.784 

3 2.020 9.180 67.920 235.987 10.727 66.510 

4 1.757 7.985 75.905 206.685 9.395 75.905 

 

According to the correlation coefficient matrix of the 
variables is used to pick the principal component approach 
for extracting the key components. From the variance of 
the principal factors (table omitted), it can be seen that the 
common degree of all the variables are above 60% and the 
majority of them are above 80%, which indicates that the 
retrieved common factors provide a robust explanatory 

capability for each variable and can represent the 
information to be conveyed by the first-level indicators 
more accurately. 

Based on the principle of total variance explained and 
cumulative percentage of variance over 75%, four common 
factors are extracted in this paper (Table 4). Among them, 
the first common element has a variance contribution rate 
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of 44.347%, the second common factor has a variance 
contribution rate of 14.394%, the third common factor has 
a variance contribution rate of 9.180%, and the fourth 
common factor has a variance contribution rate of 7.985%. 
The initial eigenvalue is greater than 1, which can represent 
the most of the information. They are the most important 
factors among the extracted common factors and are more 
important for the evaluation of industrial competitiveness. 

According to the principle of 0.5, the interpretation of each 
indicator in the component matrix on various factors is not 
significant. To better explain the practical meaning of each 
factor, it is necessary to revolve the component matrix. And 
the variance maximization orthogonal rotation of the initial 
factor is selected. It can be seen from the rotated 
component matrix (table omitted) that the common factor 
F1 has a high load on X1, X2, X3, X4, X5, X6, X7, which 
mainly reflect the overall strength of the enterprise scale, 
internal and external capital turnover, so F1 is named the 
scale factor. The common factor F2 has a high load on X14, 
X15, X16, X17, X18, X19, and these indicators mainly reflect 
the innovation ability of enterprises, so F2 is named the 
innovation factor. The common factor F3 has a high load on 
X8, X9, X10, X11, X12, X13, which mainly reflect the 
business performance of enterprises, so F3 is named the 
performance factor. The common factor F4 has a high load 
on X20, X21, X22, which mainly reflect the external 
environmental governance of enterprises, so F4 is named 
the ecological factor.  

The regression method is used to calculate the scores of 
each common factor, and then the scores are weighted and 
averaged with the variance contribution ratio of the 
eigenvalues of the rotated common factors as the weights, 
so as to calculate the comprehensive level of regional 
industrial competitiveness from 2008 to 2019. And the 
scores are calculated by the formula: 

71 2
1 2 7

1 2 7 1 2 7 1 2 7

...
... ... ...

rr r
F F F F

r r r r r r r r r
= + + +

+ + + + + +  

(5) 

The results of industrial competitiveness index in China's 
regions are as follows in Table 5. It can be seen that China's 
regional industrial competitiveness is uneven, with 
differences in competitive advantages. The provinces with 
stronger industrial competitiveness include Jiangsu, 
Shandong, Guangdong, Zhejiang, Henan, Shanghai and 
Fujian, and they are mainly concentrated in the eastern 
region. The provinces with weaker industrial 
competitiveness include Hainan, Ningxia, Qinghai, 
Guizhou, Guangxi, Gansu, Yunnan, Jilin, Chongqing and 
Xinjiang, and they are mainly concentrated in the western 
region. China's regional industrial competitiveness shows a 
trend of high in the East and low in the West, and a 
tendency for inter-provincial differences to continue to 
expand. 

The results of measuring the industrial competitiveness 
index of each region in China are shown in Table A1 in the 
appendix. As can be seen from the table, China's regional 
industrial competitiveness is uneven, and there are 
differences in competitive advantages. Provinces with 
strong industrial competitiveness include Jiangsu, 

Shandong, Guangdong, Zhejiang, Henan, Shanghai and 
Fujian, and are mainly concentrated in the eastern region. 
Provinces with weaker industrial competitiveness include 
Hainan, Ningxia, Qinghai, Guizhou, Guangxi, Gansu, 
Yunnan, Jilin, Chongqing and Xinjiang, and are mainly 
concentrated in the western region. China's regional 
industrial competitiveness shows a trend of higher in the 
east and lower in the west, with inter-provincial differences 
continuing to widen. 

3.2.2. Measurement of CEI 

CEI refers to the carbon dioxide emissions produced for 
each unit of industrial GDP. It quantifies the connection 
between the economy and carbon emissions. If a nation's 
economy is experiencing growth while the carbon dioxide 
emissions produced per unit of added value are decreasing, 
it suggests that the country is adopting a low-carbon 
development approach. The carbon emissions per unit of 
GDP is a suitable metric for assessing national energy policy 
and the efficacy of carbon reduction efforts (Sun, 2005). 
Existing scholars generally combine the factors of carbon 
emission with the data of energy consumption to estimate 
CO2 emissions (Zhang et al. 2016; Li et al. 2020). The CEADs 
team conducted a study where they analyzed 602 coal 
samples from 100 major coal mining regions in China. They 
discovered that the emission factors suggested by the IPCC 
are often overestimated compared to the real emission 
factors. Given that using energy statistics to estimate CO2 
emissions has a series of potential problems, such as the 
limited inclusion of energy sources and rough calculations. 
The carbon emissions data in this study are obtained 
directly from CEADs, which contains multi-scale carbon 
emissions data on energy consumption in China and other 
developing economies, covering 47 economic sectors, and 
emissions from 17 fossil fuel combustion-related 
processes. Finally, The carbon emissions per unit of 
industrial added value are used to characterize the 
industrial CEI. 

The results of carbon intensity measurements are 
consistent with those of existing studies. Carbon emission 
reduction in China's green, low-carbon and recycling 
economy presents inter-regional differences, and the 
spatial distribution presents obvious non-equilibrium 
characteristics with a trend of progressive evolution (Di et 
al. 2023). Provincial CEI has obvious spatial agglomeration 
characteristics (Wang & Zheng, 2021; Liang et al. 2019; 
Cheng et al. 2013), and although it decreases year by year, 
the interregional differences remain stable (Wang et al. 
2019; Zhang & Fan, 2022), showing a trend of western 
strength and eastern weakness (Wang & Zheng, 2021). 

3.2.3. Measurement of OFDI 

OFDI has an indirect mechanism. Considering the high 
volatility of the flows of OFDI, and it prone to missing and 
omission. Apart from this, the residual value of the flows of 
OFDI in the previous period may continue to influence its 
green spillover effects. Therefore, we choose the stock of 
OFDI (non-financial) to measure the level of OFDI, which is 
converted into billions of yuan using the exchange rate 
between the US dollar and the RNB (annual average), and 
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adjusted for GDP deflators (2008 as the base period) and 
logarithm treatment.  

3.2.4. Measurement of Control Variables 

(1)Energy price (EP): The price effect is controlled by using 
the fuel and power price index in the purchasing price index 
of industrial producers with the base period of 2008. In 
theory, the higher the price of energy is bound to bring 
about an increase in the production costs of industrial 
enterprises. To reduce the cost of energy use caused by the 

price rise, enterprises need to continuously increase 
research and development and enhance the level of 
equipment. Thus forcing industrial enterprises to make 
technological innovations in green production. The 
optimization of production and management processes has 
improved the efficiency of energy, with the continuous 
improvement of the level of technology to reduce the 
carbon emissions, reducing CEI. 

 

Table 5. Results of Descriptive Statistics 

Variable Type Variable  Symbol Sample Size Mean Value Standard Deviation Minimum Maximum 

Explained Variable Carbon 360 0.055 0.040 0.009 0.196 

Explanatory Variable Compet 360 0.000 0.616 -1.081 1.742 

Mediator Variable OFDI 360 14.318 1.770 8.137 18.536 

Control Variables 

EP 360 4.631 0.102 4.224 4.924 

EE 360 7.541 3.020 0 11.600 

LIR 360 0.428 0.375 0.048 2.590 

GOV 360 0.253 0.112 0.100 0.758 

KNS 360 0.001 0.001 0.001 0.003 

Table 6. Results of the Root Per Unit Test 

Variables LLC-test IPS-test ADF-Fisher-Chi-square Conclusion 

Carbon -16.490*** (0.000) -3.272*** (0.001)  102.398*** (0.001)  stationary 

Compet -8.333*** (0.000) -6.174*** (0.000) 154.527*** (0.000) stationary 

OFDI -10.987*** (0.000) -4.2481*** (0.000) 105.330*** (0.000) stationary 

EP -10.861*** (0.000) -7.638*** (0.000) 392.757*** (0.000) stationary 

EE -7.364*** (0.000) -7.768*** (0.000) 286.597*** (0.000) stationary 

LIR -14.939*** (0.000) -2.493*** (0.006) 127.112*** (0.000) stationary 

GOV -6.259*** (0.000) -2.657*** (0.004) 111.701*** (0.000) stationary 

KNS -4.906*** (0.000) -2.548*** (0.000) 86.662** (0.014) stationary 

Note: *, * * and * * * represent the statistical significance of 10 %, 5 % and 1 % respectively; p values for each statistic are in 

parentheses 

 

(2) Energy endowment (EE): Raw coal production is used 
to control the effect of resource endowment. Regional 
resource endowment is an important factor affecting CEI 
(Zhao et al. 2011). The more energy-rich the region, the 
lower the cost of energy. The local industrial enterprises 
will have a kind of inertia, there is insufficient demand and 
impetus for transformation and upgrading and 
technological progress. And they are more inclined to use 
their comparative advantages to develop some industrial 
primary products with strong energy dependence and low 
added value. They gradually form a mode of high carbon 
emission development, which have an adverse impact on 
the reduction of regional CEI. 

(3)The ratio of light and heavy industries (LIR): The ratio of 
the aggregate production value of light and heavy 
industries above the scale is used to control the structural 
effect. High-carbon industries mainly come from heavy 
industries, and the CEI of heavy industry is much larger 
(more than 10 times) than that of the light industry. 
Reducing the CEI (Carbon Emissions Intensity) is 
challenging in regions with a heavy industrial structure, 
high energy consumption, significant pollution, and a 
lengthy transformation and upgrading process. If the 
industrial structure of an area is characterized by a low 
level of heavy industries, minimal reliance on energy, 
minimal pollution, and a low CEI (Carbon Emissions Index). 

(4)The degree of government intervention (GOV):  The 
extent of government involvement is quantified by 
calculating the ratio of local government budgetary 
expenditures to GDP, which helps to regulate the impact 
of policies. When the market fails to effectively regulate 
the allocation of resource factors and their prices, the 
government steps in as a "visible hand" to intervene and 
regulate accordingly. This intervention helps improve the 
efficiency of resource allocation and stabilize the market 
for factor prices. It creates a favorable environment for 
enterprise development and has a positive impact on 
reducing the CEI. On the other hand, when the market 
runs smoothly and develops in a coordinated way, 
excessive government intervention will reduce the 
innovation vitality of industrial enterprises, which is not 
conducive to reducing CEI. 

(5) Knowledge spillover effect (KNS): The proportion of 
the number of teachers in higher education to the 
number of laborers is chosen as the proxy variable to 
control the knowledge spillover effect. A region with 
strong industrial competitiveness will have a positive 
external effect on the industrial enterprises in the 
surrounding areas, which is manifested as the knowledge 
spillover effect. Regions that undertake the spillover 
effects can reduce CEI through technological imitation, 
learning, and communication. 
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3.3. Data sources and processing 

The data in this study mostly originate from the China 
Industrial Statistical Yearbook, the China Science and 
Technology Statistical Yearbook, the Statistical Yearbooks 
of provinces, and the yearly statistics of industrial firms 
over a certain threshold available on the website of the 
National Bureau of Statistics. As the carbon emission data 
for the year 2019 has not been released yet, and there is a 
significant lack of relevant data for Tibet, this empirical 
analysis utilizes balanced panel data from 30 provinces 
(excluding Tibet, Hong Kong, Macao, and Taiwan) from 
2008 to 2019. And the missing data of the indicators in 
individual years are supplemented by interpolation or 
replaced by zero according to the actual situation. In order 
to reduce the sample fluctuation, the non-ratio data are 
logarithmically processed, and all the time-value variables 
are converted to 2008 as the price benchmark. Table 5 
displays the findings of descriptive statistics for the 
relevant variables. The findings of descriptive statistics 

reveal the discrepancy in CEI, industrial competitiveness 
and foreign direct investment in different regions of China 
is relatively large, which indicates that this study has 
certain practical significance. 

4. Empirical snalysis 

4.1. Stationarity test of panel data 

Before conducting empirical analysis on the panel data, it 
is necessary to ensure the stability of the data to avoid the 
possible "pseudo regression" in the subsequent regression 
analysis. The three tests of LLC, IPS and ADF-Fisher are used 
in this study. The original hypothesis is the existence of unit 
root. When the test results accept the original hypothesis, 
it means that the panel data is not stable. On the contrary, 
it means that the panel data is stable. The results of the 
tests are shown in Table 6 below, and all of them show 
smoothness. 

 

Table 7. Results of Benchmark Regression 

Variable (1) (2) (3) (4) (5) (6) 

Compet -0.023*** (-5.04) -0.023*** (-

5.02) 

-0.023*** (-5.00) -0.022*** (-4.76) -0.019*** (-

4.23) 

-0.017*** (-4.02) 

 EP —— -0.015 (-1.51) -0.015 (-1.50) -0.015 (-1.53) -0.018* (-1.92) -0.016* (-1.75) 

 EE —— —— 0.0001 (0.04) 0.0001 (0.15) 0.0002 (0.34) 0.0004 (0.71) 

LIR —— —— —— -0.010 (-1.51) -0.012** (-1.99) -0.008 (-1.28) 

GOV —— —— —— —— 0.117*** (5.65) 0.107*** (5.35) 

KNS —— —— —— —— —— -0.026*** (-5.37) 

_cons 0.066*** (38.48) 0.138*** (2.89) 0.138*** (2.88) 0.142*** (2.97) 0.138*** (3.02) 0.114** (2.60) 

time-fixed effect yes yes yes yes yes yes 

province-fixed 

effect 

yes yes yes yes yes yes 

N 360 360 360 360 360 360 

R2 0.359 0.363 0.363 0.368 0.426 0.475 

Note: *, **, and *** represent the statistical significance of 10%, 5%, and 1% respectively; Z-statistic for each statistic are in 

parentheses, as below. 

 

4.2. Benchmark regression 

Before estimating the panel linear regression, first of all, we 
should determine whether to choose the mixed-effect 
model, the choice between the random-effect model and 
the fixed-effect model is determined by the use of the F-
test and the Hausman test. When the F-test yields a 
significant result, it indicates that the fixed-effect model is 
superior than the mixed-effect model. When the Hausman 
test passes the original hypothesis, the random-effects 
model is chosen, otherwise, the fixed-effects model is 
chosen. The results showed that the P-value of the F-test is 
0.0000, it means that the fixed-effect model is selected. the 
F value of the Hausman-test is 28.18, and the 
accompanying probability is P=0.0002, it means that the 
original hypothesis is rejected and the fixed-effect model is 
selected. At the same time, in order to control the impact 
of time differences on the regression results, the time-fixed 
effect is added, and the two-way fixed effect model is used 
for regression analysis. As shown in Table 7, column (1) is 
the regression result without adding control variables, 
column (2)-(6) is the regression result with adding control 
variables one by one. 

From column (6) of Table 8, it can be judged that the 
elasticity coefficient of industrial competitiveness is -
0.0173, and it is significant at the 1% level. It indicates that 
enhancing industrial competitiveness can reduce CEI, and 
it verifies the hypothesis H1. It also indicates that the 
influence of China's industrial competitiveness on CEI has 
crossed the factor-driven stage of S1. 

The regression findings of control variables reveal that the 
extent of government interference has a substantial and 
favorable effect on CEI, suggesting that China's market 
operation is hindered by government intervention, leading 
to a decline in the innovation capacity of industrial 
businesses and lead to the waste of resources and 
inefficiency, and adversely affect the reduction of CEI. The 
knowledge spillover effect has a significant negative impact 
on CEI. That's because the knowledge spillover process has 
imitative, communicative and incentive effects, they can 
effectively reduce the carbon intensity of industry in 
surrounding areas. 

The regression results of the control variables show that 
the increase in energy prices has a negative impact on CEI. 
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The higher the energy price, the higher the cost of 
industrial production, enterprises have to improve 
production equipment, which forces enterprises to carry 
out green technological innovation and improve energy 
utilization efficiency, which in turn reduces CEI. The higher 
the energy endowment, the higher the CEI. The more 
energy-rich the region, the lower the cost of energy will be, 
and the demand and motivation for transformation and 
upgrading and technological progress of regional industrial 
enterprises will be insufficient. Moreover, these regions 
are more inclined to develop industrial primary products 
that are more energy-dependent and have low added 
value, which will have a negative impact on the reduction 
of regional CEI. The higher the ratio of light and heavy 
industries, the lower the CEI. If the industrial structure of a 
region favors light industry, then the energy dependence is 
small and the CEI is low. The degree of government 
intervention has a significant positive impact on CEI, 
indicating that when the market is running smoothly and 
the internal coordinated development, excessive 
government intervention will reduce the innovation vitality 
of industrial enterprises, which is not conducive to the 
reduction of CEI. Knowledge spillover effect has a 
significant negative impact on CEI. This is because the 
knowledge spillover process has imitation effect, exchange 
effect and incentive effect, which can effectively reduce 
the carbon intensity of industries in neighboring regions. 

4.3. Robustness test 

4.3.1. Substitution of core industrial competitiveness 

In order to test the robustness of the linear model, the 
industrial competitiveness is re-measured by using the 
Stochastic Frontier Approach (SFA). We use the value added 
of industry as the output variable, and the total fixed assets 
and the number of employed person in industrial enterprises 
as the input variable. The results of the regression are shown 
in Table 8 column (1) below. We can see that the industrial 
competitiveness still has a significant negative impact on CEI, 
which indicates that the result is robust. 

4.3.2. Shrinkage processing 

In this paper, for the missing data in individual years, we use 
the method of interpolation to make up or replace them 
with zero, which may result in extreme values and outliers in 
the sample. In order to exclude this problem, the variables 
are subjected to 1% shrinking tails of upper and lower, and 
the results of regression are shown in column (2). There is no 
discernible alteration compared with the benchmark 
regression, which proves that the result is robust. 

4.3.3. Exclusion of data samples from some years 

Since China entered the post-industrial era around 2010, it 
may lead to a certain gap between the data before 2010 
and the data in the latter decades, which may result in 
biased results. Therefore, the data for 2008 and 2009 are 
excluded, and the impact of industrial competitiveness on 
CEI is examined again. The results are shown in column (3), 
which still shows that the relationship between industrial 
competitiveness and CEI is robust. 

4.3.4. Endogenous processing 

In the econometric model above, there may be some 
endogenous problems. First, there may be "measurement 

error" in the industrial competitiveness of this paper. 
Second, industrial CEI is affected by many factors, and the 
number of control variables in this paper is limited, which 
may lead to the problem of missing variables. If the 
estimation method of general panel data is used, the 
results may be biased and inconsistent. In order to avoid 
the endogeneity problems caused by missing variables and 
model misspecification, the degree of topographic relief 
(RDLS) is selected as instrumental variable of industrial 
competitiveness for the endogeneity test based on the OLS 
regression. Topographic relief is a comprehensive 
characterization of the regional altitude and the degree of 
surface cutting. Based on the definition and calculation 
formula of topographic relief studied by Feng et al (2007), 
the data of digital elevation model (SRTM 90 m) is 
resampled into 1 km. And the model is applied to calculate 
the kilometer grid data set of land terrain relief in China. 
Topographic relief is used to reflect the complexity of the 
terrain in each region, and the larger the value of the 
topographic relief is, the steeper the terrain is, and the 
more difficult to construct infrastructure, which makes it 
difficult for industrial development. While the lower the 
value of topographic relief is, the flatter the terrain is, 
which makes it more suitable for industrial development. 
So topographic relief is related to the explanatory 
variables. Moreover, the degree of topographic relief is a 
natural factor, which is not directly related to other 
variables, that is, it has an "exclusivity constraint". In 
addition, considering that the degree of topographic relief 
is a constant variable that does not change over time, 2SLS 
regression is conducted by using the multiplication of the 
degree of topographic relief and the virtual variables for 
each year as an instrumental variable group. 

Column (4) in Table 8 reports the regression result of 
instrumental variable. The impact of industrial 
competitiveness on CEI is still significantly negative, 
indicating that the conclusion is robust. Meanwhile, the F 
value in the first stage is 37.53 , and the Kleibergen-Paaprk 
LM statistic is 80.002, corresponding to the P value of 
0.0000, indicating that there is no under-identification 
problem. The value of Cragg-Donald Wald F is 19.925, 
which is greater than the critical value of 11.52 and the 
empirical value of 10, indicating that there is no problem of 
weak instrumental variable. In summary, the instrumental 
variable selected in this paper is reasonable. The result of 
the 2SLS regression with instrumental variable show that 
there is still a significant negative impact of industrial 
competitiveness on CEI after considering endogeneity, 
which indicates that the regression result is robust. 

4.3.5. Dynamic panel regression 

To enhance the reliability of the result, this article further 
employs the dynamic panel model to assess the reliability 
of the benchmark regression., and we select the systematic 
GMM method for the regression. From the regression 
result of column (5) in Table 8, we can see that the p-value 
of AR (1) is less than 0.05 and the p-value of AR (2) test is 
greater than 0.1, indicating that there is no second-order 
autocorrelation in the difference of the disturbance term 
of the regression equation. While the P-value of the Hansen 
test is greater than 0.1, which indicates that the 
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instrumental variable is valid. The results show that 
industrial competitiveness still has a significantly negative 
effect on CEI, which proves the robustness of the 
regression result again. 

 

Table 8. Test of Robustness 

Variable 
(1) (2) (3) (4) (5) 

Replace the core 
explanatory variable 

Shrinkage processing 
Excluding 2008 and 2009 

samples 
2SLS regression Sys-GMM regression 

carbon(-1) —— —— —— —— 0.893*** (12.46) 

compet -0.084*** (-8.48) -0.019*** (-4.39) -0.011*** (-2.79) -0.013*** (-2.98) -0.009** (-2.17) 

EP -0.013 (-1.53) -0.014 (-1.43) -0.023** (-2.52) 0.015 (1.23) -0.021 (-1.43) 

EE 0.0001 (0.03) 0.0004 (0.73) 0.001 (1.48) 0.004*** (8.99) 0.0007 (1.34) 

LIR -0.007 (-1.32) -0.005 (-0.91) -0.010* (-1.91) 0.030*** (6.32) -0.0002 (-0.02) 

GOV 0.102*** (5.56) 0.110*** (5.38) 0.185*** (8.51) 0.107*** (4.66) -0.015 (-0.83) 

KNS -0.033*** (-7.31) -0.026*** (-5.31) -0.033*** (-5.93) -0.007*** (-7.41) -0.009 (-1.37) 

_cons 0.115*** (2.83) 0.101** (2.19) 0.116*** (2.62) -0.089 (-1.48) 0.069 (1.07) 

F 131.170*** 111.330*** 136.420*** —— —— 

Hausman 29.200*** 28.010*** 22.770*** —— —— 

Hansen test P-value —— —— —— —— 1.000 

AR(1) test p-value —— —— —— —— 0.018 

AR(2) test P-value —— —— —— —— 0.809 

time-fixed effect yes yes yes —— —— 

province-fixed 

effect 
yes yes yes —— —— 

N 360 360 300 360 330 

R2 0.551 0.477 0.463 0.517 —— 

Table 9. Results of the Threshold Effect Test 

Explanatory 
variable 

Threshold 
variable 

Number of 
thresholds 

Threshold 
value 

Confidence 
interval 

Fstat  Prob crit10 crit5 crit1 bs times 

compet compet Single  -0.280 (-0.278，-0.302) 20.500 0.063 17.529 22.109 29.639 300 

  Double  -0.699 (-0.676，-0.823) 24.780 0.023 16.209 21.247 25.633  

   -0.278 (-0.276，-0.290)       

  Triple —— —— 14.080 0.440 26.991 31.793 48.917  

Table 10. Results of Benchmark Regression and Threshold Regression 

Variable Threshold model 

compet(qit<γ1) -0.021*** (-3.52) 

compet(γ2>qit≥γ1) -0.037*** (-6.83) 

compet(qit≥γ2) -0.006 (-1.18) 

_cons 0.133*** (5.37) 

time-fixed effect —— 

province-fixed effect —— 

N 360 

R2 0.450 

 

4.4. Nonlinear analysis 

Considering the nonlinear relationship between industrial 
competitiveness and the carbon intensity (Figure 2), we 
further develop the model of threshold regression 
equation (2) to explore the demarcation point between the 
stages. 

Before conducting the threshold regression analysis, the 
threshold effect of the model and the number of possible 

thresholds should be tested. In this study, single-threshold 
and double-threshold and triple-threshold tests are 
conducted with industrial competitiveness as the threshold 
variable, and the results of the tests are shown in Table 9 
below. The test results indicate that the value of the single-
threshold F-statistic is 20.50, which exceeds the threshold 
value of 17.5288 at the 10% significance level. Therefore, 
the single-threshold test is considered significant at the 
10% level and is deemed successful. The double-threshold 
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F-statistic has a value of 24.78, which exceeds the threshold 
value of 21.2468 at the 5% significance level. Therefore, the 
double-threshold test is considered significant at the 5% 
level and is deemed successful. Nevertheless, the triple-
threshold F-statistic has a value of 14.08, which falls below 
the threshold value of 26.9906 at the 10% significance 

level. Therefore, the triple-threshold test does not pass. 
The double-threshold model is determined to be more 
significant than the single-threshold model. Therefore, this 
article opts to design the double-threshold model. 

 

Table 11. Results of Impact Mechanism Test 

variable OFDI (1) carbon (2) OFDI (3) carbon (4) 

compet 0.490*** (2.60) -0.016*** (-3.67) 7.535*** (3.66) -0.003** (-2.48) 

OFDI —— -0.003** (-2.30) —— -0.003** (-2.42) 

control variables yes yes yes yes 

_cons 9.577*** (4.97) 0.142*** (3.14) 5.041 (0.48) 0.001 (0.01) 

F 42.460*** 110.490*** —— —— 

Hausman 154.250*** 19.080*** —— —— 

time-fixed effect yes yes —— —— 

province-fixed effect yes yes —— —— 

N 360 360 360 360 

R2 0.904 0.484 0.305 0.525 

Table 12. Regional regression results 

variable Northeast East Central West 

(1) (2) (3) (4) 

compet -0.052*** (-3.82) -0.002 (-0.54) -0.007 (-0.70) -0.020* (-1.71) 

control variables yes yes yes yes 

_cons 0.177 (0.98) 0.108*** (5.81) 0.068 (1.07) 0.258*** (3.44) 

F 8.410*** 27.590*** 7.230*** 69.790*** 

Hausman 11.130*** 51.900*** 24.430*** 79.270*** 

time-fixed effect yes yes yes yes 

province-fixed effect yes yes yes yes 

N 36 120 72 132 

R2 0.668 0.427 0.575 0.432 

 

The regression result with the double-threshold model is 
shown in Table 11 below. From Table 9 and Table 10, it can 
be seen that the value of the first threshold is -0.6993 and 
the value of the second threshold is -0.2776. When the 
industrial competitiveness in the region is lower than 
−0.6993, the coefficient before the industrial 
competitiveness is −0.0212. And it is significant at the 1% 
level, indicating that for every 1% increase in industrial 
competitiveness, CEI decreases by 0.0212%. When the 
industrial competitiveness is above -0.6993 and below -
0.2776, the coefficient before the industrial 
competitiveness is −0.0370. And it is significant at the 1% 
level, indicating that for every 1% increase in industrial 
competitiveness, CEI decreases by 0.0370%. When the 
industrial competitiveness is above -0.2776, the coefficient 
before the industrial competitiveness is −0.0063, and it is 
not significant. It indicates that the demarcation point 
between the correlation coefficient between the 
investment-driven stage of S2 and the innovation-driven 
stage of S3 is -0.6993, while the demarcation point 
between the innovation-driven stage of S3 and the wealth-
driven stage of S4 is -0.2776. 

Comparing the coefficients before the industrial 
competitiveness at different stages, we find that the 
carbon reduction effect of the industrial competitiveness is 
larger and significant in the stage of S2 and S3, but it is not 
significant in the stage of S4. The conclusion is consistent 

with the theoretical analysis above. The deep shadow 
labeled in Table 1 in the appendix indicates that the 
industrial competitiveness is lower than -0.6993. Provinces 
in this range include HaiNan, GanSu, QingHai, and NingXia. 
We can find that these provinces in the stage of S2 are 
mainly concentrated in the West. The paler shadow labeled 
in Table 1 in the appendix indicates that the industrial 
competitiveness is above -0.2776. We can find that these 
provinces in the stage of S4 are mainly concentrated in the 
East and Central. The remaining provinces in Table 1 in the 
appendix indicates that the industrial competitiveness is 
above -0.6993 and below -0.2776, and these provinces in 
the stage of S3 are mainly concentrated in the North-East 
and West. As the the most of the provinces in the Northeast 
and West are in the stage of S2 and S3, the carbon 
reduction effect of industrial competitiveness is significant. 
The most of the provinces in the East and Central are in the 
stage of S4, the carbon reduction effect of industrial 
competitiveness is not significant. After grasping the stage 
of each region, it is possible to implement appropriate 
policies according to regional characteristics, thus 
improving the efficiency of China's carbon reduction. 
Demonstrated that the hypothesis H3. 

4.5. Influence mechanism test 

Table 11 reports the regression result of the mechanism 
test, column (1) is the regression result of model (3) and 
column (2) is the regression result of model (4). The 
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coefficient before industrial competitiveness in column (1) 
is 0.4901, that is, for every 1% increase in industrial 
competitiveness, OFDI rises by 0.4901%, which indicates 
that upgrading industrial competitiveness can promote 
regional OFDI. The coefficient before the core explanatory 
variable and the mechanism variable in column (2) are both 
significantly negative, indicating that OFDI has a partial 
mediating effect in industrial competitiveness affecting 
carbon intensity, which verifies the hypothesis H3. 

OFDI is an important channel for industrial upgrading. 
Industrial transfer helps to utilize foreign markets and 
resources to realize domestic industrial restructuring and 
upgrading. By transferring marginal industries that are 
already at a comparative disadvantage through OFDI, the 
region can concentrate on the development of advantaged 
and emerging industries, and this may have a certain 
reverse effect on local industrial competitiveness. In order 
to avoid the endogeneity problems, this paper conducts 
endogeneity test with instrumental variables. Column (3) is 
the endogeneity test result of model 3, and column (4) is 
the endogeneity test result of model 4, and the results 
show that the mediating effect of OFDI in the process of 
industrial competitiveness affecting CEI is robust. 

4.6. Heterogeneity test 

The results of regional regression are shown in Table 12 
below, and the coefficients before industrial 
competitiveness are all negative, indicating that upgrading 
regional industrial competitiveness can reduce CEI. 
Comparing the coefficients before the industrial 
competitiveness in columns (1)-(4), it can be found that the 
carbon reduction effect of the industrial competitiveness is 
larger and significant in the Northeast and West, but it is 
not significant in the East and Central. Accordingly, China 
should pay more attention to improving the industrial 
competitiveness of the provinces in the Northeast and 
West to improve the efficiency of carbon reduction. 

5. Conclusions and implications 

5.1. Empirical conclusions 

The theoretical analysis concludes that the impact of 
industrial competitiveness on CEI is characterized by the 
Environmental Kuznets Curve (EKC), and we correspond 
the curve to the four stages of the industrial life cycle. 
Considering the nonlinear relationship between industrial 
competitiveness and the carbon intensity, we further 
develop the double-threshold regression model to explore 
the demarcation point between the stages. We construct 
an evaluation indicator system of comprehensive industrial 
competitiveness, including scale competitiveness, 
performance competitiveness, innovation competitiveness 
and ecological competitiveness, and adopts the method of 
factor analysis to measure the industrial competitiveness 
index. The panel data of 30 provinces in China from 2008 
to 2019 are selected to empirically study the impact of 
industrial competitiveness on CEI. The main findings of the 
study are as follows: 

(1)Improving industrial competitiveness can significantly 
reduce CEI, and this conclusion remains robust after a 

series of tests, which means that China had crossed the 
factor-driven stage of S1. 

(2)Outward foreign direct investment (OFDI) has a partial 
mediating role in the process of industrial competitiveness 
affects carbon intensity. 

(3)The carbon reduction effect of the industrial 
competitiveness is larger and significant in the Northeast 
and West, but it is not significant in the East and Central. 

(4)The demarcation point between the investment-driven 
stage of S2 and the innovation-driven stage of S3 is -0.6993, 
and the demarcation point between the innovation-driven 
stage of S3 and the wealth-driven stage of S4 is -0.2776. 
Provinces in this stage of S2 are mainly concentrated in the 
West, including Hainan, Gansu, Qinghai, and Ningxia. 
Provinces in this stage of S3 are mainly concentrated in the 
North-East and West, including Jilin, Chongqing, Guangxi, 
Guizhou, Yunnan, and Xinjiang. The remaining provinces 
are in this stage of S4, and they are mainly concentrated in 
the East and Central.  

(5)The marginal effect of industrial competitiveness on CEI 
is −0.0212 in the stage of S2, the marginal effect is −0.0370 
in the stage of S3, and the marginal effect is −0.0063 in the 
stage of S4. The carbon reduction effect of the industrial 
competitiveness is larger and significant in the stage of S2 
and S3, but it is not significant in the stage of S4.  

5.2. Practical implications 

Based on the above research conclusions, in order to 
achieve the carbon peak as soon as possible and achieve 
the carbon neutrality more easily, this paper proposes the 
following suggestions: 

First, enhancing regional industrial competitiveness. The 
government should increase factor inputs to industry in the 
Northeast and West, especially those provinces still in the 
investment-driven stage of S2. It is necessary to accelerate 
the elimination of low value-added products and backward 
production capacity to achieve structural adjustment. The 
Government should increase investment and encourage 
enterprises to introduce advanced equipment to improve 
the scale competitiveness and promote the industrial 
upgrading. For provinces in the innovation-driven stage of 
S3, it is necessary to promote enterprises to become the 
main body of technological innovation, and cultivate a 
number of large enterprise groups with R&D capabilities 
and the core technology in the market competition. Those 
enterprise need to develop independent and innovative 
skills to gradually build regional brands and expand market 
demand. At the same time, enterprises should emphasize 
the research and development of low-carbon technologies. 
Thus, the efficiency of carbon emission reduction in China 
can be improved. 

Second, accelerating the transfer of industries abroad. 
China's factors of production are no longer sufficient to 
carry the development of resource-dependent industries. 
To get rid of its heavy dependence on indigenous resources 
and its enormous pressure on the environment, China 
should make full use of "the Belt and Road" policy to 
accelerate the transfer of industries to countries along the 
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Belt and Road. The main destinations for the transfer of 
China's industrial should be countries in Asia, Africa and 
Latin America, because these countries are able to accept 
the resource advantages in the process of industrial 
transfer. After the entry into force of the China-ASEAN Free 
Trade Agreement, China should further complement 
resources and share our advantages. At the same time, the 
local government should encourage the behavior of 
outward foreign direct investment (OFDI), and focus on the 
development of advantageous and emerging industries.  

Third, promoting the development of industrial clustering. 
The government should make full use of the effect of 
knowledge spillover and focus on the geographical 
concentration and spatial planning of industries. China 
should develop a number of industrial clusters to form 
economies of scale and enhance the international 
competitiveness of industries, which can form a spatial 
linkage mechanism for carbon emission reduction and 
technological innovation. It can also build an information 
sharing network of energy-saving among enterprises to 
minimize the cost of carbon reduction for enterprises. 
While encouraging industrial enterprises to form low-
carbon alliances to help them effectively reduce CEI. 

6. Limitations and future research agenda 

Despite the comprehensive study completed in both 
theory and practice, this work still has limits and 
inadequacies. Therefore, it is crucial to further delve into 
the inquiry. Firstly, there are concerns about the selection 
of samples and the ability to handle them. This study used 
panel data from 30 provinces in China spanning from 2008 
to 2019. Future research endeavors might explore the 
possibility of investigating industrial businesses as the 
subject of investigation. Future research might focus on 
analyzing the impact of competition in various industrial 
sectors, such as construction, energy and heat supply, and 

service industries, in order to investigate the variations in 
impacts based on the unique features of each industry. 
Conclusions drawn in this article may be corroborated by 
using data from other nations as well. Simultaneously, it is 
possible to increase the quantity of samples and the 
duration in years. Furthermore, this research utilizes the 
concepts of comparative advantage and marginal industrial 
growth as the theoretical framework. It also examines the 
relationship between outward foreign direct investment 
(OFDI) and the internal mechanism of industrial 
competitiveness in terms of CEI. However, at various 
phases of industrial growth, the pathway via which 
industrial competitiveness impacts CEI may vary. This 
aspect requires further comprehensive investigation in 
future research. Ultimately, this work employs threshold 
regression as a research method, so compensating for the 
limitations of linear regression. In the future, we may 
further embrace more sophisticated research 
methodologies and juxtapose the outcomes of various data 
analysis approaches. We can comprehensively elucidate 
the underlying principles governing the outcomes and 
enhance the reliability and discourse around the study 
findings. 
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Appendix 

 

Table A1. Data of Regional Industrial Competitiveness 

region Province\year 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 

North-

East 

Liaoning -0.075  -0.082  -0.164  -0.152  -0.061  0.070  0.155  0.071  0.131  0.239  0.192  0.047  

JiLin -0.412  -0.521  -0.433  -0.431  -0.453  -0.376  -0.486  -0.222  -0.486  -0.373  -0.391  -0.446  

HeiLongJiang -0.470  -0.510  -0.370  -0.336  -0.289  -0.260  -0.232  -0.119  0.040  -0.074  -0.069  0.243  

East Beijing -0.356  -0.053  -0.271  -0.264  -0.159  -0.236  -0.259  -0.163  -0.276  -0.345  -0.103  -0.102  

TianJin -0.091  0.152  -0.093  0.063  0.202  0.152  0.121  0.101  0.204  0.048  0.045  0.049  

HeBei 0.127  0.270  0.220  0.153  0.142  0.323  0.265  -0.147  -0.009  0.004  -0.121  -0.041  

Shanghai 0.087  0.403  0.338  0.262  0.242  0.231  0.147  0.266  0.259  0.262  0.387  0.280  

JiangSu 1.528  1.742  1.607  1.738  1.641  1.553  1.643  1.618  1.578  1.586  1.642  1.612  

ZheJiang 0.881  0.890  0.735  0.832  0.850  0.806  0.761  0.570  0.572  0.660  0.761  0.649  

FuJian 0.408  0.127  0.151  0.219  0.285  0.253  0.316  0.195  0.204  0.191  0.193  0.125  

Shandong 1.032  1.083  1.454  1.381  1.268  1.354  1.373  1.549  1.722  1.425  1.423  1.445  

Guangdong 1.574  1.730  1.393  1.369  1.485  1.304  1.330  1.511  1.387  1.723  1.495  1.348  

HaiNan -0.703  -0.616  -0.773  -0.716  -0.647  -0.674  -0.676  -0.498  -0.664  -0.578  -0.584  -0.725  

Central Shanxi -0.060  -0.399  -0.252  -0.366  -0.342  -0.441  -0.247  -0.315  -0.204  -0.275  -0.180  -0.097  

AnHui 0.041  0.087  0.041  0.073  0.009  -0.020  -0.023  -0.061  -0.120  -0.161  -0.136  -0.244  

Jiangxi 0.063  -0.063  -0.070  -0.136  -0.207  -0.127  -0.212  -0.251  -0.332  -0.266  -0.280  -0.251  

Henan 0.538  0.412  0.550  0.652  0.536  0.692  0.689  0.409  0.572  0.472  0.432  0.461  

HuNan 0.092  0.273  0.088  0.030  0.015  -0.004  0.069  0.102  0.063  0.012  -0.073  -0.060  

HuBei 0.026  0.132  0.030  0.043  0.008  0.006  -0.002  0.018  -0.034  0.087  0.149  0.055  

West Chongqing -0.182  -0.083  -0.179  -0.215  -0.170  -0.278  -0.402  -0.497  -0.422  -0.402  -0.301  -0.314  
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Guangxi -0.394  -0.612  -0.403  -0.427  -0.416  -0.427  -0.435  -0.450  -0.481  -0.417  -0.526  -0.559  

Sichuan 0.046  0.030  0.024  -0.066  -0.072  -0.035  -0.086  -0.085  -0.166  -0.174  -0.093  -0.118  

GuiZhou -0.407  -0.508  -0.491  -0.504  -0.526  -0.493  -0.542  -0.508  -0.488  -0.649  -0.670  -0.611  

YunNan -0.379  -0.506  -0.446  -0.487  -0.452  -0.579  -0.540  -0.456  -0.550  -0.459  -0.508  -0.457  

Shaanxi -0.120  -0.030  -0.088  -0.156  -0.123  -0.091  -0.043  0.158  0.137  0.009  -0.060  -0.008  

GanSu -0.551  -0.739  -0.628  -0.569  -0.637  -0.571  -0.633  -0.592  -0.773  -0.664  -0.546  -0.530  

NeiMengGu -0.122  -0.320  -0.128  -0.190  -0.200  -0.262  -0.053  -0.121  0.065  -0.101  -0.236  -0.294  

Qinghai -1.081  -0.985  -0.722  -0.719  -0.749  -0.765  -0.842  -0.779  -0.823  -0.830  -0.822  -0.637  

NingXia -0.548  -0.650  -0.615  -0.525  -0.607  -0.649  -0.659  -0.824  -0.834  -0.750  -0.704  -0.699  

XinJiang -0.492  -0.654  -0.507  -0.557  -0.572  -0.456  -0.495  -0.480  -0.274  -0.202  -0.315  -0.120  
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