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Abstract 

Floods are a major contributor to the destruction of 
infrastructure and the overall economy of afflicted 
countries, leading to loss of life and significant damage. 
Remote sensing, satellite imagery photography, global 
positioning system, and geographic information system 
(GIS) are commonly used to identify floods and analyze the 
associated damages. The research presented here 
integrates Sentinel-2 satellite images, VANET with Multi-
Agent Reinforcement Learning (MARL), and a deep neural 
RNN for early flood prediction. Sentinel-2 imaging delivers 
extensive geographical and temporal data regarding land 
cover and water bodies, while VANET-MARL provides real-
time ground-truth information and distributed decision-
making capabilities. The Deep Neural RNN efficiently 
acquires intricate patterns from the combined data to 
forecast the likelihood, intensity, and scope of floods. The 
experimental findings clearly show that the suggested 
system outperforms standard methods in terms of 
accuracy, precision, recall, and lead time. VANET-MARL 
integration improves the system's ability to adapt and 
remain strong in changing circumstances. The results 
showed that the method was 94.8% accurate in early 
predicting floods. 

Keywords: Flood Prediction, VANET-MARL, Deep Neural 
RNN, Time Series, Sentinel-2 Image, Wireless Vehicle 
Communication, Weather Report 

1. Introduction 

The yearly northeast monsoon in November and December 
2015 caused excessive rainfall, leading to the 2015 South 
India floods. The southern Indian states of Andhra Pradesh 
and Tamil Nadu were hit hard by them, particularly the 
Coromandel Coast region. The death toll was over 500, and 
over 1.8 million (18 lakh) people were forced to flee their 
homes. The floods were one of the most devastating 
natural disasters of 2015, with damages and losses 
estimated to be between three and thirteen trillion rupees 
(US$3 billion) the most expensive calamity to have ever 
happened in the country Berlin M. A et al. (2017). Due to 
bad climatic conditions, road accidents are tragic, but 
safety may significantly reduce their impact. Vehicles, 
motorcycles, bicycles, and pedestrians are all at risk of 
colliding on the road. Several factors can cause these 
situations. Vehicle conditions such as bad brakes, tires, or 
lights may result in a loss of control due to a controlled 
climate. Road circumstances such as bad weather, poor 
signage, and uneven surfaces increase the chance of an 
accident. Road safety is a VANET priority Jizhao.W et al. 
(2024). Vehicles can communicate with each other and 
roadside infrastructure (V2I) about accidents, risks, and 
abrupt slowdowns. Real-time data exchange reduces 
crashes and improves traffic flow. VANETs are benefiting 
from strong CPUs and 5G connectivity capabilities. This 
speeds up data transfer, improves network administration, 
and facilitates ITS integration. Challenges remain despite 
advances, and obstacles remain. Communication methods 
must be standardized and secure for widespread usage. 
Additionally, infrastructure rollout and older car 
compatibility are ongoing concerns Arun Mozhi Selvi. S et 
al. (2024) On the Rise, VANETs are becoming V2X (Vehicle-
to-Everything) communication. V2V (Vehicle-to-Vehicle) 
cars exchange data like speed, location, and direction, 
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allowing them to be aware of each other's movements and 
avoid collisions Figure 1. V2I (Vehicle-to-Infrastructure) 
vehicles communicate with traffic lights, road signs, and 
sensors to get updates on traffic flow, upcoming hazards, 
and optimal speed limits. V2P (Vehicle-to-Pedestrian) can 
improve pedestrian safety by allowing cars to detect 
people (especially helpful at blind spots) and warn them of 
potential danger. V2N (Vehicle-to-Network) 
communication with cellular networks allows for broader 
data exchange and connection to cloud services. V2N 
(Vehicle-to-Home) communication is to exchange data 
directly with a home environment using cellular networks 
(think LTE,5G) instead of relying on local connections like 
Wi-Fi. There are other subcategories like V2D (Vehicle-to-
Device) for in-car infotainment systems and V2G (Vehicle-
to-Grid) for electric vehicles interacting with the power 
grid. Vehicles can communicate with pedestrians, traffic 
signals, and even flying cars under these broad-term 
Techniques Riya Kumarasamy. S et al. (2023). 

(Vehicular Ad-hoc Network) technology and Deep Neural 
RNN can further optimize message dissemination and 
decision-making for drivers which hold immense potential 
for creating a real-time flood warning system. Vehicles are 
equipped with On-Board Units (OBUs) that facilitate 
communication, do data processing, and collect real-time 
data which act as an RL agent. Roadside Units (RSUs) are 
strategically positioned in flood-prone locations to gather 
data, distribute alerts, and transmit information to a 
central authority Purui. W et al. (2020). A central authority 
oversees the management of real-time data and historical 
flood data, as well as the distribution of important flood 
alerts to a broader audience, such as emergency services 
and navigation applications. Each vehicle (agent) observes 
its local data and the shared data from neighbors, forming 
a comprehensive view of the flooding situation in its 
vicinity. Alotaibi, Y., et al. (2024). Deep Learning for the 
Time Series Forecasting method is utilized to analyze 
historical water level data and weather patterns to predict 
future water levels. Surendran, R., et al. (2023), this can be 
particularly useful in capturing complex relationships 
within the data that traditional machine-learning models. 
Section 2 provides an examination of the relevant works 
concerning flood detection strategies, and the rest of the 
study is structured accordingly. The Proposed VANET-
MARL method is detailed in Section 3. Afterwards, in 
Section 4, we examine the Results and discussion, 
comparing our performance to that of alternative 
approaches. The suggested research's key outcomes are 
finally concluded in Section 5. 

2. Related works 

Aldweesh A et al. (2024) "Mlora-CBF uses simulations to 
evaluate a novel protocol that uses a modified location 
routing algorithm in a cluster-based framework. While 
flooding inside clusters has been used in cluster-based 
routing, Mlora-CBF addresses resource allocation and 
network overhead. To evaluate resource allocation and 
message delivery efficiency, the authors compare their 
protocol to existing methods using a dataset of mobility 
patterns, and network density. Chen. X et al. (2024), 

explore a quick and practical VANET IDS using Federated 
Learning (FL). We examine FL-based IDS for VANETs' 
algorithms for training local vehicle models and data 
collection strategies for generating realistic VANET 
datasets. We contrast centralized versus federated 
learning methods, emphasizing FL's privacy benefits. 
Finally, we describe our FL-based IDS for VANETs and its 
accuracy, efficiency, and privacy benefits. Hemalatha. D et 
al. (2024), novel congestion management technologies 
that efficiently manage network traffic. This research 
provides a queue model-based approach to network 
congestion analysis and a congestion control algorithm. 
This strategy can optimize data transmission and reduce 
congestion in MANETs through educated decision-making 
as illustrated in Table 1. 

 

Figure 1. Proposed Model Architecture 

3. The proposed model 

Research presented VANET-MARL, an automated flood 
monitoring and alerting emergency strategy. VANET-MARL 
predicts and classifies flooding, road, accident, water 
logging, and traffic situations for the public. VANET-MARL 
involves data standardization, Time series Forecasting-
based prediction, and hyper-parameter tweaking. Figure 2 
shows whole VANET-MARL algorithm flow. 

3.1. Pattern recognition and feature extraction  

Envision yourself operating a vehicle amidst torrential 
rainfall. Unexpectedly, your car receives a notification 
indicating a possibility of flooding along the upcoming path. 
This alert, utilizing VANETs (Vehicular Ad-hoc Networks) 
with pattern recognition and feature extraction, has the 
potential to prevent loss of life. Real-time data like rainfall 
intensity and duration are fed from nearby weather 
stations. VANET vehicles such as cars, buses, and bikes act 
as mobile sensors Figure 2. GPS Location identifies areas 
with flooded roads. Wiper Sensor detects increased wiper 
usage, potentially indicating heavy rain. Image/Video from 
Dash-cams can capture visual evidence of flooding. 
Patterns are recognized using sudden spikes in rainfall 
intensity this could indicate a downpour that might 
overwhelm drainage systems correlation between high 
rainfall and previous flood events in the area. Changes in 
traffic flow patterns sharp drops in speed or unusual 
congestion could signal road closures due to flooding. From 
the raw data and recognized patterns, the system extracts 
critical features for flood detection. The rate of change of 
rainfall has a rapid increase suggesting a higher flood risk. 
Combined analysis of rainfall data and GPS location 
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identifying areas with both heavy rain and reports of 
flooded roads. Analysis of dash-cam footage to identify 
water levels or submerged roads. 

 

Table 1. Provides the Overall Flood Detection Comparison of Exisiting Model 

Author & 
Reference 

Overview of Existing Approach 

Algorithm Methodology Achieved 

M. Adil et al. 
Reinforcement Learning (RL) with 

ANN 

Agent-based environment, reward 

function, training, evaluation 

Real-time detection, high accuracy, 

low false positive rate 

D.Amitrano et 

al. 

Support Vector Machine, 

Random Forest, Deep Learning 

Feature extraction, classification, 

change detection 
High accuracy, precision, recall) 

P. Zhong et al. YOLOv4 
Image preprocessing, data 

augmentation, transfer learning 

89.29% mAP for water depth 

recognition 

P.K Jangid et al. Hybrid (CNN+RNN) 

Combined strengths, 

spatiotemporal analysis, flood 

evolution modeling 

Early flood warning, flood impact 

assessment 

H. Farhadi et al. Multi-Layer Perceptron 
Preprocessing, feature extraction, 

classification, evaluation using R2 

Achieved R2 of 0.91 for estimating 

lake area. 

M. Mishra et al. MADD 

Decentralized multi-agent RL with 

communication, considering 

sensing and localization 

constraints. 

Achieved high coverage with 

minimal communication overhead. 

S. Sean et al. ResNet-34 Deep learning, image classification 
Accurate road mapping in remote 

areas 

S. Jialin et al. 
Segment Anything Model (SAM), 

Random Forest 

Automated sample generation, 

crop classification 

Improved crop mapping accuracy 

(F1-score 0.97-0.996) 

D. Aayush et al. Weakly supervised learning 
Encoder-decoder architecture, 

attention mechanism 

Fine-grained textual descriptions 

from satellite images without 

labeled data 

N. Suneth et al. Geometrical Variation Analysis 
Landslides in Different Geological 

Settings Using Satellite Images 

Accurate road mapping in remote 

areas 

R.Prathap 

Kumar et al. 
clustering, anomaly detection Features used, training/testing data 

Detection accuracy, false positive 

rate, computational overhead 

F. Waqar et al. Cluster-based Simulation using SUMO, NS-3 
Improved packet delivery ratio by 

20% compared to AODV 

 

3.2. Time series forecasting based stationarity of data 

The structure of the data used for flood detection consists 
of time series measurements, where each data point 
represents a specific observation at a particular time (Past, 
Present Data). The data could include water level sensor 
readings to indicate the water level at specific locations on 
the road network. The timestamp of each data point should 
have a corresponding timestamp to indicate the time of the 
observation. Depending on the system's complexity, other 
sensor data like Rain Gauge, Water level sensors such as 
ultrasonic and pressure sensors, and soil moisture sensors. 
Road traffic sensors. Radar can detect precipitation and 
even differentiate between rain, hail, and snow. rainfall 
readings or atmospheric pressure measurements might 
also be included to improve flood prediction accuracy. 
Time series data can be stationary and non-stationary. 
Stationary data are daily temperature readings in a 
particular city that might show fluctuations around an 
average temperature, with no consistent rise or fall over a 
long period. Non-stationary data are global average 
temperatures over several years would likely show an 
upward trend, indicating non-stationarity. The Augmented 
Dickey-Fuller (ADF) test EQ 1 and the Kwiatkowski-Phillips-
Schmidt-Shin (KPSS) test EQ 2 are two common statistical 

tests used to assess the stationarity of time series data. 
Unit root detection by ADF Test indicates non-stationarity. 

( )ADFStatistic   estimated coefficient of Wt 1= −
 

(1) 

( )2LM Statistic  LM  et= 
 

(2) 

where α is a numerical value, et are the residuals from the 
regression and LM represents a specific Lagrange Multiplier 
function. Data with a unit root exhibits a trend or random 
walk pattern, making future predictions difficult. ADF tests 
compare statistics against critical values. Stationarity is 
concluded if the statistic is less negative than the critical 
value at a particular significance level, rejecting the unit 
root null hypothesis. But the KPSS Test does the reverse. 
The null hypothesis is stationarity, and it seeks trends or 
seasonality. If the KPSS test statistic is greater than critical, 
stationarity is rejected and trends are present. Suppose the 
ADF statistic is highly negative (less than the critical value 
for rejection) and the KPSS statistic is low (not exceeding 
the critical value). In that case, it suggests strong evidence 
for stationarity. Similarly, If the ADF statistic is not 
significant (fails to reject the null hypothesis) or the KPSS 
statistic is high (indicating trends), the data is likely non-
stationary. Converting Non-Stationary Data into Stationary 
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Data If the data is found to be non-stationary, it may 
require preprocessing to transform it into a stationary form 
using differencing and detrending. 

3.3. VANET technology with time series analysis 

VANET technology can enhance time series analysis for 
flood detection by facilitating real-time data collection and 
dissemination across vehicles. On-board units (OBUs) in 
Vehicles are equipped with OBUs that have sensors and 
communication modules that allow vehicles to 
communicate with each other (V2V) and with roadside 
units (V2I) if deployed. The processing unit can perform 
basic data analysis and collaborate with the time series 
analysis system. vehicles share collected data with 
neighboring vehicles, pedestrian, and nearby homes within 
their communication range as shown in Pseudocode 1&2. 

( )2 2 , 1, ,Vt V VV f Tt Vt Vt Dt= −
 

(3) 

Where EQ 3, Where V_2Vt represents the communication 
between vehicles at time t, Tt denotes the time series data 
related to traffic conditions, Vt−1 and Vt represent the 
states of neighboring vehicles at times t−1and t 
respectively, and Dt represents the distance between 
vehicles at time t. 

( )2 2 , ,It V IV f Tt It Dt=
 

(4) 

Where EQ 4, V_2It represents the communication between 
vehicles and infrastructure at time t, Tt denotes the time 
series data related to traffic conditions, it represents the 
states of infrastructure (e.g., traffic signals, road sensors) at 
time t, and Dt represents the distance between vehicles 
and infrastructure at time t. 

 

Figure 2. Wireless Vehicle Communication 

( )2 2 , ,Pt V PV f Tt Pt Dt=
 

(5) 

Where EQ 5, V_2Pt represents the communication 
between vehicles and pedestrians at time t, Tt denotes the 
time series data related to traffic conditions, Pt represents 
the states of pedestrians (e.g., location, movement 
patterns) at time t, and Dt represents the distance between 
vehicles and pedestrians at time t. 

( )2 2 , ,Ht V HV f Tt Ht Dt=
 

(6) 

Where EQ 6 V_2Ht represents the communication between 
vehicles and handheld devices at time t, Tt denotes the 
time series data related to traffic conditions, Ht represents 

the states of handheld devices (e.g., smartphones, tablets) 
at time t, and Dt represents the distance between vehicles 
and handheld devices at time t. 

( )2 2 ,Nt V N Tt Nt
V f=

 
(7) 

VANET data encryption comprises sensitive real-time 
information, including vehicle positions, sensor data, and 
inter-vehicle communication. Illegal access to this data 
could threaten the privacy and security of users. The 
system employs end-to-end encryption (e.g., AES-256) to 
guarantee that all data sent among cars, roadside units, 
and the central flood prediction system is secured. This 
makes it very unattainable for unauthorized third parties to 
intercept and decipher the data. The exchange of VANET 
data among cars, roadside units, and the flood prediction 
system must be secure to prevent man-in-the-middle 
assaults. The system employs secure communication 
protocols, including TLS (Transport Layer Security) and 
IPsec (Internet Protocol Security), for data transmission. 
This guarantees that data remains encrypted throughout 
transit, so thwarting any unauthorized interception or 
alteration. 

Pseudocode 1: Vehicle Communication Protocol 

function Vehicle_Transmit(message) // Broadcast the 
message to all vehicles within range 

broadcast(message) 

end function 

function Vehicle_Receive () // Continuously listen for 
incoming messages 

while True: 

message = receive () // Process the received message 

if message.type == "Traffic Update": // Update the local 
traffic map 

elif message.type == "Hazard Warning": // Display a 
warning to the driver 

end function 

Pseudocode 2: Vehicle Communication to Road Side Unit 
Protocol 

function Vehicle_Transmit_to_RSU(message) // Find the 
nearest RSU 

nearest_rsu = find_nearest_rsu()           // Send the message 
to the RSU 

send (nearest_rsu, message) 

end function 

function RSU_Receive() // Continuously listen for incoming 
messages from vehicles 

while True: 

message = receive ()// Process the received message based 
on its type 

if message.type == "Traffic Update":      // Aggregate traffic 
data from multiple vehicles, Update a centralized traffic 
management system 

elif message.type == "Vehicle Location":  // Update the 
location of the vehicle on a digital map 

end function 
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3.4. Deep neural-RNN with time series forecasting 

Data is collected from vehicles equipped with On-Board 
Units (OBUs) in a VANET network and historical data are 
preprocessed and feature extracted for accurate flood 
detection. The input layer of the neural network with each 
circle represents a single neuron in the layer Figure 3. In 
flood prediction, these inputs represent factors like past 
and present rainfall amount, road conditions, climatic 
conditions, nearby river level, and soil moisture. Single 
hidden layer with 100 circles. Each circle represents a 
neuron in the hidden layer. Each connection has an 
associated weight, which determines the strength of the 
signal transmitted between neurons.  

 

Figure 3. Deep Neural-Recurrent Neural Network 

The neural network learns these weights during the 
training process. The neurons process the signals received 
from the input layer and apply an activation function to 
determine the output they send to the next layer. The 
number of neurons in the output layer depends on the 
hidden network. In a binary classification task, there would 
be one neuron for each class (e.g., flood / no flood). With 
two output neurons, the network may be predicting a 
binary outcome or two separate values.The model is 
initialized with the parameters of weights and biases using 
pre-trained weights. Feed the training data into the 
network and use backpropagation with an optimization 
algorithm Adam to adjust the parameters iteratively. 
Monitor the loss function on the training set and the 
validation set to ensure the model is learning effectively. 
Continue training until convergence or until a predefined 
stopping criterion is met reaching a maximum number of 
epochs or observing no improvement on the validation set. 

3.5. Sentinel – 2 Carries the Multi-Spectral Imager (MSI) of 
Flooding 

Earth Observation Platform to access Sentinel-2 data 
through Earth Observation Platforms which is an online 
portal that allows you to search for, download with 13 
different bands, covering visible, near-infrared, and short-
wave infrared ranges. Explore Sentinel-2 imagery of floods 
on roads Sentinel-2 data is typically downloaded in TIFF 
(Tagged  Image File Format) format Figure 4. 

preprocessing the satellite imagery using radiometric and 
geometric correction, cloud detection and removal and 
image normalization. feature extraction from Sentinel-2 
imagery using normalized difference water index, temporal 
analysis, and integration into the deep neural RNN Model. 

 

Figure 4. Sentinel-2 Captured Flooded Image 

4. Implementation and Results 

The research initiative emphasizes on utilizing satellite 
imagery to identify floods and subsequently transferring 
this data to automobiles through a VANET for prompt 
cognizance. 

4.1. Collection of dataset discussion 

The analysis incorporates Python 3.8, the Keras library, and 
various additional technologies. The tests were conducted 
on an Intel i5 processor running at a clock speed of 
2.20GHz, 12 GB of RAM, and a dedicated graphics card with 
a capacity of 2 GB. The Sentinel-2 captured flooded images 
trained by utilizing the Keras framework. The application 
programming interface is widely recognized and can 
function in conjunction with Tensor Flow. The collected 620 
datasets are divided into 60:20:20 ratios for training, 
validation, and Testing. 

4.2. Performance Evaluation Compared with Deep Neural 
RNN 

Accuracy is the proportion of correct flood predictions to 
total predictions eq 8. Precision is the proportion of true 
positive predictions to all positive predictions eq 9. Recall 
(Sensitivity) is the proportion of true positive predictions to 
all actual positive cases eq 10. F1-score is the harmonic 
mean of precision and recall eq 11. False Positive Rate (FPR) 
is the proportion of false positive predictions to all negative 
cases Eq 12. False Negative Rate (FNR) is the proportion of 
false negative predictions to all positive cases Eq 13. Mean 
Absolute Error (MAE) average absolute difference between 
predicted and actual flood levels Eq 14. Root Mean Square 
Error (RMSE) square root of the average squared difference 
between predicted and actual flood levels Eq 15 (Table 2). 

TP+TN
Accuracy

TP+TN+FP+FN
=

 

(8) 

TP
Precision

TP+FP
=

 

(9) 

TP
Recall

TP+FN
=

 

(10) 

Precision*Recall
F1 score 2*

Precision+Recall
− =

 

(11) 

FP
FPR=

FP+TN  

(12) 
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FN
FNR

TP+FN
=

 

(13) 

MAE Σ=  (14) 

( )( )RMSE sqrt predicted_level actual_level ^ 2 / n=  −
 

(15) 

 

Figure 5. Last 8 Years Flooded Area and Rainfall Observation. 

The proposed method achieves 94.8% accuracy, while 
Convolutional Neural Network, Recurrent Neural Network, 
Long Short-Term Memory, Generative Adversarial 
Network, Transformers, and Deep Neural RNN obtain 
90.4%, 91.1%, 92.2%, 91.2%, and 92.9%. Existing 
approaches take longer to calculate all datasets and the 
suggested technique detects events better than current 
methods. Figure 5, shows the architecture of the flooded 
area monitoring system. Environmental data is collected 
from RWI sensors on RSUs. On-board units (OBUs) gather 
vehicle-related data and location information Figure 6. 
RSUs transfer the gathered data to the governing body. The 
Data Processing authority analyzes the received data to 
determine probable flood zones by considering factors 
such as water level and meteorological conditions. The 
body disseminating information sends alerts and warnings 
to On-Board Units (OBUs) to inform drivers of flood 
conditions. RSUs also provide crucial information to 
adjacent vehicles. The Feedback Loop with On-Board Units 
(OBUs) transmits feedback to the governing body regarding 
road conditions, traffic, and other pertinent data. Authority 
refers to the primary governing body that is accountable 
for overseeing the comprehensive administration, analysis 
of data, and making decisions for the entire system. A Road 
Side Unit (RSU) refers to a stationary device strategically 
positioned in certain locations to gather data, establish 
communication with cars, buses, and bikes, and transmit 
information to the relevant authority. An onboard unit 
(OBU) is a device that is mounted in cars to gather real-time 
data, such as location, speed, and sensor readings, and 
establish communication with Roadside Units (RSUs). RSUs 
are equipped with RWI sensors to gather environmental 
data, such as water level, humidity, and temperature 
Figure 7. 

Analyzing Model Performance by analysis of predictions 
and Ground Truth by conducting a comparison between 
the filtered flooded regions derived from the Sentinel-2 

image (prediction) and the ground truth data, one can 
evaluate the precision and efficiency of the image 
processing and segmentation algorithms employed Figure 
8. Accurate measurement of training, testing, and 
validation accuracy and loss is essential in the development 
of flood detection models. Training accuracy quantifies the 
extent to which the model acquires knowledge from the 
training data, whereas testing accuracy assesses its 
effectiveness in handling unfamiliar data. Validation 
accuracy, however, is utilized to optimize hyperparameters 
and mitigate overfitting. The training and validation loss 
measures the model's error during the learning and 
evaluation processes, respectively. Through the 
examination of these measures, researchers can evaluate 
the effectiveness of the model, uncover any problems such 
as overfitting or under fitting, and make well-informed 
choices to enhance the flood detection system Figure 9. 

 

Figure 6. VANET Connectivity using Satellite (Alert Message 

Generation) 

 

Figure 7. Historical Flood Report Dataset collected using RWI 

Sensor 

 

Figure 8. Sentinel 2 Captured Flooded Area Are Segmented and 

Compared between Ground Truth and Actual Prediction 
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Table 2. Performance Analysis Using the Proposed Model 

Reference 
Framework 

Approach 
(Labeled Data in Training, Validation, and Testing Dataset) 

Accuracy Precision Recall F1-Score MAE RMSE 

60% Training 

Dataset 

CNN 92.4% 91.7% 93.1% 92.3% 91.1% 91.3% 

RNN 88.5% 87.1% 89.4% 88.1% 87.1% 88.1% 

LSTM 91.1% 91.4% 92.1% 91.1% 91.1% 91.3% 

GAN 90.1% 89.1% 91.7% 90.3% 90.4% 91.1% 

Transformers 96.7% 95.7% 97.1% 96.7% 94.1% 93.1% 

DN-RNN 94.1% 93.4% 95.1% 94.1% 94.1% 93.3% 

20% 

Validation 

Dataset 

CNN 90.4% 89.1% 91.1% 90.1% 91.1% 92.1% 

RNN 85.9% 84.4% 86.4% 85.6% 84.3% 86.1% 

LSTM 92.4% 93.7% 91.1% 92.4% 92.7% 91.7% 

GAN 88.0% 87.1% 89.1% 88.1% 88.1% 90.4% 

Transformers 91.2% 91.5% 90.5% 90.5% 90.5% 90.1% 

DN-RNN 94.2% 93.5% 95.5% 94.5% 93.5% 95.1% 

20% Testing 

Dataset 

CNN 88.3% 87.7% 89.4% 88.7% 88.7% 87.7% 

RNN 83.7% 82.1% 84.1% 83.1% 82.1% 82.3% 

LSTM 90.3% 89.3% 91.5% 90.1% 90.1% 91.1% 

GAN 86.4% 85.5% 87.4% 86.5% 86.5% 87.4% 

Transformers 92.9% 91.7% 93.7% 91.7% 92.7% 91.7% 

DN-RNN 94.8% 92.1% 93.9% 92.3% 93.1% 92.1% 

 

 

Figure 9. A) Training, Testing, and Validation Accuracy, B) 

Training, Testing, and Validation Loss 

 

Figure 10. Confusion Matrix of the VANET-MARL Approach 

A confusion matrix is a lifeline for assessing the 
effectiveness of a VANET-MARL strategy in detecting 
floods. The analysis offers an in-depth examination of 
accurate and inaccurate forecasts, classifying them as true 
positives (accurately anticipated floods), true negatives 
(accurately predicted absence of floods), false positives 
(incorrectly projected floods), and false negatives 
(incorrectly predicted absence of floods). Through the 
examination of the confusion matrix, researchers can 
evaluate the model's accuracy, precision, recall, and F1-

score, providing valuable information about the model's 
capabilities and limitations in detecting flood situations in 
the VANET environment Figure 10. 

4.3. Compared with Other State of Art Methods 

Figure 11, presents a comparison between the suggested 
flood detection system and the most advanced approaches 
available. Although it does not achieve the highest level of 
accuracy, the suggested technique effectively identifies 
flood-affected areas and displays strong performance. Our 
approach provides complete coverage of various flood 
scenarios, unlike previous methods that are restricted to 
specific regions or flood types. The method's distinctive 
advantage resides in its capacity to identify floods in 
previously unobserved geographical areas and under 
varying hydrological circumstances. Its capacity to adjust 
makes it an adaptable solution for a wide range of flood 
management concerns. On the other hand, alternative 
approaches frequently have difficulties in adapting to 
unfamiliar flood patterns, which restricts their efficacy in 
practical scenarios. 

 

Figure 12. Performance Comparison with Exisiting Model 

5. Conclusion 

In this research, early flood prediction which is integrated 
using Sentinel-2 Imagery with VANET-MARL is performed 
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on real-time datasets incorporated with Deep Neural RNN. 
Deep neural RNN increases this framework's sequential 
data analysis and pattern recognition, making flood 
forecasts more accurate. Local weather stations report 
rainfall length and severity in real-time. Two prominent 
statistical tests for stationary time series data are the 
Augmented Dickey-Fuller (ADF) and Kwiatkowski-Phillips-
Schmidt-Shin (KPSS) tests. Autos, pedestrians, and 
surrounding homes can interact and share data using 
VANET technology and time series analysis. The integration 
of Multi-Agent Reinforcement Learning (MARL) with 
Vehicular Ad Hoc Networks (VANET) results in a flexible 
system that can adjust to diverse settings and 
circumstances, offering a resilient solution for a wide range 
of geographical and climatic situations. The proposed 
methodology was proven to be effective and efficient by 
thorough testing on real-world datasets, achieving an 
accuracy rate of 94.8%. In future research, the model's 
generalizability depends on adding varied geographical 
regions and hydrological variables to the dataset. 
Additional meteorological data like rainfall and humidity 
can improve prediction accuracy.  
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