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GRAPHICAL ABSTRACT 

 

ABSTRACT 

 

Weather forecasting is an essential but complex task because of its substantial influence on 

human life and advanced atmospheric dynamics. In recent years, deep learning-based 



 

 

techniques have gain high attention for weather forecasting. Nevertheless, current forecasting 

models ignore the interdependent relationship between variables across regions and primarily 

examine temporal patterns of weather data. In this work, a new Multivariate time series weather 

forecasting model is proposed using integrated secondary decomposition and Self-Attentive 

spatio-temporal learning network (SASTLNet). Particularly, the weather data is filtered using 

a Singular Spectrum Decomposition with Fuzzy Entropy (SSD-FE) for removing the irrelevant 

components and screening the component containing vital information. Moreover, the 

spatiotemporal fluctuations in the meteorological variables are investigated using an enhanced 

empirical mode decomposition (E3MD) method and a SASTLNet model. The self-attention 

block of the SASTLNet model is discovered using ladder format to lower the processing costs 

while representing the temporal and spatial features through single memory cell. The 

simulation results prove that the suggested model can outperforms the baseline models in terms 

of efficacy and accuracy.  

Keywords: Weather forecasting, spatio-temporal learning, secondary decomposition, self-

attention, and Singular spectrum decomposition. 

 

1. Introduction 

Weather forecasting (WF) is a challenging process because of the complex system of 

atmospheric motion and its considerable impact on human life. Fang et al., (2021) exposed the 

main goal of WF models is to predict variables including temperature, humidity, dew point, 

rainfall, and wind speed using historical data. Accurate weather forecasts are critical for many 

industries, including commerce (Wen, L. et al., (2024), Wang, Z. et al., (2024)), tourism (Liqin, 

W., and Yuan, Y. (2024)), sports, agriculture, mining, power generation (Yang et al., 2022), 

the food industry, airports (Periasamy, S.at al., 2024), and naval activities. The WF methods 

can be widely classified as physical, statistical, intelligent, and hybrid methods. Mayer et al., 



 

 

(2023) and Zhang, et al., (2022) discussed the most popularly utilized physical technique is 

numerical weather prediction (NWP) model. It uses computer algorithms to solve a challenging 

set of nonlinear mathematical equations based on certain mathematical models in order to 

generate a forecast. Ren et al., (2021) implemented this approach to increases the financial cost 

and requires extensive computations.  

In weather forecasting, statistical methods are crucial because they provide valuable tool for 

investigating the historical data, identifying trends, and generating forecasts. Jaseena, K. U et 

al., (2022) and Sharadga, et al., (2020) introduced statistical models are ARMA, ARIMA, and 

their derivatives. However, statistical approaches frequently require human interaction for 

parameter adjustment and assumptions derived from the historical data. It might not be suitable 

for new or varying weather patterns. In contrast, Dewitte et al., (2021) and Surendran R et al., 

(2021) developed the artificial intelligence models can continuously evolve and adapt to 

changing conditions, as they are capable of learning from new data and adjusting over time. 

Furthermore, it is not limited to predetermined concepts and may discover more complicated 

patterns and correlations from data. Weather forecasting uses a number of well-known artificial 

intelligence models, such as autoencoders (AE), support vector machines (SVM), artificial 

neural networks (ANN), convolutional neural networks (CNN), recurrent neural networks 

(RNN), long short-term memory networks (LSTM), and autoencoders (AE) from various 

researchers  Donadio et al., (2021), Markovics et al., (2022), Xiao et al., (2021), Surendran R 

et al., (2023), Mani et al., (2023), Yadav et al., (2024). 

The hybrid models combine two or more models to further improve forecasting model 

performance. The majority of the early models only used information at the time level and did 

not account for information at the space level (Venkatachalam, K et al., (2023), Dotse et al., 

(2024), Alqahtani et al., (2023)). Goel et al., (2023) and Christoforou, E et al., (2023) improved 

the temporal and geographical information incorporated into the models for increasing the 



 

 

accuracy of short-term weather forecasting. Spatio-temporal data shows universal 

characteristics of correlation and heterogeneity. When data are autocorrelated in both the 

temporal and spatial dimensions, it is referred to as correlation. Jin et al., (2023) explained the 

ability of spatiotemporal data to exhibit distinct patterns over a variety of temporal or spatial 

dimensions is known as heterogeneity. Recently, CNNs were used to forecast wind power and 

wind speed based on spatiotemporal features due to the advancement of deep learning methods 

(Liu et al., (2020)).  

Weerakody et al., (2021) determined the intelligent approaches may be more sensitive to noisy 

data. Noise in the data can mask fundamental patterns and result in incorrect predictions. He 

Renfei et al., (2022) approached a decomposition boost prediction accuracy and enhance the 

signal-to-noise ratio by eliminating noise or random fluctuations.  Therefore, a hybrid model 

that combines the best aspects of multiple models is needed to increase the accuracy of weather 

forecasting. Hybrid models based on the data decomposition approach aim to enhance 

forecasting performance through the reduction of stochastic disturbance of weather data series. 

These points motivate us to propose a new hybrid weather forecasting network based on 

decomposition and spatio-temporal learning methods. The research contribution of this 

research work are listed as follows:  

• To introduce a new Multivariate time series WF model using integrated secondary 

decomposition and deep learning network. 

• To integrate the concept of fuzzy entropy estimation into singular spectrum 

decomposition (SSD) algorithm. This will enable the screening of meteorological data 

as a component containing essential information and the removal of irrelevant 

components. 

• To propose a new SASTLNet for capturing the spatiotemporal mutual dependence 

information at the same time. This SASTNNet contains a novel self-attention based 



 

 

spatiotemporal memory (SASTM) cell to obtain global spatial contextual information 

by describing the connections between different regions using a self-attention block.  

• To reduce the computational cost of self-attention mechanism by modelling a 

lightweight ladder self-attention block.  

Studying a weather forecasting model in the Chinese context not only makes sense due to 

China’s unique geographic and climatic features but also because of its ongoing technological 

innovations, large-scale infrastructure, environmental challenges, and critical role in global 

forecasting efforts. The model would be particularly important for addressing local weather 

phenomena, managing natural disasters, optimizing resource allocation, and contributing to 

China's broader sustainability and technological goals. By understanding how China develops 

and utilizes weather forecasting tools, we can gain valuable insights into improving prediction 

accuracy and disaster preparedness both within China and globally. 

The rest of the paper is structured as follows: Section reviews the existing papers related to 

weather forecasting. Section 3 gives the description for the proposed weather forecasting model 

in detail. Section 4 investigate the effectiveness of the proposed model by conducting extensive 

simulation. Section 5 Concludes the proposed work with future research direction.  

2. Literature survey  

 

Meteorological analysis and weather forecasting play a major role in sustainable development 

to mitigate the damage caused by extreme events. The ability of LSTM to record long-term 

dependencies has led to substantial performance on numerous real-world applications. 

Surendran R et al. (2023) used LSTM based data-driven prediction framework for a WF 

application. Also, a Transductive LSTM (T-LSTM) was developed for exploiting the local 

knowledge from the time series data. In T-LSTM, the samples near the test point were thought 

to have a greater influence on model fitting. Also, a quadratic cost function was used for the 



 

 

regression problem. Bai et al. (2020) stated that node-specific patterns must be learned 

efficiently to avoid a predefined map during prediction. Also, an Adaptive Graph 

Convolutional Recurrent Network (AGConvRN) was introduced, which automatically seized 

detailed spatio-temporal correlations in data series. This was achieved through two modules: 

Node Adaptive Parameter Learning and Data Adaptive Graph Generation with RNN. 

Wu et al. (2024) introduced a graph neural network (GNN) for multi-variable time series data 

(MVTGNN). This model extracted the one-way relations between variables via a graph 

learning unit. This unit could be united with external knowledge such as variable attributes 

seamlessly. Two additional layers including mix-hop propagation and a dilated inception layers 

were introduced for capturing the spatio-temporal dependences in the time series. Here the 

graph learning, graph convolution, and temporal convolution blocks were collaboratively 

trained to form end-to-end framework. 

One of the key markers for identifying climate change is variations in the earth's surface 

temperature. Suleman et al. (2022) introduced a new Spatial Feature Attention LSTM (SFA-

LSTM) model for capturing the spatio-temporal interactions of several meteorological features. 

Accurate data forecasting was aided by significant spatial features and temporal interpretations 

of previous data that were directly connected to output features. The mutual influence of input 

features on the target feature was captured by the spatial feature attention. Here, the encoder-

decoder structure allowed for learning temporal dependencies in the data through the use of 

LSTM layers during the encoder stage and spatial feature relations during the decoder stage. 

SFA-LSTM anticipates temperature through the simultaneous learning of the most significant 

time steps and meteorological factors.  

Han et al (2022) introduced an integrated wind speed forecasting framework on the basis of 

weather research and forecasting (WRF) model.  Initially, the WRF model was used for 

obtaining the forecasted wind speed. Additional meteorological data were also collected from 



 

 

the various WRF fields. Moreover, the primary meteorological variables were chosen as the 

input series using the Pearson Correlation Coefficient (PCC) approach. Then the historical data 

and input series were decomposed into the appropriate intrinsic mode functions (IMFs) using 

the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) 

approach. After that, a novel hybrid deep learning model was introduced that combined a CNN 

and a bidirectional LSTM (BiLSTM) for predicting the error and correcting the wind speed 

from WRF’s deepest field. Here, the BiLSTM was enhanced using an attention and a grid 

search approach. At last, a validation case study was carried out to confirm that the suggested 

model works as intended. 

Ma et al. (2023) developed a new Hierarchical Spatio-temporal Graph Neural Network (HST-

GNN) for enabling precise prediction of several variables and stations over several time steps. 

HST-GNN incorporated a dynamic graph learning unit for constructing a self-learning 

hierarchical graph. It comprised a global graph that depicted regions and a local graph that 

recorded meteorological information for every area. This model captured a variety of long-

term meteorological trends and hidden spatial relationships using a dilated inception and graph 

convolution as the foundation. An adaptive collaborative learning was also introduced for 

facilitating bidirectional information among the two-stage graphs.  

Shenglin, M et al. (2024) analysis and demonstrates that spatiotemporal learning is essential 

for weather forecasting because of complex and dynamic characteristics of atmospheric events. 

Even though the existing deep learning algorithms are capable of producing accurate prediction 

results, there are still have certain issues. The existing T-LSTM does not capture spatial 

dependencies naturally. Also, GNNs have been the subject of numerous studies including 

GConvRN, MVTGNN and HST-GNN. However, they do not take into account the long-range 

time correlation between the different time steps of the nodes. Furthermore, they are unable to 

effectively depict the complex spatial-temporal dependencies in the graph.  Inaccurate 



 

 

predictions may result from random disturbances in the time series weather data. None of the 

existing models considered this issue before learning the spatiotemporal feature. To tackle 

these issue, this research introduced a new hybrid models based on the data decomposition 

approach. These models have the ability to forecast more accurately and are designed to remove 

stochastic disturbances from meterological variable series. 

3. Proposed method 

In this work, a new Multivariate time series weather forecasting model is proposed using 

integrated secondary decomposition and Self-Attentive spatio-temporal learning network (SD-

SASTLNet).  Figure 1 shows the complete architecture of the proposed weather forecasting 

model. Initially, the source data including temperature, humidity, wind speed, and pressure is 

acquired from weather forecasting datasets. After that, SSD-FE is introduced for decreasing 

the noise of the original multivariate series. Subsequently, an E3MD algorithm is used for 

decomposing the denoised series into their respective IMFs and residuals. Further, a new Self-

Attentive spatio-temporal learning network (SASTLNet) is introduced for weather forecasting, 

which describes the temporal and spatial models via a unified self-attentive spatio-temporal 

memory (SASTM) cell. The SASTM architecture is constructed using Convolutional LSTM 

(C-LSTM) units as a base. In contrast to traditional methods that only use simple convolutions 

to extract spatial information, SASTM improves the C-LSTM by incorporating a self-attention 

module. This change significantly enhances the network's ability to represent global spatial 

data. 



 

 

 

Figure 1.  Architecture of the proposed weather forecasting model 

3.1. Singular spectrum decomposition with fuzzy entropy 

  

In this work, the original multivariate meteorological data is denoised and decomposed using 

SSD-FE. An innovative data analysis algorithm that has gained popularity recently is called 

singular spectrum analysis (SSA). Zou, F et al., (2024) is discussed the capability of separating 

weak fault features and reconstructing nonlinear time series. Nonetheless, the artificial 

selection of the SSA embedding dimension is unavoidable, and the choice of parameters 

significantly impacts the decomposition outcomes. Santhanaraj R. K  et al., (2023) address this 

problem, an adaptive signal analysis method namely Singular spectrum decomposition (SSD) 

is created.  The weather data may contain noisy information because of the motion of the 

sensors. As a consequence, the suggested model screened and denoised the SSD decomposition 

findings using fuzzy entropy. The steps comprised in the suggested SSD-FE is described as 

follows:  

Gather the original time series weather signal 𝑆𝑘 . 

Execute SSD for decomposing the sensed weather signal into 𝑘 singular spectrum factors SSFs 

𝑆𝑘 = {𝑠1
𝑘, 𝑠2

𝑘, … , 𝑠𝐿
𝑘}. 
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Compute fuzzy entropy 𝐹𝐸𝑘of every SSFs.  

Select SSFs whose fuzzy entropy value exceeds the average value.  

Use a soft threshold to reduce the noise of specific SSFs and then rebuild the signal. The 

threshold is computed using the following equation:  

 𝛾 = 𝜎√2𝑙𝑜𝑔10𝐿                                                                                                                          (1)   

Every compoent 𝑠𝑘𝑗(𝑗 = 1,2, … , 𝐿)of SSF 𝑆𝑘is contracted utilizing the soft threshold: 

 �̂�𝑘𝑗 = {

𝑠𝑘𝑗 − 𝛾,    𝑠𝑘𝑗 ≥ 𝛾

0,               |𝑠𝑘𝑗 < 𝛾|

𝑠𝑘𝑗 + 𝛾,    𝑠𝑘𝑗 ≤ −𝛾

                                                                                                   (2) 

The following paragraphs provide the detailed SSD solution process. Let 𝑠(𝑛)denotes a time-

series weather data set with length 𝐿and embedding dimension is 𝐾. The construction of the 

trajectory matrix (𝐾 × 𝐿) is given by 𝑆 = [𝑠1
𝑇 , 𝑠2

𝑇 , … 𝑠𝐾
𝑇].  SSD offers a useful way to flexibly 

determine the embedding dimension 𝐾 using iterative process. SSD generates a residual 

component 𝑟𝑗(𝑛)and its power spectral density (PSD) using 

(𝑛) = 𝑠(𝑛) − ∑ 𝑟𝑢(𝑛)𝑖−1
𝑢=1   , 𝑟0(𝑛) = 𝑠(𝑛)                                                                              (3) 

 where 𝑖 represents the iteration. If 𝑖 >  1, the embedding dimension is rephrased as:         

  𝐾 = 1.2 × (
�̂�𝑠

�̂�𝑚𝑎𝑥
)                                                                                                                                 (4) 

Where 𝑓𝑚𝑎𝑥 is PSD peak,  𝑓𝑠 denotes the sampling frequency. Then, the singular value 

decomposition (SVD) is used to construct trajectory 𝑆as given below: 

𝑆 = 𝐴 ∧ 𝐵𝑇 = [𝑎1, 𝑎2, … , 𝑎𝐾] [

𝜀1  0  0  0  0
0  𝜀2  0  0  0
⋮   ⋮   ⋱   ⋮   0
0  0  0  𝜀𝐾  0

]

[
 
 
 
𝑏1

𝑇

𝑏1
𝑇

⋮
𝑏𝐿

𝑇]
 
 
 
                                                                          (5) 

Where 𝑎𝑚 ∈ ℜ𝐾×1represents 𝑚-th column vector of 𝐵 ∈ ℜ𝐿×𝐿,𝑏𝑚 ∈ ℜ𝐿×1defines the 𝑚-th 

column vector of 𝐴 ∈ ℜ𝐾×𝐾, 𝜀𝑚denotes the singular value matrix∧∈ ℜ𝐾×𝐿 . The trajectory 

matrix is defined as: 



 

 

 𝑆 = 𝑆1 + 𝑆2 + ⋯+ 𝑆𝐾                                                                                                                   (6) 

Where 𝑆𝑚 = 𝜀𝑚. 𝑎𝑚. 𝑏𝑚. The subsequent stage is the reconstruction of particular signals using 

these primary components. Lastly, the iteration's termination condition needs to be determined. 

The definition of the normalized mean square error (NMSE) between the residual component 

and the raw data is  

𝑁𝑀𝑆𝐸(𝑖) =
∑ (𝑏(𝑖+1)(𝑗))2𝐿

𝑗=1

∑ (𝑠(𝑗))2𝑚
𝑗=1

                                                                                                                (7) 

If NMSE is less than the specified threshold𝑇ℎ = 0.01, it terminates the SSD. One can acquire 

the decomposition result as follows: 

𝑠(𝑛) = ∑ �̃�(𝑘)(𝑛) + 𝑏(𝑧−1)(𝑛)𝑧
𝑘=1                                                                                                    (8) 

 

Where 𝑧 denotes the number of SSFs and �̃�(𝑘)denotes the 𝑘-th SSF. Following the SSF 

calculation, the fuzzy entropy 𝐹𝐸𝑘 is calculated for every SSF value. Fuzzy membership 

function was introduced by fuzzy entropy in order to enhance traditional information entropy. 

The 𝑘 dimension vector is created by considering the SSF series as 𝑠 = {𝑠1, 𝑠2, … 𝑠𝐿}.  

 𝑆𝑗
𝑘 = {𝑠(𝑗), 𝑠(𝑗 + 1), … , 𝑠(𝑗 + 𝑘 − 1)} − �̅�(𝑗),       𝑗 = 1,… , 𝐿 − 𝑘 + 1                                (9) 

Where 𝑘 represents the embedding dimension. The distance of 𝑆𝑗
𝑘from its nearby vector 𝑆𝑖

𝑘is 

detected as: 

 𝐷𝑗𝑖
𝑘 = 𝐷[𝑆𝑗

𝑘, 𝑆𝑖
𝑘] =

𝑚𝑎𝑥
𝑚 ∈ (𝑜, 𝑘 − 1)|𝑆𝑗

𝑘(𝑚) − 𝑆𝑖
𝑘(𝑚)| ,   𝑖, 𝑗 = 1�̃� − 𝑘 + 1,𝑖 ≠ 𝑗                  (10)                                                               

The resemblance between 𝑆𝑗
𝑘 and 𝑆𝑖

𝑘is computed using the fuzzy membership function as                 

𝑆𝑗𝑖
𝑘 = 𝜇(𝐷𝑗𝑖

𝑘, 𝑔, 𝑤) = exp (− (𝐷𝑗𝑖
𝑘)𝑔 𝑤⁄ )                                                                                           (11) 

where 𝜇(𝐷𝑗𝑖
𝑘, 𝑔, 𝑤) is denotes the fuzzy membership function, 𝑔 and 𝑤 denote the gradient and 

width respectively. Analogous to sample entropy, the average fuzzy similarity degree is 

provided as follows 



 

 

𝛿𝑔
𝑘 =

1

𝐿−𝑘
∑ 𝑆𝑗𝑖

𝑘𝐿−𝑘+1
𝑖=1,𝑖≠𝑗                                                                                                                       (12) 

If two vectors are matched based on fuzzy probability then it is defined as:  

𝜌𝑔
𝑘 =

1

𝐿−𝑘+1
∑ 𝛿𝑔

𝑘(𝑗)𝐿−𝑘+1
𝑗=1                                                                                                          (13) 

The fuzzy probability of {𝑆𝑗
𝑘+1} is derived as 

𝜌𝑔
𝑘+1 =

1

(𝐿−𝑘)(𝐿−𝑘−1)
∑ ∑ 𝛿𝑗𝑖

𝑘+1𝐿−𝑘
𝑖=1,𝑖≠𝑗

𝐿−𝑘
𝑗=1                                                                                          (14) 

The Fuzzy entropy (𝑘, 𝑤)is expressed as 

𝐹𝐸(𝑘,𝑤) = lim
𝑛→∞

(−ln (𝜌𝑔
𝑘+1 𝜌𝑔

𝑘⁄ ))                                                                                                     (15) 

When 𝐿 is limited, the fuzzy entropy is redrafted 

𝐹𝐸(𝑘,𝑤, 𝐿) = ln(𝜌𝑔
𝑘+1 𝜌𝑔

𝑘⁄ )                                                                                                           (16) 

3.2. Enhanced ensemble empirical mode decomposition (E3MD) 

The EMD is a dyadic filter that can separate the time series denoised weather signal 𝑠′(𝑛) into 

various types of time series components known as IMFs. The process continues until the 

residue parameter 𝑟(𝑛)  is lesser than a predefined value of significance or the residue 

parameter 𝑟(𝑛)  becomes a monotonic function (Golyandina et al. (2020)). At last, the signal 

𝑠′(𝑛) is stated as the addition of constituents with the last residue parameter 𝑟(𝑛). But the main 

problem of EMD is mode mixing. This work proposes an upgraded EMD to tackle the mode 

mixing issue in the EMD approach. This model receives the denoised weather time series data 

as input to decompose it into the residue 𝑟(𝑛) and IMFs. The residue 𝑟(𝑛) denotes the intrinsic 

signal inclination and is thought to have disconnected fluctuant elements. Figure 2 shows a 

flow chart for the proposed method. 
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Figure 2.  Flow chart of the E3MD approach  

The following is a description of the decomposition process: 

Determine the local peak of the signal 𝑠′
1(𝑛), and create the upper and lower envelopes via 

cubic spline interpolation. Then compute average of upper and lower envelopesΕ1(𝑛): 

 𝑠′
1(𝑛) = 𝑠′(𝑛) − Ε1(𝑛)                                                                                                       (17) 

Use the standard deviation (∆S)to decide whether to continue or halt the sifting procedure 

described above, 

∆𝑆 = ∑ |𝑠′𝑗(𝑛) − 𝑠′(𝑗−1)(𝑛)|
2

𝑠′
(𝑗−1)
2

(𝑛)⁄𝑛
𝑛=0                                                                           (18) 

where 𝑗 denotes the total iterations. 

If ∆𝑆 is lesser than a predefined value, the procedure described above must be halted and 

compute IMF1 

𝐼𝑀𝐹1 = 𝑠′𝑛(𝑛) = 𝑠′𝑛−1(𝑛) − Ε𝑛(𝑛)                                                                                      (19) 

The residue 𝑟(𝑛) is the variances between IMF1 and signal 𝑠′
1(𝑛)  



 

 

𝑟(𝑛) = 𝑠′𝑛(𝑛) − 𝐼𝑀𝐹1                                                                                                           (20) 

Reiterate step 1 to step 4 till 𝑟𝑥(𝑛) turn out to be a monotonic function  

𝑟𝑗 = 𝑟𝑗−1 − 𝐼𝑀𝐹𝑗     , 𝑗 = 2,3, … 𝑥                                                                                              (21) 

Consequently, a residual that is isolated from 𝑠′
1(𝑛) and the number of IMFs are derived. 

(𝑛) = ∑ 𝐼𝑀𝐹𝑗
𝑥
𝑗=1 (𝑛) + 𝑟(𝑛)                                                                                                        (22) 

The proposed model constructs a two-dimensional frequency matrix using IMFs and residual.  

The constructed frequency matrix (𝐹) was used as the input of the SASTLNet. 

3.3 Self-Attentive spatio-temporal learning network (SASTLNet) 

In this work, SASTLNet is proposed for extracting the spatiotemporal information 

concurrently. SASTLNet is developed specifically for short-term weather forecasting. Here, 

stacked RNN is used for describing spatiotemporal sequence forecasting problems as in Figure 

3. The SASTM module is the fundamental unit of SASTLNet. By extracting extremely abstract 

information layer by layer and transferring them back to the values of the weather parameter, 

the SASTM may generate forecasting results.  
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Figure 3.  Realization of (a) SASTLNet (b) SASTM 

 The following expression illustrates the spatial dimension status conversion between 

the two-time steps.   

�̅�𝑛
0 = �̅�𝑛−1

𝑚                                                                                                                                      (23) 

�̅�𝑛
0 = �̅�𝑛−1

𝑚                                                                                                                               (24) 

Where �̅� denotes the spatial and temporal memory, �̅�represents the status of hidden layer, and 

𝑚 denotes the amount of stacked recurrent network layers. It should be noted that the 

spatiotemporal memory's starting value �̅�0
0is initiated with all zeros. For 2 ≤  ℒ ≤  𝑚, the 

SASTM network with 𝑚 -layer stack is developed using the following expression:  

[�̅�𝑛
1, 𝐶�̅�

1, �̅�𝑛
1 = 𝑆𝐴𝑆𝑇𝑀1(𝐹𝑛, �̅�𝑛−1

1 , 𝐶�̅�−1
1 , �̅�𝑛

0)                                                                   (25)   

[�̅�𝑛
ℒ, 𝐶�̅�

ℒ, �̅�𝑛
ℒ] = 𝑆𝐴𝑆𝑇𝑀1(�̅�𝑛

ℒ−1, �̅�𝑛−1
ℒ , 𝐶�̅�−1

ℒ �̅�𝑛
ℒ−1)                                                                   (26) 

Where hidden status �̅�𝑛
1are tensors, 𝐶�̅�

1denote cell outcome and 𝐹𝑛represents input frequency 

matrix. Observe that the initial SASTM layer is designated as 𝑆𝐴𝑆𝑇𝑀1. Figure 3 (b) depicts 

the proposed SASTM architecture. The SASTM is constructed using C-LSTM. It is utilized 



 

 

for capturing the required data in the temporal dimension. An additional self-attention module 

based on C-LSTM is introduced for capturing the long-term dependences of contextual data in 

the spatial dimension. Lastly, weather data is predicted by combining the data on temporal and 

spatial dimensions.  

3.3.1.  Temporal Learning: 

Initially, the convolutional gating unit in C-LSTM is utilized for obtaining the present changes 

in the weather data along the temporal domain based on the hidden status data �̅�𝑛
ℒ−1. 

Subsequently, the proposed model updates the preceding temporal cell state 𝐶�̅�−1
ℒ to generate 

temporal unit 𝐶�̅�
ℒ as indicated by the green line container in Figure 3. The temporal data transfer 

procedure is expressed as follows:  

𝑝𝑛 = tanh (𝜔𝑓𝑝 ∗ �̅�𝑛
ℒ−1 + 𝜔ℎ𝑝 ∗ �̅�𝑛−1

ℒ + 𝛽𝑝)                                                                       (27) 

𝑞𝑛 = 𝜎(𝜔𝑓𝑞 ∗ �̅�𝑛
ℒ−1 + 𝜔ℎ𝑞 ∗ �̅�𝑛−1

ℒ + 𝛽𝑞)                                                                            (28)       

𝑔𝑛 = 𝜎(𝜔𝑓𝑔 ∗ �̅�𝑛
ℒ−1 + 𝜔ℎ𝑔 ∗ �̅�𝑛−1

ℒ + 𝛽𝑔)                                                                                       (29) 

𝐶�̅�
ℒ = 𝑔𝑛°𝐶�̅�−1

ℒ +𝑞𝑛°𝑝𝑛                                                                                                            (30) 

where 𝜎 denotes the sigmoidal activation function, ‘∗’ and ‘◦’ represent the convolution 

operation and the Hadamard operation correspondingly. 𝑝𝑛, 𝑞𝑛, and 𝑔𝑛define various tensors.  

 

 3.3.2. Spatial learning 

Here, C-LSTM is utilized for extracting spatial changes in the weather data based on�̅�𝑛
ℒ−1 and 

the cell state �̅�𝑛
ℒ−1. After that the spatial cell status �̅�𝑛

ℒ−1of the preceding layer is updated for 

generating a fresh spatial unit �̿�𝑛
ℒ . Then the ladder self-attention (LSA) is used to give 

importance to the spatial data �̿�𝑛
ℒextracted by the C-LSTM operation. This allows the network 

to concentrate on the relationship between all data in the same setting as in blue dotted line 

container in Figure 3. The spatial data transfer procedure is expressed as follows:  



 

 

�̿�𝑛 = tanh (�̿�𝑓𝑝 ∗ �̅�𝑛
ℒ−1 + 𝜔𝑟𝑝 ∗ �̅�𝑛

ℒ−1 + �̿�𝑝))                                                                      (31) 

�̿�𝑛 = 𝜎(𝜔𝑓𝑞 ∗ �̅�𝑛
ℒ−1 + 𝜔𝑟𝑞 ∗ �̅�𝑛

ℒ−1 + �̿�𝑞)                                                                              (32) 

�̿�𝑛 = 𝜎(𝜔𝑓𝑔 ∗ �̅�𝑛
ℒ−1 + 𝜔𝑟𝑔 ∗ �̅�𝑛

ℒ−1 + �̿�𝑔)                                                                             (33) 

�̿�𝑛
ℒ = �̿�𝑛°�̅�𝑛

ℒ−1 + �̿�𝑛°�̿�𝑛                                                                                                       (34) 

�̅�𝑛
ℒ = 𝐿𝑆𝐴 (�̿�𝑛

ℒ)                                                                                                                      (35) 

where �̿�𝑛, �̿�𝑛, and �̿�𝑛 are tensors and 𝐿𝑆𝐴(·) denotes ladder self-attention operation. 

3.3.3. Ladder self-attention block (LSA) 

The proposed SASTLNet utilizes LSA for greatly improving the system's capacity to represent 

global spatial information. The traditional self-attention modules are challenging to implement 

in edge computing devices like FPGAs that have limited memory and processing power. In 

order to lower the computational cost, a lightweight LSA block that models local self-attention 

in each branch is introduced. The LSA unit distributes the input feature map to various branches 

after dividing it into several equal sections along the channel dimension as in Figure 4 (a).  
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Figure 4.  Self-attention block (a) LSA (b) DSA 

Initially, the dynamic self-attention (DSA) with the dynamic self-windowed multi-head self-

attention (DSW-MHSA) processes the input features in the 1st branch without using a shift 

process. The properties of the remaining two branches are changed in different ways to 

represent various local relations. DSW-MHSA performs 1 × 1 convolution on the input feature 

for yielding the query and key. This process is utilized for computing the resemblance between 

the feature points. The DSW-MHSA is used for modelling long-range dependences after 

delivering the output features for each branch. After modelling the local relations, the data 

controlled in the divided windows of the present branch is interacted with data external to the 

window in the subsequent branches.  

This reduces the training time of the LSA unit and allows it to represent long-range relations 

between data in distinct windows with the aid of many branches. The LSA blocks are 

legitimately calculated as 



 

 

�̂�𝑛 = DSW_MHSA (�̿�𝑛
ℒ , 𝑂𝑛−1)                                                                                              (36)        

DSWMHSA(�̿�𝑛
ℒ, 𝑂𝑛−1) = softmax (

𝑄
�̿̿̿�𝑛

ℒ𝐾
�̿̿̿�𝑛

ℒ

√𝑐
)𝑂𝑛−1 + �̿�𝑛

ℒ                                                     (37) 

𝑂𝑛−1 = 𝐿𝑔𝑡𝐹𝐹𝑁(𝐿𝑁(�̂�𝑛))                                                                                                   (38) 

�̃� = 𝐴𝐹𝑈(𝑂𝑛),     𝑛 = 0,12,…                                                                                               (39) 

The DSW-MHSA uses input data of 𝑛 -th branch (�̿�𝑛
ℒ and the output characteristics of the 

(𝑛 −  1) −th branch (𝑂𝑛−1)) to compute output (�̂�𝑛). Following the DSW-MHSA output 

computation, the Light FFN (LgtFFN) and layer norm (LN) are used for producing the outcome 

of the 𝑛-th branch (𝑂𝑛).  In the end, an adaptive fusion module (AFM) is created to produce 

the LSA block's output (�̃�) based on the outcome of every branches. Here, LgtFFN is projecting 

the input with  𝑐2 channels to a finer feature with  𝑐2 4⁄  channels by using a fully connected 

(FC) layer with 𝑐 channels. After modeling local interactions with a depthwise convolution, 

the channels are restored using a pointwise convolution. At last, the AFM concatenates the 

outcome of every branch and transmitted to two FC layers to produce the weights for every 

data. The weights denote the significance of features from every branch.  

3.4. Aggregation Mechanism 

 The aggregation mechanism employs the communal output gate for smoothly merging the data 

stored in the temporal and spatial memories. The last hidden status relies on the spatiotemporal 

memory after the merging. The aggregation mechanism combines the memory data along both 

horizontal and vertical paths. After that, 1×1 convolutional layer is used for reducing the 

dimensionality. As a result, the size of hidden status �̅�𝑛
ℒis similar to the size of �̅�𝑛

ℒ and �̅�𝑛
ℒ. 

Here, the spatial and temporal data is incorporated in an aggregate unit to improve the 

spatiotemporal weather series prediction. At last, the aggregation mechanism creates the final 

prediction for the subsequent SASTM unit using the subsequent formula: 

 𝑜𝑢𝑡𝑛 = 𝜎(𝜔𝑓0 ∗ �̅�𝑛
ℒ−1 + 𝜔ℎ0 ∗ �̅�𝑛−1

ℒ + 𝜔𝑣0 ∗ 𝐶𝑛
ℒ + 𝜔𝑟0 ∗ 𝑀𝑛

ℒ + 𝛽𝑜)                                   (40) 



 

 

  �̅�𝑛
ℒ = 𝑜𝑢𝑡𝑛°tanh (𝜔1×1 ∗ [𝐶𝑛

ℒ , 𝑀𝑛
ℒ])                                                                                   (41) 

Overall, the spatiotemporal information was retrieved simultaneously by the SASTLNet 

model. The SASTM module improves the global context information capturing capability and 

breakdowns the restriction of C-LSTM. Because C-LSTM captured local context information 

alone. As a result, it can improve weather forecasting ability.  

4. Results and discussion 

 

In this section, the proposed SASTLNet is validated by considering actual weather datasets 

from various regions. Initially, the required simulated parameters including datasets, evaluation 

metrics, comparison methods, and hyperparameter settings are outlined. Next, the simulated 

results are analysed in detail.  

4.1. Dataset description 

The suggested WF model is verified by collecting the data from 

https://www.kaggle.com/datasets/selfishgene/historical-hourly-weather-data. It contains the 4 

meteorological variables including temperature, humidity, wind speed, and atmospheric 

pressure gathered from 6 cities of Israel. A 24-hour time step is used in the forecasting process. 

Ten percentage of the data are utilized for validation, eighty percentage are utilized for training, 

and the remaining data are utilized for testing in sequential order. Table 1 provides a summary 

of the dataset. The temperature, wind speed, atmospheric pressure, and relative humidity of 

New York are displayed in Figure 5.  

Table 1.  Dataset details  

1) Data Description 

2) Location Israel  

3) Time period Feb. 2nd, 2012 to Oct. 28th, 2017 

4) Time interval 1 hour 

5) Meteorological variable  4 

6) Weather station 6 

7) Sample size 1850 

https://www.kaggle.com/datasets/selfishgene/historical-hourly-weather-data


 

 

 

     

                                                                      (b) 

    

                                 (c) 

Figure 5.  Visualizing the target data from dataset (a) Temperature (b) Pressure (c) 

Humidity (d) Wind speed  

4.2.  Evaluation metrics 

In this work, three widely used performance measures including Root Mean Squared Error 

(RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE) are used 

for validation. They can be measured using the following equations:  

𝑅𝑀𝑆𝐸 = √
1

𝑚
∑ (𝑜𝑗 − �̂�𝑗)2

𝑗                                                                                                    (42) 

𝑀𝐴𝐸 =
1

𝑚
∑ |𝑜𝑗 − �̂�𝑗|𝑗                                                                                                            (43) 

𝑀𝐴𝑃𝐸 =
1

𝑚
∑ |

𝑜𝑗−�̂�𝑗

𝑜𝑗
|𝑗                                                                                                            (44) 

where 𝑜 and �̂� denote the actual and forecasted data. 𝑚denote the total quantity of forecasted 

values. According to these measures, lower values are preferable for the best model.  

8) Input length  48 

9) Output length 24 



 

 

4.3. Implementation details 

The Python programming language has been used to simulate the suggested model. The L1 

loss and L2 norm is used as the information loss and penalty term in the simulation respectively. 

The hyperparameter 𝜌 should be considered before the penalty term for balancing the 

information loss and penalty terms. L1 and L2 losses are used to optimize the SASTLNet 

model. Training is done with an ADAM optimizer, with a weight decay of 0.025 and an initial 

learning rate of 0.001. 100 iterations are required to terminate the training procedure. Every 

iteration has a batch size of eight. The Nvidia Titan RTX GPUs are used for all experiments, 

which are built using Python 3.6 and PyTorch 1.2.0.  

4.4. Evaluation of the proposed method 

Initially, the performance of the proposed model (SSD-FE- E3MD-SASTLNet) is validated by 

comparing it with SASTLNet (core model), SSD-FE- SASTLNet, and SSD-FE-E3MD-

STLNet (without self-attention) This analysis is carried out for emphasizing the significance 

of SSD-FE, E3MD and self-attention mechanism. The forecasting results of the proposed 

model and other models are shown in Figure 6. The actual and the predicted values of the 

weather data are indicated by solid blue lines and green lines respectively. The predicting errors 

of the models at each time point are shown by the brown histograms.  
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Figure 6.  Forecasting results of Wind speed (a) SASTLNet, (b) SSD-FE- SASTLNet, 

(c) SSD-FE-E3MD-STLNet (without self-attention) and (d) SSD-FE- E3MD-SASTLNet 

(proposed) 

  

                                                               (b) 

     

                                   (c)                                                                    (d) 

Figure 7.  Forecasting results of Humidity  (a) SASTLNet, (b) SSD-FE- SASTLNet, (c) 

SSD-FE-E3MD-STLNet (without self-attention) and (d) SSD-FE- E3MD-SASTLNet 

(proposed) 

Table 2 presents the performance indicators such as MAE, RMSE, and MAPE for each variable 

and the average performance over all variables. Here, the forecasting results of SASTLNet, 



 

 

SSD-FE- SASTLNet, SSD-FE-E3MD-STLNet (without self-attention), and SSD-FE-E3MD-

SASTLNet are compared. This table clearly shows that the predicting errors decrease when 

utilizing SSD-FE and E3MD decomposition. Consequently, the precision of weather 

forecasting is improved due to the use of multivariate data secondary decomposition 

techniques. Also, the SSD-FE- E3MD-SASTLNet model outperforms other models in terms 

of MAE and RMSE. This suggests that one may effectively capture the spatiotemporal 

properties of weather data through the addition of spatial dimension modeling on top of 

temporal dimension modeling with LSA. 

Table 2.  Ablation study 

Methods Metrics Temperature Humidity Wind 
speed 

Pressure Average 

SASTLNet MAE 1.8432 6.9214 0.8264 3.8679 5.0194 

RMSE 2.9417 8.7631 1.1245 6.5267 6.2468 

MAPE (%) 6.76 12.14 29.34 0.3198 11.694 

SSD-FE- 
SASTLNet 

MAE 1.1497 6.2142 0.7849 3.1645 4.3481 

RMSE 2.1094 8.1955 0.9174 5.8364 5.9461 

MAPE (%) 5.64 11.68 28.88 0.2851 11.2481 

SSD-FE-
E3MD-
STLNet 

MAE 0.9032 5.3241 0.6719 2.7843 3.1457 

RMSE 1.9745 7.8491 0.8431 5.1248 4.5347 

MAPE (%) 4.57 10.21 26.94 0.2411 10.9423 

SSD-FE- 
E3MD-
SASTLNet 

MAE 0.8712 4.3216 0.4231 1.2341 1.7125 

RMSE 0.9836 6.6314 0.6984 3.8467 3.0400 

MAPE (%) 3.94 9.83 25.31 0.142 9.8055 

  

Next, the multi-time step forecasting capabilities of the baseline models and the suggested 

SASTLNet are thoroughly examined. Figure 8 presents a comparison between SASTLNet and 

other baseline models, including as SARIMA, AGConvRN [27], MVTGNN [28], and HST-

GNN [31]. It shows the forecasting errors over the next 24 hours. It is observed that the HST-

GNN network outperforms the conventional SARIMA model and all other models. 

Nevertheless, following a strong beginning, the performance of HST-GNN network is 

noticeably declining in terms of MAE values as compared to proposed model. Interestingly, 

the circle-shaped blue line surpassing the other lines indicates that SASTLNet consistently 

performed better than the other models and most of the multiple-time steps.  
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                                                (c)                                                         (d) 

Figure 8.  MAE perfromance analysis against baseline models (a) temperature (b) 

Humidity (c) Wind speed (d) Pressure 

Figure 9 compare the MAPE and RMSE of the proposed model with SARIMA, AGConvRN, 

MVTGNN, convLSTM and HST-GNN for each weather forecasting variables including 

temperature, Humidity, wind speed and pressure.  In comparison to other characteristics, this 

chart demonstrates that deep learning and conventional models do worse at forecasting 

humidity. Deep learning models have not effectively capturing all pertinent dependencies due 

to the complexity and nonlinearity of the humidity parameter. However, the techniques, such 

as spatio-temporal modelling and ladder-based self-attention mechanisms. Also, it 

performance of humidity forecasting was improved by the suggested advances in deep learning 

provides reasonable performance improvements against all other meteorological variables.  
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                                              (c)                                                       (d) 

Figure 9.  RMSE and MAE performance (a) (a) temperature (b) Humidity (c) Wind 

speed (d) Pressure 

The performance of the suggested weather prediction is compared with state-of-the-art methods 

in Table 2.  Here, the traditional statistical univariate time series forecasting technique, i.e. 

Seasonal Autoregressive Integrated Moving Average (SARIMA) estimates future values by 

combining the autoregressive, differencing, moving average, and the three seasonal 

components. On the other hand, it may be difficult for them to cope with highly erratic or non-

linear seasonal variations often seen in weather data, including sudden changes in pressure or 

temperature. Hence it achieves least performance as compared to deep learning models. 

Compared to conventional SARIMA, deep learning techniques like MVTGNN [28], 

AGConvRN [27], HST-GNN [31], and SASTLNet have a number of benefits. When it comes 

to managing the transition between meteorological variables, MVTGNN and AGCRN use flat 



 

 

graph topologies. Hence, they perform worse than HST-GNN and SASTLNet. Furthermore, 

well pre-processed and organized spatiotemporal data such as graph representations of 

temporal sequences and spatial interactions are frequently needed for HST-GNNs. Model 

performance may be impacted by graph representations that are not properly structured. 

However, the proposes model does not require such complex representation and uses 

lightweight ladder self-attention to learn the most significant information required for weather 

forecasting. Hence, it outperforms all other models by achieving average MAE of 1.7125, 

RMSE of 3.0400and MAPE of 3.0400%.  

Methods Metrics Temperature Humidity Wind 

speed 

Pressure Average 

SARIMA MAE 3.1419 15.8560 1.3799 3.6863 6.0160 

RMSE 4.0347 19.2929 1.7756 6.2767 7.8450 

MAPE (%) 12.98 30.76 61.85 0.36 26.49 

MVTGNN MAE 1.4483 7.5238 1.0138 2.5149 3.1252 

RMSE 1.9290 11.2421 1.4185 4.2898 4.7198 

MAPE (%) 5.69 14.87 35.13 0.25 13.99 

AGConvRN MAE 1.2644 7.5966 0.9105 2.5471 3.0770 

RMSE 1.7461 11.2421 1.4185 4.2898 4.7198 

MAPE (%) 5.07 15.37 38.00 0.25 14.67 

HST-GNN MAE 1.2551 7.2302 0.9018 2.3911 2.9446 

RMSE 1.7287 10.9434 1.3038 4.2666 4.5606 

MAPE (%) 4.98 14.66 36.73 0.23 14.15 

SASTLNet MAE 0.8712 4.3216 0.4231 1.2341 1.7125 

RMSE 0.9836 6.6314 0.6984 3.8467 3.0400 

MAPE (%) 3.94 9.83 25.31 0.142 9.8055 

 

5. Conclusion 

This study developed a unique hybrid weather forecasting model using a multivariate data 

secondary decomposition approach and deep learning algorithm to increase the precision and 

dependability of weather forecasting. The suggested model uses SSD-FE to filter out some 

noise components and extract significant data from a multivariate meteorological series. The 

denoised multivariate series is then broken down into corresponding IMFs and residuals using 

various frequencies by E3MD. SASTLNet then extracts characteristics related to correlation in 



 

 

both the spatial and temporal domains. In particular, the SASTM module makes sure that the 

memory states reflect the summarized spatial properties in the horizontal path and passed via 

the time states in the vertical path. A progressive shift approach is introduced to model long-

range dependences using local self-attention on every branch and interrelating between these 

branches. This improves computation efficiency and expands the receptive field of the LSA 

unit. The findings indicate that the suggested model outperforms the other baseline models in 

terms of generalization and forecasting accuracy.  The limitations of the work is could focus 

on optimizing the computational efficiency of the model, potentially through techniques like 

model pruning, parallelization, or leveraging specialized hardware like GPUs and TPUs to 

reduce inference time. 
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