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ABSTRACT 

The incidents occurring within the marine environment are supported by various Decision Support 

Systems (DSS), both in simulation and intervention. Accurate and real-time data inputs into these 
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systems greatly contribute to the effective and prompt decision-making process. However, the 

absence of these systems in all situations or the inability to provide real-time data inputs can 

negatively impact the effectiveness of decision processes. This study aims to create a method that can 

enable reliable and accurate predictions regarding oil pollution and the cost-effective execution of 

certain decision processes. For this purpose, an exploratory study with various cases of ship-sourced 

oil pollution has been simulated using the Potential Incident Simulation Control and Evaluation 

System (PISCES). Random input values for each case have been utilized in PISCES simulation 

experiments. Afterward, supervised machine learning models were trained using the simulation 

experiments data set to predict oil dispersion amount and time of oil impact on shore. Model 

hyperparameters were optimized using cross-validated grid-searches. Through hyperparameter 

optimization using grid search, XGB, Random Forest, and Gradient Boosting emerged as the leading 

models for estimating oil dispersion. However, while Gradient Boosting yielded satisfactory 

outcomes, its performance could be further enhanced with additional data. Obtained results show that 

the proposed methodology has the potential for predicting the time of impact on shore, hence for 

rapid results for standard initial actions, they can be used as an alternative DSS to PISCES. 

Keywords: marine environment, machine learning, oil pollution, decision support system  



 

3 
 

1. Introduction 

In interventions to incidents occurring in marine environment, the time factor is the primary criterion 

to be considered, both in search and rescue operations aimed at minimizing loss of life and property 

and in interventions to marine pollution. Changes occurring in the structures of chemicals after the 

interaction with seawater make intervention increasingly difficult over time. Therefore, prompt 

intervention in the disposal of polluting substances is crucial to minimizing harm to the ecological 

balance (Zeeshan et al., 2022), (Muhammad et al., 2024), (Muhammad et al., 2022). Considering the 

lessons learned from previous marine pollution incidents, technological capabilities such as predictive 

dispersion modeling to anticipate the possible movements of pollution, control, evaluation, and 

Decision Support Systems (DSS) have been developed to prevent similar events from occurring and 

to enable effective and rapid response once they occur. 

DSS plays a crucial role in offering decision-makers a comprehensive understanding of incident areas 

during search and rescue and pollution response operations following maritime accidents. They 

achieve this by continuously monitoring and integrating real-time data about various sea surface, 

subsurface, and above-sea surface parameters. These parameters encompass a wide range of factors, 

such as oil evaporation, dispersion, degradation, and viscosity changes linked to pollution. 

Additionally, DSS incorporates information on meteorological conditions, sea state, surface currents, 

coastal geography, water depth, locations of ecological sensitivity, availability of intervention 

equipment, and other pertinent characteristics specific to the incident area. This holistic approach 

enables decision-makers to make informed choices and optimize their responses in maritime 

emergency scenarios (Delgado et.al., 2006). Among this spectrum of variables, the dynamic real-time 

inputs, such as meteorological conditions, surface currents, sea conditions, and the presence of other 

vessels in the incident area, hold particular significance. These dynamic factors are instrumental in 

facilitating effective and prompt decision-making within the DSS. Their involvement ensures that 

decision-makers have access to continuously updated information, allowing them to make timely and 

well-informed decisions essential for managing maritime emergencies.  
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However, both cost and technological limitations make it not always possible to establish such a 

decision support system and achieve real-time integration of all static and dynamic data. This study 

aims to provide an alternative framework for decision support systems, using machine learning, to 

develop an intervention strategy for potential incidents at sea. Thus, an alternative methodology has 

been introduced, detached from the conventional decision support system paradigm, aimed at 

identifying two pivotal criteria essential for formulating intervention strategies in the context of 

marine pollution incidents. This innovative approach offers valuable insights and represents a 

departure from traditional methodologies. It serves as a foundation for more extensive and all-

encompassing investigations within the realm of marine pollution management. 

In the context of oil spill incidents, there exists a range of regulations designed to mitigate and prevent 

such occurrences. When a vessel adheres to these regulations, it can reasonably be assumed that all 

feasible preventive measures have been implemented to minimize the risk of spillage. However, in 

the unfortunate event of an oil spill, it is imperative to ensure a swift and effective response. The 

primary objective of this research is to develop a method capable of delivering reliable and precise 

predictions about oil pollution incidents while also facilitating cost-effective decision-making 

processes. Acquiring comprehensive datasets related to real-world oil spill events in marine 

environment is particularly challenging. Consequently, to circumvent this limitation, an exploratory 

approach has been adopted, wherein various scenarios of ship-induced oil pollution have been 

simulated using the Potential Incident Simulation Control and Evaluation System (PISCES). This 

approach offers a means to generate valuable insights and formulate strategies for managing oil spill 

incidents, even in cases where empirical data is limited. Utilizing PISCES enables sustainable dataset 

availability with high reliability. With the extracted data, to model the behaviors of oil spill, machine 

learning estimators have been trained using the simulation experiments data set for prediction of oil 

dispersion amount and time of oil impact on shore. 

Supervised Machine Learning (SML) techniques, although a fairly new concept in the maritime 

domain, have been in use for the prediction of various systems whether it is on ship movement 
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(Bassam et al., 2022; Nielsen et al., 2022), ship machinery (Guo et al., 2022; Hu et al., 2019; Lang 

et.al., 2022) onboard energy efficiency and sustainability (Erol et.al., 2020; Öztürk & Başar, 2022), 

decision making (Bal Beşikçi et al., 2016; Ozturk et.al., 2019) or marine pollution. There are two 

main modeling approaches for SML: regression and classification. Both prediction methods are 

available to use in the maritime domain. Regarding marine oil pollution, the utilization narrows down 

to considering the availability of data, which is the main component for accurate predictions. Hence, 

to evaluate the utilization of SML in oil spills, independent of the oil spill area, a systematic literature 

review has been carried out. 

The systematic literature review approach enables rigorously reviewing several studies on SML 

applications on oil spills instead of an examination of independent studies while reducing the 

probability of carrying out a biased literature review. The systematic literature review methodology 

has been derived from the original guidelines set by (Kitchenham 2004). 

An electronic search on the Web of Science Core Collection (WoSCC) database was performed for 

the systematic literature review. In the search process, AB= ("machine learn*") AND AB= ("oil* 

spil*" OR "mari* pollut*" OR PISCES) search code has been utilized for acquiring a wide range of 

studies on the main search subject. Instead of solely focusing on marine oil pollution, for evaluating 

the application of SML and best estimators, the cases have not been limited to a keyword. Initially, 

94 studies resulted. To support the results' reliability, Science Citation Index- Expanded indexed 

journal articles have been extracted for search settings. After filtering and removing unrelated articles, 

29 studies have been found. For this study, image processing has not been considered and only studies 

on regression and classification prediction models using numerical values have been included. With 

the inclusion-exclusion criteria set, 12 studies have been extracted for evaluation. The results of the 

systematic literature review are given in Table 1 below. 

Table 1. Results of the systematic literature review. 

Article 

No 
Reference 

Publication 

Year 

Machine 

Learning Model 

Oil Spill 

Case 
Best Estimator 
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A1 
(Khlongkhoi 

et.al., 2019) 
2019 Regression 

Marine 

Oil Spill 

Deep Neural 

Network 

A2 (Li et al., 2021) 2021 Classification 
Marine 

Oil Spill 

Deep Neural 

Network 

A3 
(M. Yang et al., 

2021) 
2021 Regression 

Marine 

Oil Spill 
XGB Regressor 

A4 
(Chen et al., 

2021) 
2021 Classification 

Marine 

Oil Spill 

Random Forest 

Classifier 

A5 
(Mohammadiun 

et al., 2022) 
2022 Regression 

Marine 

Oil Spill 

Gaussian Process 

Regression 

A6 

(Burmakova & 

Kalibatienė, 

2022) 

2022 Regression 
Ground 

Oil Spill 

Adaptive Neural 

Fuzzy Inference 

System 

A7 
(Kaplan et al., 

2022) 
2022 Regression 

Ground 

Oil Spill 

Convolutional 

Neural Network 

A8 
(Hafezi et al., 

2022) 
2022 Classification 

Marine 

Oil Spill 

Subtractive 

Clustering 

Algorithm (SCA) 

and Fuzzy C-Means 

(FCM) Algorithm 

A9 
(Carvalho et al., 

2022) 
2022 Classification 

Marine 

Oil Spill 

Artificial Neural 

Network 

A10 
(J. Yang et al., 

2023) 
2023 Classification 

Marine 

Oil Spill 

Convolutional 

Neural Network 

A11 
(Wang et al., 

2023) 
2023 Regression 

Ground 

Oil Spill 

Convolutional 

Neural Network 

A12 
(Genovez et al., 

2023) 
2023 Classification 

Marine 

Oil Spill 
SVM 

 

According to the results of the systematic literature review, most of the studies have focused on 

marine oil spills. The percentage of utilization of machine learning models is found to be distributed 

evenly, where 50% of the studies are for regression and classification. Neural networks have been 

found to be the best estimators among utilized models in each study. Given that multi-layered 
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perceptron models are sensitive to the number of data and distribution of the data, it is unlikely to 

establish an estimator with reliable performance metric values based on neural networks. 

It is also known that the performance of the estimator depends highly on the given data set and 

hyperparameters (Ozturk et al., 2019). To tackle the problem of data availability (Mohammadiun et 

al., 2022) utilized synthetic data, while (Ozturk et al., 2019) utilized expert opinions and fuzzy 

methodologies for compensating lack of data.  

As argued in the previous chapter, when data acquisition is limited and reliable data is out of reach 

or costly, for maintaining a decision support system, alternatives are required. This study follows an 

exploratory approach for creating an alternative to a decision support system on marine oil spills by 

evaluating SML estimators on PISCES data.  

The systematic literature review on machine learning applications on oil spills shows that none of the 

studies followed such an approach and all of them presented a limitation on data availability on oil 

spills. The outcome of this study also presents an alternative for data acquisition and synthetic data 

utilization. Considering PISCES is a simulator on oil behavior, using extracted data from PISCES 

and creating machine learning models for predicting oil spill behavior based on specific requirements 

and cases have been explored to be a well-performing decision support system methodology without 

the usage of additional complementary methods. 

2. Materials and Methods 

The general approach to the problem at hand, generating data through PISCES and providing a viable 

alternative DSS to PISCES is given below in Figure 1. Simulator-based data acquisition is not a 

method explored much in maritime transportation studies regarding machine learning. As it is not 

conventional to utilize secondary data rather than actual data for SML models, the problem that was 

tackled in this study separates itself by trying to create an alternative for a decision support system, 

that is simulation software in the case of oil spills. 
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Figure 1. The general framework of the applied methodology. 

For accessibility as a DSS alternative, conventional SML regression models have been utilized in this 

exploratory approach. As secondary data have been used from simulations, adding customized 

models or models with questionable reliability and validity has been avoided. As given in the 

framework, only hyperparameter tuning has been carried out to improve the accuracy of the 

estimators. The Scikit-Learn Library (Pedregosa et al., 2011) has been used for SML estimators with 

the addition of XGboost (Chen & Guestrin, 2016). 

3. Results 

3.1. Data Gathering 

Following the framework, 110 scenarios have been generated for PISCES simulation runs. After 

generating scenarios for ship-sourced oil spills, utilizing PISCES the generated scenarios have been 

put into simulation runs and resulting data have been extracted from the software. The most 

significant obstacles to responding to marine pollution, specifically oil pollution, that leads to 

substantial damage, arise when the oil drops from the sea surface into the water intervening 

unattainable, and when it reaches the shoreline, significantly aggravating remediation efforts. The 

two above factors—the timing of oil dispersion and the onset of oil interaction to the coast—are 

meticulously assessed when developing pollution response plans, which encompass decisions about 

the timing of interventions, the locations of equipment deployment, and the methods of those 
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interventions. Therefore the simulation runs have been carried out considering two initial targets 

which are the time for oil to reach shore and the amount of oil dispersed in tonnes.  

The outliers in the data distribution were primarily attributed to extreme scenarios in the PISCES 

simulations, such as prolonged spill durations or unusually high evaporation rates. These outliers can 

significantly affect predictive model performance, particularly in regression-based estimations. 

Furthermore, ensemble models like XGBoost and Random Forest, which are less sensitive to outliers 

due to their tree-based structure, were leveraged to achieve robust predictions. 

The main simulation run has been carried out to find time for the oil to reach shore, where time stamps 

have been extracted for each 30 minutes. On the other hand, the amount of dispersion has been taken 

from the same simulation runs in which time has also been taken as a parameter. Overall, for the first 

rounds of simulation for time for oil to reach shore after evaluating the data extracted; speed of current 

(kts), speed of wind (kts), water temperature (°C), sea state (mt), water density (kg/m3), total amount 

of initial oil (t), oil density (kg/m3), surface tension (dyn/cm), viscosity (cSt), maximum water content 

and initial distance on shore (nm) selected as parameters and 110 simulation runs have been taken as 

data for SML models. 

In the same manner, for the amount of oil dispersed; time passed (min), amount spilled (t), amount 

evaporated (t), amount stranded (t), amount floating mixture (t), max thickness (mm), slick area 

(km2), speed of current (kts), speed of wind (kts), water temperature (°C), sea state (mt), water density 

(kg/m³), oil density (kg/m³), surface tension (dyn/cm) initial viscosity (cSt), maximum water content, 

the initial distance of pollution to the coast (nm), viscosity change over time (cSt) have been 

considered as parameters. After the initial data acquisition, 1170 data points have been selected to be 

utilized in SML models. Figures 2 and 3 show the data distribution for the amount of dispersed and 

the time for oil to reach the shore  respectively. For the amount of dispersed data, some outliers have 

been observed which are the results of longer simulations and for the time of impact, the data 

distribution although does not fit any conventional distribution gives a general idea of how the 

simulations resulted. 
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Figure 2. Data distribution for the amount of oil 

dispersion in tonnes. 

 

Figure 3. Data distribution for time of oil 

impact on land in minutes.

 

In Figures 4 and 5, correlation heatmaps have been created to visualize the pairwise correlations 

between all features across the data set. A reasonable correlation rate has been determined as ~0.5 

and the highly correlated feature pairs have been identified and addressed, while features with weak 

correlation to the target variable have been kept even though they may not contribute significantly to 

the predictions. Hence, a feature selection process was carried out according to the heat map that was 

created. The features are selected based on the domain knowledge and statistical analysis that are 

used in the study. A correlation threshold set forth identified the features related meaningfully to the 

target variables: oil dispersion and time of impact on shore. A threshold of ~0.5 was selected to 

balance between features having a moderate to strong correlation, and at the same time avoid risks 

from overfitting due to multicollinearity. 
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Figure 4. Correlation heat map for all variables for predicting the amount of oil dispersion. 
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Figure 5. Correlation heat map for all variables for predicting the time of oil impact on land. 

 

3.2. Hyperparameter Tuning 

Grid Search has been used for hyperparameter tuning to determine the optimal values of a model 

when applicable (Yang et al., 2023), (Pedregosa et al., 2011). For each estimator, a range of 

hyperparameters has been defined for Grid Search to look for the best combination as given in Table 

2 and Table 3. Regarding hyperparameter ranges, a wide range has been tried, and as the range 

increased the performance decreased. Hence, the limited range has been presented in the below tables 

and vast granularity has been avoided for convenience. For all grid search applications, negative MSE 

is used for scoring and 5 folds have been used for splitting the data set for cross-validation. The 

significance of Grid Search, although computationally expensive, it ensures the models do not only 

work with given data but are generalized well into new unseen data. 
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Table 2. Grid Search hyperparameter options for predicting the amount of oil dispersion. 

Grid Search Hyperparameters for each estimator Parameter Ranges 

Decision Tree   

Max Depth [3, 4, 5, 8, 10, 20, 30, 40, 50] 

Min Samples Split [2, 3, 4, 6, 8, 10] 

Min Samples Leaf [1, 2, 3, 4] 

Random Forest   

Number of Estimators [400, 800, 1000, 1500] 

Max Depth [3, 4, 5, 8, 10, 20, 30, 40, 50] 

Min Samples Split [2, 3, 4, 6, 8, 10] 

Min Samples Leaf [1, 3, 5, 10] 

Max Features [Auto, Square root] 

Gradient Boosting Regressor   

Number of Estimators [500, 1000, 1500] 

Learning Rate [0.01, 0.05, 0.1] 

Max Depth [3, 4, 5, 8, 10, 20, 30, 40, 50] 

Loss Function [Absolute error, quantile, squared 

error, huber] 

Min Samples Leaf [50, 100, 150] 

XGBoost Regressor   

Number of Estimators [500, 1000, 1500] 

Learning Rate [0.01, 0.05, 0.1] 

Subsample [0.5, 0.7, 1] 

Booster [GBTree, GBLinear] 

Max Depth [3, 4, 5, 8, 10, 20, 30, 40, 50] 

Min Child Weight [1, 2, 3] 

Base Score [0.25, 0.5, 0.75, 1] 

SVR  

C [10, 100, 200] 

Epsilon [0.01, 0.1, 1] 

Kernel [Poly, RBF, Sigmoid] 
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Table 3. Grid Search hyperparameter options for predicting the time of oil impact on land. 

Grid Search Hyperparameters for Each Estimator Parameter Ranges 

Decision Tree   

Max Depth [3, 4, 5, 10, 20, 30, 40, 50] 

Min Samples Split [2, 3, 4, 6, 8, 10] 

Min Samples Leaf [1, 2, 3, 4] 

Random Forest   

Number of Estimators [400, 800, 1000, 1500] 

Max Depth [5, 10, 20, 40, 50] 

Min Samples Split [2, 3, 6, 8, 10] 

Min Samples Leaf [3, 4, 5, 10] 

Max Features [Auto, Square root] 

Gradient Boosting Regressor   

Number of Estimators [50, 100, 500, 1000] 

Learning Rate [0.1, 0.15, 0.2] 

Max Depth [3, 4, 5, 8, 10, 20, 30, 40, 50] 

Loss Function [Absolute error, quantile, 
squared error, huber] 

Min Samples Leaf [1, 3, 5, 10] 

Min Samples Split [2, 4, 6, 8] 

Subsample [0.5, 0.7, 1.0] 

XGBoost Regressor   

Number of Estimators [50, 100, 500, 1000] 

Learning Rate [0.01, 0.05, 0.1, 0.2] 

Subsample [0.5, 0.7, 1] 

Colsample by tree [0.5, 0.7, 1] 

Booster [GBTree, GBLinear] 

Max Depth [3, 4, 5, 8, 10, 20, 30, 40, 50] 

Min Child Weight [1, 2, 3] 

Base Score [0.25, 0.5, 0.75, 1] 

SVR   

C [10, 100, 200] 

Epsilon [0.01, 0.1, 1] 

Kernel [Poly, RBF, Sigmoid] 
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4. Discussion 

SML models have been compared with mean squared error (MSE), coefficient of determination 

(0≤R^2≤1) and mean absolute error (MAE) performance metrics. MSE measures the average squared 

distance between actual and predicted values, R2 is used for assessing the quality of model predictions 

and MAE compares the absolute error between the actual and predicted values. After model fits, for 

the amount of oil dispersion, the best hyperparameters obtained from the Grid Search are given in 

Table 4, performance metric scores for each SML are given in Table 5, and the performance 

comparisons are given in Figures 6, 7, and 8. 

Table 4. Grid Search results for estimators for the amount of oil dispersion 

SML Regression Model Optimized Hyperparameters after Grid Search 

SVR C=200; epsilon=0.1; kernel = RBF 

Decision Tree Max depth=5; min samples leaf=1; min samples split=3 

Random Forest 
Estimators=400; Max depth=10; min samples leaf=1; min 

samples split=3; max features= square root 

Gradient Boosting 
Estimators=1500; learning rate= 0.1; loss function=squared 

error; max depth=5; min samples leaf=100 

XGB 
Estimators= 1500; learning rate=0.05; max depth=3; min child 

weight=1; subsample=1; booster=gbtree; base score=1 

 

Table 5. Performance metric scores for each SML model for the amount of oil dispersion 

SML Regression Model MSE R2 MAE 

Linear Regression 11822,14 -0.086847 52,483630 

Polynomial Regression degree 2 16726,19 -61,254360 100,052274 

Lasso Regression α= 0,0001 9409,278 0.499493 49,33748 

Ridge Regression α= 0,0001 9409,284 0.499492 49,33757 

Lasso Regression α= 0,001 9409,216 0.499496 49,33664 

Ridge Regression α= 0,001 9409,283 0.499493 49,33755 

Lasso Regression α= 0,01 9408,602 0.499529 49,32826 

Ridge Regression α= 0,01 9409,265 0.499493 49,33733 

Lasso Regression α= 0,1 9402,631 0.499846 49,24441 
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Ridge Regression α= 0,1 9409,093 0.499503 49,33509 

Lasso Regression α= 1 9369,238 0.501623 48,54825 

Ridge Regression α= 1 9407,389 0.499593 49,31275 

Lasso Regression α= 10 9842,174 0.476466 43,82178 

Ridge Regression α= 10 9392,214 0.5004 49,09507 

Lasso Regression α= 100 11561,68 0.385 39,97093 

Ridge Regression α= 100 9344,653 0.50293 47,4382 

Lasso Regression α= 1000 14044 0.252958 44,34885 

Ridge Regression α= 1000 9863,075 0.475354 44,67469 

SVR 15883,71 0.155098 38,501 

Decision Tree 4822,661 0.743468 13,90511 

Random Forest 949,599 0.949488 7,517505 

Gradient Boosting 1191,176 0.936638 17,24098 

XGB 828,707 0.955919 6,777389 

 

Figure 6. R2 score comparison of each estimator for the amount of oil dispersion. 
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Figure 7. MSE comparison of each estimator for the amount of oil dispersion. 

Figure 8. MAE comparison of each estimator for the amount of oil dispersion. 

For the amount of oil dispersion, XGB, Random Forest, and Gradient Boosting have been observed 

to be the top performers among all models considered with R_XGB^2=0.96, R_RF^2=0.95, and 

R_GB^2=0.94 values respectively as well as having the lowest MSE and MAE values. All three top 

performers are ensemble models that leverage multiple learning algorithms to improve prediction 

performance. Even though the Decision Tree performed well enough, it was outperformed by 

ensemble models. Among others, XGBoost allows the processing of high-dimensional datasets with 

efficiency and easily embedded feature interactions without preselection bias, thus avoiding 

overfitting by a set of regularization techniques. The XGBoost algorithm is appropriate, especially 

for datasets with complicated relationships among input features, because of its iteratively minimized 
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prediction error through the optimization of residuals in its gradient boosting mechanism. Grid-search 

hyperparameter tuning ensures optimal parameter selection to improve its predictive capability 

further. Such characteristics enable XGBoost to model nonlinear relationships that are innate in the 

oil spill dataset: viscosity changes and interaction among environmental factors, such as sea state and 

oil density. With high-performance results, ensemble models can be considered to be a candidate DSS 

as an alternative to PISCES simulations for rapid prediction with reliability for predicting oil 

dispersion. 

For the time of oil impact on shore, the best hyperparameters obtained from the Grid Search are 

given in Table 6, performance metric scores for each SML are given in Table 7, and the performance 

comparisons are given in Figures 9, 10, and 11. 

Table 6. Grid Search results for estimators for the time of oil impact on shore. 

SML Regression Model Optimized Hyperparameters after Grid Search 

SVR C=200; epsilon=0.1; kernel = RBF 

Decision Tree Max depth=3; min samples leaf=4; min samples split=2 

Random Forest 
Estimators=1000; Max depth=5; min samples leaf=4; min samples 

split=2; max features= auto 

Gradient Boosting 
Estimators=50; learning rate= 0.2; loss function=huber; max 

depth=3; min samples leaf=10; min samples split=2; subsample= 1 

XGB 

Estimators= 50; learning rate=0.1; max depth=5; min child 

weight=3; subsample=0.5; booster=gbtree; base score=1; 

colsamlpe bytree=1 

 

Table 7. Performance metric scores for each SML model for the time of oil impact on shore. 

SML Regression Model MSE R2 MAE 

Linear Regression 58740,882286 -20,655910 138,343622 

Lasso Regression α= 0,0001 9660,976163 0.421533 75,071723 

Ridge Regression α= 0,0001 9660,982922 0.421533 75,071873 

Lasso Regression α= 0,001 9660,876227 0.421539 75,069761 

Ridge Regression α= 0,001 9660,949639 0.421535 75,071230 

Lasso Regression α= 0,01 9659,945540 0.421595 75,050049 
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Ridge Regression α= 0,01 9660,617279 0.421555 75,064800 

Lasso Regression α= 0,1 9651,792903 0.422083 74,861490 

Ridge Regression α= 0,1 9657,340705 0.421751 75,000713 

Lasso Regression α= 1 9602,074530 0.425060 73,711481 

Ridge Regression α= 1 9628,941944 0.423452 74,380531 

Lasso Regression α= 10 9708,940289 0.418661 77,001600 

Ridge Regression α= 10 9590,047414 0.425780 73,825956 

Lasso Regression α= 100 17123,963067 -0.025325 108,279747 

Ridge Regression α= 100 11522,261521 0.310086 85,268750 

Lasso Regression α= 1000 17123,963067 -0.025325 108,279747 

Ridge Regression α= 1000 15745,280553 0.057226 103,575249 

Decision Tree 10476,396063 0.372709 73,988470 

Random Forest 9173,914970 0.450697 71,717453 

Gradient Boosting 5107,329803 0.704190 49,573632 

XGB 5963,364088 0.642934 51,573956 

SVR 8422,224413 0.495706 63,193655 

Linear Regression 58740,882286 -20,655910 138,343622 

 

Figure 9. R2 score comparison of each estimator for the time of oil impact on shore. 

 



 

20 
 

 

Figure 10. MSE comparison of each estimator for the time of oil impact on shore. 

 

 

Figure 11. MAE comparison of each estimator for the time of oil impact on shore. 

Time of oil impact on shore research has been carried out with a small data sample as mentioned 

before. Hence the results obtained are subject to improvement. Only Gradient Boosting has been 

observed to perform well with given data with R_GB^2=0.704. Although the performance score is 

lower than expected, it is indicative of a strong fit to data with the lowest MSE and MAE scores as 

well. Ensemble models showed promising results for predicting the time of oil impact on shore same 

as the amount of oil dispersion prediction with the exclusion of Random Forest.  

It can be discussed that for oil spill behavior prediction, tree-based models outperform linear and 

polynomial regression models as well as SVR. Regularization also did not benefit regarding 

performance since a wide range of α values have been tested with none of them performing well. 
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Tree-based ensemble models, mainly Gradient Boosting and/or XGB, can serve as quick and effective 

DSS as an alternative to PISCES. While the PISCES serves as a valuable tool for visually simulating 

oil spill scenarios, it is worth noting that this simulation process can be time-consuming. In situations 

requiring swift and immediate response, the utilization of Gradient Boosting emerges as a highly 

valuable approach for expeditious decision-making and the prediction of oil spill behavior. 

5. Conclusions 

The potential impacts of oil spills can escalate into severe environmental disasters if prompt and well-

informed decisions are not implemented.  The Oil Spill Contingency and Response (OSCAR) system, 

developed by the Environmental Technology Department of the Norwegian IKU Petroleum Research 

Institute, the Search and Rescue and Emergency Response Automation System (YAKAMOS) 

developed by the Scientific and Technological Research Council of Türkiye (TÜBİTAK), the 

Potential Incident Simulation Control and Evaluation System (PISCES), and the GNOME (General 

NOAA Operational Modeling Environment) system developed by the National Oceanic and 

Atmospheric Administration (NOAA), among others, provide critical support to decision-makers for 

the effective and execution of maritime emergency response. These systems utilize meteorological 

data (e.g., wind, air and sea temperature), oceanographic data (e.g., seawater density, surface currents, 

wave conditions, depth), maritime traffic dynamics, and pollutant and response equipment data (e.g., 

viscosity, density, barrier height, skimmer capacity). The integration of static data, which must be 

preloaded and regularly updated, alongside real-time dynamic data is vital for accurately representing 

the incident scene. Therefore, it is essential for institutions and organizations that provide such data 

(e.g., meteorological offices, oceanographic/hydrographic agencies, coast guard radars, vessel traffic 

service radars/AIS, police radars, satellite surveillance systems) to ensure seamless real-time data 

integration into decision-support systems. This extensive data input and the necessity for its real-time 

processing demand substantial organizational effort and time. While the Potential Incident Simulation 

Control and Evaluation System (PISCES) serves as an effective Decision Support System (DSS) for 

addressing oil spill incidents at sea, it's important to acknowledge that the duration required to obtain 
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simulation results can be impractical in certain urgent situations. This study introduces an alternative 

approach by employing supervised machine learning techniques as a means to expedite the estimation 

of critical parameters such as the extent of oil dispersion and the time it takes for oil to reach coastal 

areas. Unlike PISCES, which excels in scenario-specific customization and in-depth application, 

machine learning models offer the distinct advantage of providing rapid results for standard initial 

actions and adaptability to a wide range of scenarios. This approach aims to strike a balance between 

precision and expeditious decision-making in managing oil spill incidents.  

With hyperparameters optimized with Grid Search, for estimating the amount of oil dispersion, XGB 

(R^2=0.96), Random Forest (R^2=0.95), and Gradient Boosting (R^2=0.94) have been observed to 

be top performers and for estimating time for oil to reach shore, Gradients Boosting (R^2=0.704) 

gave satisfactory results, with room to improve on with more data. The findings of this study 

demonstrate the superiority of tree-based models over other models, with ensemble models surpassing 

individual decision trees in terms of prediction performance.  

While ensemble learning approaches, such as XGBoost and Gradients Boosting, performed extremely 

well, further applications of these techniques might still be limited due to computational resources 

and sizeable datasets, especially for real-time applications or less number of datasets. Moreover, 

reliance on synthetic data based on simulations may limit the validity of the results under field 

conditions. While the performance of ensemble models was good, their interpretability is lower 

compared to the simpler models, which may present some challenges for decision-makers who seek 

clear explanations of predictions. These limitations point toward avenues of future research involving 

the development of interpretable ensemble methods and validation with real-world datasets. 

In conclusion, while PISCES offers valuable capabilities for visually simulating oil spill scenarios, 

it's important to acknowledge its inherent time-consuming nature. In contrast, ensemble models, 

which emerged as the top-performing techniques in this research, stand out as powerful alternatives 

for expedited decision-making and prediction of oil spill behaviors. As a foundational study, this 

exploratory research showcased that supervised machine learning models can be trained as complete 
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decision-making tools for immediate and efficient responses to critical incidents such as oil spills in 

the near future with sufficient. 
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