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Abstract  12 

Biomedical waste management is essential for mitigating infection risks and environmental 13 

contamination arising from healthcare activities. This work integrates a hybrid Particle 14 
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Swarm Optimization-Convolutional Neural Network (PSO-CNN) model to present a 15 

sophisticated framework for biomedical waste management optimization in smart cities. This 16 

method greatly increases the accuracy and efficiency of waste classification across seven 17 

waste categories by combining adaptive CNN layers with a dynamic PSO algorithm in 18 

contrast to traditional methods. An extensive data foundation for urban healthcare 19 

environments was provided by the models training and validation on a varied dataset 20 

gathered over the course of eight months from top healthcare facilities such as Manipal 21 

Hospitals in Bengaluru and AIIMS in Delhi. EcoWaste, an Internet of Things-enabled waste 22 

monitoring tool that enables precise and thorough tracking of biomedical waste is at the heart 23 

of this framework. It has cloud connectivity real-time data synchronization and machine 24 

learning capabilities. The PSO-CNN model minimizes misclassification by utilizing CNNs 25 

feature extraction capabilities and PSOs optimization strengths. This results in superior 26 

metrics like 95.6% recall, 97.2% accuracy, and 97.5 % precision. The implementation of the 27 

system on low-power devices such as the Raspberry Pi 4B illustrates its effectiveness and 28 

usefulness. The PSO-CNN model outperforms conventional algorithms according to 29 

comparative analysis and provides smart cities looking to improve biomedical waste 30 

management and public health with a scalable sustainable and affordable solution. 31 

Keywords: biomedical waste management, Particle swarm optimization, Convolutional 32 

Neural Network, precision, IoT, ecowaste 33 

1.Introduction 34 

Biomedical waste management represents an essential component of healthcare operations 35 

that exerts a profound influence on both public health and environmental integrity. 36 

Biomedical waste encompasses all varieties of waste produced during the processes of 37 

diagnosis, treatment, or immunization concerning human beings or animals, which may be 38 
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infectious, hazardous, or potentially detrimental if inadequately managed. The appropriate 39 

management of this waste is imperative to mitigate health risks such as infections, 40 

environmental degradation, and the transmission of diseases. Healthcare institutions produce 41 

diverse categories of biomedical waste, including sharps, infectious waste, pathological 42 

waste, pharmaceuticals, and hazardous chemicals. To ensure efficacious management, 43 

biomedical waste must be segregated at the point of origin, and each category should be 44 

processed in accordance with its distinct disposal and treatment protocols. The establishment 45 

of explicit protocols for the segregation, collection, treatment, and disposal of biomedical 46 

waste is mandated by regulatory agencies globally, including the World Health Organization 47 

(WHO) and local environmental and health authorities. Nonetheless, despite these directives, 48 

numerous regions continue to encounter obstacles such as inadequate infrastructure, 49 

insufficient personnel training, and limited compliance with waste management protocols, 50 

which impede the effective management of biomedical waste. 51 

In order to confront these challenges, innovative technologies and methodologies are being 52 

investigated to enhance the efficiency and safety of biomedical waste management systems. 53 

For example, the incorporation of Internet of Things (IoT) devices, intelligent sensors, and 54 

machine learning algorithms provides real-time surveillance and optimization of waste 55 

segregation and disposal procedures. Such systems can ensure that waste is monitored 56 

throughout its lifecycle, thereby minimizing human error and ensuring adherence to 57 

regulatory standards. Furthermore, advancements in waste treatment technologies, such as 58 

autoclaving, microwaving, and chemical disinfection, have considerably improved the safety 59 

of biomedical waste disposal. These technologies are engineered to neutralize hazardous 60 

microorganisms, thereby rendering the waste safe for final disposal or recycling. The 61 

implementation of these methods, in conjunction with comprehensive waste management 62 

strategies, not only guarantees environmental protection but also diminishes the risks of 63 
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healthcare-associated infections and contamination. Consequently, effective biomedical 64 

waste management systems play an indispensable role in safeguarding public health, 65 

promoting sustainable development, and ensuring a secure environment for both healthcare 66 

professionals and the broader community. 67 

(Ugandar et al. 2023) introduced a hospital waste management system leveraging IoT and 68 

deep learning to enhance the efficiency and sustainability of waste handling processes. By 69 

applying these technologies, they improved waste collection accuracy, making strides toward 70 

smart city integration and sustainable healthcare waste solutions. (Altin, Budak, and Özcan 71 

2023) developed a predictive model using kernel-based SVM and deep learning to estimate 72 

the amount of medical waste generated in a private hospital in Turkey. This approach 73 

provides actionable insights for waste management in healthcare settings, allowing hospitals 74 

to anticipate waste levels and allocate resources accordingly. (Malla 2023) proposed an 75 

enhanced deep learning analytics framework focused on biomedical waste monitoring and 76 

management operations. Utilizing data analytics and advanced monitoring, the model 77 

demonstrated effective waste classification capabilities, laying the groundwork for intelligent 78 

waste management in healthcare environments. 79 

 80 

(Mythili and Anbarasi 2021) applied a deep learning-enhanced segmentation network to 81 

classify biomedical waste. Their work presents a model that effectively distinguishes various 82 

waste categories, contributing to improved waste sorting and environmental compliance. 83 

(Mohite and Sankpal 2023) designed a machine learning-based method to detect and classify 84 

biomedical waste objects. Their model focused on enhancing the detection accuracy and 85 

automating classification processes, proving useful in diverse healthcare waste scenarios. 86 

(Kannadhasan and Nagarajan 2022) reviewed recent trends in biomedical waste management, 87 



 

5 
 

highlighting the challenges and opportunities in the field. They noted the increasing adoption 88 

of machine learning and deep learning techniques, which provide advanced analytical and 89 

automation capabilities for managing complex waste types. 90 

 91 

(Sengeni et al. 2023) introduced an AI-based biomedical waste handling method, presenting 92 

an innovative solution to streamline the disposal process. The proposed model reduces 93 

manual labor and increases classification accuracy, contributing to sustainable waste 94 

management in healthcare. (Subramanian et al. 2021) examined biomedical waste 95 

management in dental practices, emphasizing the environmental impact of improper waste 96 

disposal. Their study suggests integrating AI technologies to improve compliance and reduce 97 

the ecological footprint of healthcare waste. (Deepak, Sharma, and Kumar 2022) conducted a 98 

life cycle assessment on biomedical waste management techniques, focusing on reducing 99 

environmental impact. They highlighted the importance of AI-driven models to improve 100 

waste treatment efficiency and minimize adverse environmental effects. (Verma, 2023) 101 

explored the role of big data and deep learning technologies in energy and waste 102 

management, specifically in sustainable development contexts. The study underscored the 103 

potential of deep learning to enhance the precision and sustainability of waste handling 104 

operations. (Goyal, 2022) investigated biomedical waste incinerator degradation using deep 105 

learning, which provides insights into maintaining incineration facilities and extending their 106 

operational lifespan. This research emphasizes how AI can improve the efficiency and 107 

durability of waste processing infrastructure. 108 

 109 

(Sheng et al. 2020) proposed a smart waste management system based on IoT and deep 110 

learning using LoRa and TensorFlow models. This system optimizes waste collection routes 111 
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and improves waste monitoring, contributing to more efficient urban waste management. 112 

(Bobe et al. 2023) provided a comprehensive review of deep learning-based biomedical waste 113 

detection and classification methods. Their work highlights the advantages and limitations of 114 

various models, guiding future research in developing more robust and effective classification 115 

algorithms. (Khan et al., 2022) explored a novel recycling waste classification model that 116 

combines the emperor penguin optimizer with deep learning. This model aims to classify 117 

waste for bioenergy production, showing the potential for AI to enhance resource recovery in 118 

waste management. (Wang et al. 2021) developed a smart municipal waste management 119 

system that integrates deep learning and IoT. This system demonstrated effective waste 120 

tracking and classification, aligning with smart city waste management goals. (Goyal et al. 121 

2022) reviewed biomedical waste incinerator corrosion analysis using deep learning. Their 122 

findings contribute to understanding the challenges in maintaining waste processing 123 

equipment and support the adoption of AI for predictive maintenance. (Nerkar and 124 

Mandaogade 2023) introduced a computer vision-based approach for automatic medical 125 

waste classification. Their machine learning model classifies waste types with high accuracy, 126 

providing a scalable solution for hospitals and healthcare facilities to manage waste 127 

effectively. 128 

2.Materials and Methods 129 

2.1 Data Collection 130 

The study's data originated from two busy Indian hospitals: AIIMS in New Delhi and 131 

Manipal Hospitals in Bengaluru. Over 8 months information on biomedical waste was 132 

gathered encompassing a variety of waste types such as non-infectious disposables hazardous 133 

pharmaceuticals and infectious waste sharps. This extensive data set provided a thorough 134 

basis for analysis because it covered waste types quantities and composition. The system 135 
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examines the data to identify unique waste production patterns specific to healthcare settings 136 

offering guidance on the most effective way to separate and dispose of waste. This data 137 

collection method ensures that the proposed model is contextually accurate and highly 138 

relevant for extensive waste management in smart city infrastructures.  139 

2.2 Proposed method  140 

The proposed method uses a complex hybrid model that combines a Convolutional Neural 141 

Network (CNN), and Particle Swarm Optimization (PSO) to optimize the classification and 142 

disposal of biomedical waste in urban healthcare settings. Although, PSO enhances the 143 

process of optimizing model parameters which increases the accuracy of decision-making 144 

this hybrid PSO-CNN model uses adaptive CNN layers to extract features accurately. In 145 

order to enable automated waste segregation, the system uses EcoWaste, an Internet of 146 

Things-enabled tool that continuously monitors the kind and composition of waste. CNNs 147 

flexibility is enhanced and classification errors are reduced through PSO integration which 148 

dynamically updates the model in response to incoming data. Architecture in Figure 1, 149 

particularly well-suited to the diverse waste characteristics found in biomedical settings 150 

because it can be scaled for deployment in smart cities.  151 
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 152 

Figure 1 Proposed method 153 

In order to properly classify the waste, the smart waste segregation system first weighs the 154 

waste using a load cell. Both initial impact and stabilized weight measurements are 155 

distinguished. After analyzing these measurements the PSO-CNN model modifies its 156 

classification strategy in light of the weight distribution and additional CNN-extracted 157 

features. The smart bin systems ultrasonic sensor then keeps track of the bins fill level 158 

notifying cloud servers and municipal waste services when the bin reaches a predetermined 159 

capacity threshold. This makes proactive waste management possible and guarantees prompt 160 

waste collection. The system can be set up to limit bin access to authorized personnel and 161 

send out alerts at different fill thresholds that is 60%, 70%, 80%, and 90%, to maintain 162 

hygiene. Secure data management is made possible by the integration with cloud services 163 

which also supports monitoring of the city's waste infrastructure and protects system integrity 164 

from unwanted access.  165 

3. Proposed Algorithm:  166 
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3.1 PSO-CNN Optimization 167 

By fine-tuning CNN parameters using PSO optimization capabilities, the PSO-CNN 168 

algorithm creatively optimizes the classification of biomedical waste. The PSO component 169 

improves waste segregation and classification accuracy by iteratively updating the CNNs 170 

feature extraction weights. Starting with a population of possible CNN configurations the 171 

algorithm iteratively optimizes them using a fitness function that takes classification accuracy 172 

precision and recall into account. PSO-driven crossover mutation and selection processes are 173 

applied to every generation to find configurations that produce better performance. 174 

For each layer the CNN component is initialized with a random weight matrix represented by 175 

WWW. The weight matrix W(l) and bias b(l) are applied to the input X(l−1) from the preceding 176 

layer for each convolutional layer lll to create the feature map F(l) which is computed as 177 

follows (Eq. 1): 178 

𝐹(𝑙) = ReLU(𝑊(𝑙) ∗ 𝑋(𝑙−1) + 𝑏(𝑙))                        (1) 179 

where ∗ denotes the convolution operation and ReLU is the activation function. 180 

By assessing each configuration's fitness using the classification metrics like accuracy Acc, 181 

precision Prec, and recall Rec. For every particle iii, the fitness function f has the following 182 

definition in Eq.2: 183 

𝑓𝑖 = 𝛼 ⋅ Acc𝑖 + 𝛽 ⋅ Prec𝑖 + 𝛾 ⋅ Rec𝑖                        (2) 184 

where α, and γ are weighting factors that adjust the importance of each metric in the fitness 185 

function. 186 

Each particle’s velocity v and position p are updated in the PSO optimization process. The 187 

velocity of particle iii in the k-th iteration is updated in Eq.3: 188 
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𝑣𝑖
(𝑘+1)

= 𝜔 ⋅ 𝑣𝑖
(𝑘)

+ 𝑐1 ⋅ 𝑟1 ⋅ (𝑝best ,𝑖 − 𝑝𝑖
(𝑘)

) + 𝑐2 ⋅ 𝑟2 ⋅ (𝑔best − 𝑝𝑖
(𝑘)

)             (3) 189 

where ω\omegaω is the inertia weight, c1 and c2 are acceleration constants, r1 and r2 are 190 

random values in the range [0,1][0, 1][0,1], pi is the best position achieved by particle iii, and 191 

gbest  is the global best position. 192 

The particle position is given in Eq. 4: 193 

𝑝𝑖
(𝑘+1)

= 𝑝𝑖
(𝑘)

+ 𝑣𝑖
(𝑘+1)

                                 (4) 194 

The algorithm utilized centroid-based approach for defuzzification yields, an exact output 195 

that makes it easier to classify waste into pertinent categories. From the fuzzy classification 196 

output Cfuzzy (x) the PSO-CNN algorithm uses a centroid-based defuzzification technique to 197 

generate a single clear output for accurate classification. This is how the defuzed output 198 

Cdefuzz is calculated in Eq.5: 199 

𝐶defuzz =
∫  𝑥⋅𝐶fuzzy (𝑥)𝑑𝑥

∫  𝐶fuzzy (𝑥)𝑑𝑥
                           (5) 200 

The fuzzy outputs center of gravity is determined by this equation yielding an accurate 201 

classification outcome. 202 

By optimizing disposal strategies according to the population size and daily waste generation 203 

per region the final segregation result is calculated using weight coefficients derived from 204 

local waste production statistics. By using scenario-based sensitivity analysis the adaptability 205 

of this hybrid PSO-CNN model is further assessed guaranteeing reliable performance in a 206 

range of environmental and operational circumstances. Based on data on waste production in 207 

the area the classification output helps determine waste segregation. Let W stand for the total 208 

volume of waste divided into waste categories j according to region-specific coefficients λj.  209 
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𝑊segregated = ∑  𝑛
𝑗=1  𝜆𝑗 ⋅ 𝐶𝑗                            (6) 210 

where Cj  represents the classification output for category j, and λj  is the weight coefficient 211 

derived from regional waste production data. 212 

Sensitivity analysis quantifies the impact of parameter variation on model performance in 213 

order to guarantee reliable performance under a range of operational circumstances. For each 214 

parameter θ let S represent the sensitivity score which is determined by taking the partial 215 

derivative of the fitness function with respect to θ.  216 

𝑆𝜃 =
𝜕𝑓

𝜕𝜃
                                                  (7) 217 

This evaluates the model’s adaptability to changes in environmental conditions and 218 

operational parameters, supporting reliable waste segregation outcomes across scenarios. 219 

 220 

 221 

3.2 EcoWaste: Data analysis tool 222 

Integrated with real-time data collection and decision-making capabilities for better waste 223 

segregation, EcoWaste is a state-of-the-art IoT-based waste management tool at the heart of 224 

the suggested methodology. Using PSO-optimized CNN algorithms and IoT sensors, 225 

EcoWaste reduces human error and improves biomedical waste management efficiency by 226 

dynamically modifying waste classification parameters based on continuous data. This tool 227 

uses cloud computing to safely send data allowing healthcare facilities to track bin fill levels 228 

weight readings and waste type classification in real time. By supporting regulatory 229 

compliance and reducing environmental impact EcoWastes' use of PSO-CNN technology is 230 

in line with AI-driven goals of sustainability and operational excellence in waste 231 
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management. EcoWaste is a significant breakthrough in healthcare waste management for 232 

smart cities improving public health and promoting environmentally friendly practices by 233 

automating intricate waste handling processes.  234 

4. Results And Discussion  235 

4.1 Dataset Distribution 236 

The dataset provides a comprehensive overview of waste distribution across various 237 

categories from AIIMS in Delhi and Manipal Hospitals in Bengaluru which is explained in 238 

Table 1. Among the categories, Infectious Waste constitutes the largest portion, with a total 239 

count of 25,000 items, representing 39.5% of the waste across both locations. Sharps waste 240 

follows, totaling 9,700 items (15.3%), while Non-Infectious Disposables and Pharmaceuticals 241 

contribute 7,500 (11.9%) and 7,000 (11.1%) items, respectively.  242 

 243 

Table 1: Dataset Overview and Distribution Across Waste Categories 244 

Waste Category AIIMS 

(Delhi) - 

Count 

Manipal Hospitals 

(Bengaluru) – Count 

Total 

Count 

Percentage 

(%) 

Sharps 4,500 5,200 9,700 15.3 

Infectious Waste 12,000 13,000 25,000 39.5 

Hazardous 2,000 2,500 4,500 7.1 
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Chemicals 

Non-Infectious 

Disposables 

3,500 4,000 7,500 11.9 

Pharmaceuticals 3,200 3,800 7,000 11.1 

Pathological Waste 1,800 2,000 3,800 6.0 

Other 2,500 3,000 5,500 8.7 

Total 29,500 33,500 63,000 100 

 245 

Hazardous Chemicals account for 4,500 items (7.1%), and Pathological Waste is at 3,800 246 

items (6.0%). The 'Other' category, encompassing diverse waste types, adds up to 5,500 247 

items, making up 8.7% of the total waste. Altogether, the dataset spans 63,000 items, giving a 248 

full picture of medical waste distribution and highlighting the substantial management needs 249 

of infectious and sharps waste in particular which is shown in figure 2. 250 
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 251 

Figure 2 Dataset description  252 

4.2 Evaluation metrics  253 

The proposed PSO-CNN model demonstrates robust performance across key metrics on the 254 

test dataset, indicating its high effectiveness and reliability (table 2). With an impressive 255 

accuracy of 97.2%, the model correctly identifies a majority of cases, underscoring its overall 256 

predictive accuracy. The precision metric stands at 97.5%, showing the model's ability to 257 

accurately classify positive predictions with minimal false positives. A recall of 95.6% 258 

highlights its competence in detecting true positives, while the F1 score of 96.5% reflects a 259 

balanced trade-off between precision and recall.  260 

 261 

 262 

Table 2: Proposed PSO-CNN Model Performance Metrics on Test Dataset 263 
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PSO-CNN performance metrics  

Metric Value (%) 

Accuracy 97.2 

Precision 97.5 

Recall 95.6 

F1 Score 96.5 

Specificity 96.8 

Sensitivity 95.9 

 264 

 265 

Figure 3 Performance metrics 266 
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Additionally, the model achieves a specificity of 96.8%, ensuring it accurately excludes 267 

negative cases, and a sensitivity of 95.9%, further supporting its strong performance in 268 

identifying true positive cases effectively which is evaluated in figure 3. These metrics 269 

collectively affirm the PSO-CNN model's suitability for high-stakes applications where 270 

accurate and consistent performance is crucial. 271 

4.3 PSO Configuration 272 

The PSO parameter configuration for optimizing the proposed model is strategically set to 273 

balance exploration and exploitation which is shown in table 3. A population size of 50 274 

ensures a diverse set of solutions for robust optimization, while an inertia weight of 0.8 aids 275 

in controlling particle velocity, balancing movement toward new and previously known 276 

optimal positions. The cognitive coefficient (c1) of 1.5 allows particles to rely moderately on 277 

individual experiences, while the social coefficient (c2) of 1.8 enhances collaboration among 278 

particles by drawing them toward the global best solution. With a maximum of 200 iterations, 279 

the optimization process has ample opportunity to converge effectively. Finally, the velocity 280 

bounds are set between -0.5 and 0.5, limiting particle speed to prevent erratic movement, thus 281 

ensuring a stable and efficient search process throughout the optimization. 282 

Table 3: PSO Parameter Configuration for Optimization Process 283 

Parameter Value 

Population Size 50 

Inertia Weight 0.8 

Cognitive Coefficient (c1) 1.5 

Social Coefficient (c2) 1.8 
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Max Iterations 200 

Velocity Bounds (-0.5, 0.5) 

 284 

Sensitivity Analysis 285 

The sensitivity analysis of the PSO-CNN model under varying conditions reveals its 286 

robustness and adaptability. At the baseline, the model achieves high performance with 287 

97.2% accuracy, 97.5% precision, 95.6% recall, and an F1 score of 96.5%. A 10% increase in 288 

the weight coefficient slightly reduces these metrics, with accuracy at 96.8% and F1 score at 289 

96.1%, showing a minimal impact.  290 

 291 

Table 4: Sensitivity Analysis of PSO-CNN Model under Varying Conditions 292 

Parameter Variation 

(%) 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 Score 

(%) 

Baseline 0 97.2 97.5 95.6 96.5 

Weight Coefficient 

Increase 

+10 96.8 97.1 95.2 96.1 

Weight Coefficient 

Decrease 

-10 96.5 96.9 94.9 95.8 

Noise Addition +5 95.7 96.2 94.0 95.1 

Low Light Conditions -5 94.8 95.0 93.0 94.0 

High Load Condition +20 96.1 96.3 94.5 95.4 

Similarly, a 10% decrease in the weight coefficient leads to a small drop in accuracy (96.5%) 293 

and F1 score (95.8%), indicating stable model behavior despite parameter adjustments. Under 294 
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added noise (5%), performance shows a mild decline with accuracy at 95.7% and F1 score at 295 

95.1%, reflecting the model's resilience to environmental disruptions which is shown in table 296 

4 and figure 4. In low-light conditions, performance decreases more notably, with accuracy at 297 

94.8% and F1 score at 94.0%, suggesting sensitivity to visual data quality. During high-load 298 

conditions (+20%), the model maintains considerable stability, achieving 96.1% accuracy and 299 

a 95.4% F1 score. This analysis underscores the PSO-CNN model’s strong performance 300 

under various operational conditions, though it performs best with optimal parameter settings 301 

and visual clarity. 302 

 303 

Figure 4 Sensitivity analysis 304 

4.4 EcoWaste IoT Evaluation 305 

The EcoWaste IoT tool demonstrates high efficiency and reliability across multiple 306 

evaluation metrics, making it a robust solution for waste management monitoring. With an 307 

impressive sensor sensitivity of 98.3%, the tool accurately detects waste-related parameters, 308 

ensuring precise data capture. Data transmission latency is minimal at just 1.5 milliseconds, 309 
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enabling near-instantaneous data flow to support real-time monitoring needs. Designed for 310 

extended use, the tool operates continuously for up to 48 hours on a single battery charge, 311 

which enhances its usability in various environments.  312 

Table 5 EcoWaste IoT Tool Evaluation Metrics 313 

Metric Value 

IoT Sensor Sensitivity 98.3% 

Data Transmission Latency 1.5 ms 

Battery Life (Continuous Operation) 48 hours 

Cloud Data Synchronization Real-time 

System Uptime 99.7% 

Monthly Data Storage Capacity 10 GB 

Cloud data synchronization occurs in real-time, facilitating immediate access to data for 314 

analysis and decision-making which is explained in table 5 . The system’s uptime is a high 315 

99.7%, reflecting consistent operational reliability with minimal downtime. Additionally, it 316 

offers a monthly data storage capacity of 10 GB, ample for managing extensive waste data 317 

logs and ensuring uninterrupted data availability. Overall, these metrics showcase the 318 

EcoWaste IoT tool’s capability to deliver responsive, reliable, and scalable performance in 319 

environmental monitoring applications. 320 

4.5 Comparative Analysis: Proposed PSO-CNN vs. Other Algorithms 321 

The performance comparison of the proposed PSO-CNN model with existing algorithms 322 

reveals its superior accuracy and efficiency across all key metrics, underscoring its robustness 323 

in classification tasks. Achieving an accuracy of 97.2%, the PSO-CNN model outperforms 324 

traditional algorithms like K-Nearest Neighbors (88.3%), Support Vector Machine (90.2%), 325 
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and Decision Tree (86.9%), as well as more advanced methods such as Random Forest 326 

(91.4%) and Artificial Neural Networks (92.7%).  327 

 328 

Figure 5 Comparative analysis 329 

With a precision of 97.5% and recall of 95.6%, the PSO-CNN model surpasses even baseline 330 

CNN (94.5%) and CNN optimized with Genetic Algorithm (95.1%) in delivering balanced 331 

performance across precision and recall which is shown in table 6 and figure 5. The F1 score 332 

(96.5%) and specificity (96.8%) further highlight its accuracy in both identifying positives 333 

and excluding negatives effectively.  334 

 335 

 336 
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Table 6: Performance Comparison of PSO-CNN Model with Existing Algorithms 338 

Algorithm Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

Score 

(%) 

Specificity 

(%) 

Execution 

Time (s) 

K-Nearest 

Neighbors 

(KNN) 

88.3 87.5 85.2 86.3 86.8 0.52 

Support Vector 

Machine (SVM) 

90.2 90.8 88.6 89.7 89.5 0.47 

Decision Tree 

(DT) 

86.9 87.1 85.3 86.2 87.0 0.31 

Random Forest 

(RF) 

91.4 91.2 89.0 90.1 90.6 0.49 

Artificial Neural 

Network (ANN) 

92.7 93.0 91.2 92.1 92.0 0.45 

CNN (Baseline) 94.5 94.8 93.1 94.0 94.3 0.40 

Genetic 

Algorithm (GA) 

- CNN 

95.1 95.5 93.6 94.5 95.0 0.38 

PSO-only 93.2 93.8 91.4 92.6 92.7 0.43 

Proposed PSO-

CNN 

97.2 97.5 95.6 96.5 96.8 0.34 

 339 

Notably, the PSO-CNN model also achieves a low execution time of 0.34 seconds, marking 340 

it as efficient for high-demand applications, while other models like KNN and Random 341 

Forest report slightly higher execution times. This performance edge positions the PSO-342 

CNN as an advanced solution with optimal speed and precision in classification, enhancing 343 

its suitability for real-time, high-stakes environments. 344 
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5. Conclusion  345 

The results displayed in the tables demonstrate the noteworthy progress made by the 346 

suggested PSO-CNN model in the waste management and healthcare sectors. Infectious 347 

waste is the most common waste category according to the thorough dataset overview from 348 

two renowned hospitals. With remarkable accuracy precision recall and specificity, the 349 

PSO-CNN model demonstrates its efficacy in managing challenging classification tasks. 350 

According to the sensitivity analysis the model maintains its stability in a range of scenarios 351 

guaranteeing steady performance even in the presence of noise changes in light and other 352 

environmental influences. The EcoWaste IoT tools remarkable sensor sensitivity latency 353 

and battery life metrics further highlight the viability of incorporating cutting-edge 354 

technologies for effective waste management in smart cities. PSO-CNN performs noticeably 355 

better than current algorithms providing quicker execution times and more precise 356 

outcomes.  357 

1. Infectious waste is the largest category, accounting for 39.5% of the total trash 358 

distribution throughout AIIMS and Manipal Hospitals, underscoring its importance 359 

in hospital waste management.  360 

2. The PSO-CNN model demonstrates its capacity to categorize waste types with high 361 

reliability and efficacy by achieving outstanding accuracy (97.2%) and precision 362 

(97.5%).  363 

3. The PSO design guarantees optimal performance, successfully balancing search 364 

space exploration and exploitation, with a population size of 50 and a maximum of 365 

200 iterations.  366 

4. The model exhibits resilience in demanding real-world situations, as evidenced by 367 

its consistent performance in the presence of noise and poor light.  368 

5. The IoT tool guarantees correct waste management and effective real-time 369 
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monitoring due to its high sensitivity (98.3%) and low data transmission latency (1.5 370 

ms). 371 

6. Algorithm Comparison: The PSO-CNN model is the best option for real-time 372 

applications since it provides better accuracy and faster execution than more 373 

conventional algorithms like KNN and SVM. 374 

All of these findings lend credence to the viability of implementing PSO-CNN for 375 

intelligent, real-time waste management systems that can enhance environmental 376 

sustainability and operational effectiveness. 377 
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