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Abstract 

The process of sedimentation in reservoirs is an important 
issue that must be addressed for effective water resource 
management. Traditional methods for predicting 
sedimentation are complex and require extensive data 
inputs. In this study, we innovate by integrating four 
distinct neural network architectures into a cohesive 
approach for prediction. Specifically, Recurrent Neural 
Networks (RNN), RNN combined with Long Short-Term 
Memory (RNN-LSTM), RNN combined with Fully 
Connected Neural Networks (RNN-FCNN), and 
Autoencoder integrated with Fully Connected Neural 
Networks (A-FCNN) were utilized to estimate sediment 
volume based on their performance. This approach is 
faster, more accurate, and can handle multiple inputs. 
Additionally, Nemenyi and Principal Component Analysis 
(PCA) tests were conducted to build more robust and 
reliable models for estimating sediment volume. These 
computational methods were tested on real-world data, 
and the models demonstrated strong predictive 
performance for a specific reservoir located in Theni, 
Tamil Nadu. The inputs selected for the model included 
the following factors such as: ·Water level storage 

capacity ·Temperature ·Precipitation ·Wind speed ·Solar 
radiation ·Vapour pressure ·Inflow ·Outflow and ·Runoff. 
For this study, a dataset spanning twenty years was 
utilized, focusing on the Vaigai Reservoir located on the 
Vaigai River in Theni. A classification system based on 
performance indices, such as Root Mean Square Error 
(RMSE), Mean Square Error (MSE), Mean Absolute Error 
(MAE), and Mean Absolute Percentage Error (MAPE), was 
proposed and applied to identify the best-performing 
model. The A-FCNN combination achieved the highest 
accuracy across the datasets, with a predictive accuracy of 
99.78% for the test data. Predicting sediment volume 
helps to improve water resource management, 
contributing to sustainable development and 
environmental protection. 

Keywords: Sedimentation, Reservoir, Deep Learning, 
Prediction, Nemenyi, Statistical Analysis 

1. Introduction 

Reservoirs play a critical role in water resource 
management, providing a reliable source of water for 
irrigation, power generation, and other essential 
functions. However, sedimentation can significantly 
impact the functionality and operation of a reservoir, 
leading to reduced storage capacity, decreased water 
quality, and other environmental issues. Traditional 
techniques for estimating sedimentation volume can be 
complex and require extensive data inputs, which can be 
challenging to obtain. Thus, the use of advanced statistical 
analysis and deep learning algorithms can offer a more 
accurate, efficient, and effective approach for predicting 
sedimentation volume in reservoirs. The application of 
deep learning algorithms in water resource management 
has been gaining momentum in recent years driven by 
their capacity to analyze vast datasets and forecast 
outcomes with precision. 

Conventional approaches to reservoir sediment volume 
prediction sometimes demand large amounts of data 
collecting and are labor-intensive. Using a comparative 
analysis of four deep learning architectures—Recurrent 
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Neural Networks (RNNs), RNNs with Long Short-Term 
Memory (RNN-LSTMs), RNNs combined with Fully 
Connected Neural Networks (RNN-FCNNs), and 
Autoencoders integrated with Fully Connected Neural 
Networks (A-FCNNs)—this work presents a unique 
approach for sediment volume estimate). This method 
makes use of deep learning's capacity to manage intricate 
interactions between sediment volume and several 
environmental variables (water level, temperature, 
precipitation, etc.). Using a mix of error measurements 
(RMSE, MSE, MAE, MAPE) and statistical methods 
(Nemenyi test, PCA), we evaluate these models on real-
world data from the Vaigai Reservoir in Theni, Tamil Nadu. 
This work not only shows how well deep learning 
performs for reservoir management but also names A-
FCNNs as the most appropriate model for precise 
sediment prediction, hence advancing sustainable 
reservoir management methods. 

In this review of related works, various studies on 
sediment prediction and transport at different locations 
are presented. Several studies specifically focus on the 
application of neural networks for sediment estimation. 
For instance, Hassan et al. (2022) evaluated a neural 
network model to estimate sediment deposition levels at 
the Tarbela reservoir, while Cigizoglu et al. (2002) focused 
on estimating and forecasting suspended sediment using 
artificial neural networks. Dibike et al. (1999) 
encapsulated numerical-hydraulic models using artificial 
neural networks, and Feyzolahpour et al. (2012) also 
employed neural networks to estimate suspended 
sediment concentration. Chen et al. (2013) applied a 
neural network approach to model rainfall-runoff caused 
by typhoons, and Goh et al. (1995) modeled complex 
systems using backpropagation-induced neural networks. 
Furthermore, Jothiprakash et al. (2008) combined 
conventional techniques with neural network models to 
estimate reservoir trapping efficiency, while Babanezhad 
et al. (2021) employed an adaptive neuro-fuzzy inference 
system (ANFIS) to simulate suspended sediment load in a 
river system. Similarly, Ehteram et al. (2019) explored the 
potential of combining various artificial intelligence 
models for improved results in sediment prediction. 

In contrast, a different set of studies emphasize sediment 
transport mechanisms and the environmental factors 
affecting sedimentation. Sayah et al. (2019) investigated 
the effects of man-made ponds on soil erosion and 
sediment transport, and Arfan et al. (2019) analyzed the 
temporal and spatial variability of flow in the Indus River. 
Chen et al. (2006) explored the temporal variations in fine 
suspended sediment concentration in the Changjiang 
River estuary and adjacent coastal waters, while Vente et 
al. (2005) focused on forecasting sediment yield and soil 
erosion at the basin level. Di Francesco et al. (2016) 
characterized flood events through sediment analysis, and 
Licznar et al. (2003) employed artificial neural networks to 
predict soil erosion and runoff at the plot level. 

Other studies concentrate on specific case applications 
and methodologies in sediment prediction. For example, 
Lee et al. (2006) provided a numerical assessment of 
sediment accumulation in reservoirs following three 

typhoon events, using a neural network model to estimate 
sedimentation. Shangle et al. (1991), Yoon et al. (1992), 
and Yitian et al. (2003) studied sedimentation status in 
reservoirs and the transport of sediment in river systems, 
proposing artificial neural network-based methods for 
sediment removal. Sharma et al. (1991) analyzed water 
and sediment yields from the High Himalayas into the 
Satluj River, while Srinivasulu and Jain (2006) compared 
different training methods for artificial neural network-
based rainfall-runoff models. Goh et al. (1994) also 
evaluated the potential for seismic liquefaction using 
neural networks. 

Together, these studies illustrate the versatility and 
growing importance of neural networks and artificial 
intelligence in sedimentation prediction and reservoir 
management. This body of research not only contributes 
to advancements in sediment modeling techniques but 
also highlights the potential of combining machine 
learning with traditional sediment transport studies to 
enhance water resource management. 

Here by using four standalone deep learning algorithms 
can potentially improve prediction accuracy and 
robustness in the dataset. Accordingly, the models have 
been explored as alternatives, providing a range of 
options for model selection depending on data availability 
and computational resources. The data analysis 
techniques like Principal Component Analysis (PCA) helps 

to reduce dimensionality and address multicollinearity 
have been used to prepare data for modeling. The models 
are trained on the prepared data. To evaluate the 
performance of each model on a validation set using 
appropriate metrics the Nemenyi test is applied to the 
validation set results. This test is to statistically compare 
the performance of these models. Also, this helps to 
identify which models perform significantly better or 
worse than others. 

These statistical analyses can provide valuable insights 
into the performance of deep learning models and help 
identify areas for improvement. This article will discuss 
the importance of statistical analysis and deep learning 
algorithms in sedimentation prediction and explore their 
applications in reservoir management. Specifically, we 
included the data description, experimental design, 
materials and methods, deep learning algorithms used for 
sedimentation prediction, results and discussions, and 
conclude with insights and recommendations for future 
research. 

The overall objectives of the study are: (1) To develop the 
four neural network models namely RNN, RNN-LSTM, 
RNN-FCNN, and A-FCNN using 20-year datasets. (2) To 
compare the prediction accuracy of four models by using 
metrics like RMSE, MAE, MSE, and MAPE; (3) To identify 
which models perform significantly better or than others 
by using the Nemenyi test. 

2. Data description 

2.1. Value of the Data 

This dataset provides valuable insights into the long-term 
behavior of a reservoir, making it an essential resource for 
studying trends and developing predictive models for 
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sediment load and other critical parameters. Collected 
over a 20-year period (2000-2020), the data allows 
researchers to analyze the interactions between various 
environmental and hydrological factors, contributing to 
more informed decision-making in water resource 
management. The dataset includes key features such as 
water level, storage capacity, maximum and minimum 
temperature, precipitation, wind speed, solar radiation, 
vapor pressure, inflow, outflow, sediment load, and 
runoff, all of which are critical in understanding sediment 

dynamics and reservoir performance. The detailed 
specifications of the dataset are provided in Table 1. 
Incorporating this dataset into predictive models can help 
forecast sediment load and other important factors, 
aiding in the management and sustainability of reservoirs. 
A visual representation or map of the reservoir's location, 
combined with this data, would further enhance 
comprehension and contextualize the significance of 
these features. 

 

Table 1. Specifications of Data 

Area Sedimentation modeling 

Type of Data Integer and Floating-point numbers 

Description Features for prediction 

Features Water Level (m), Storage (BCM), tmax(degC), tmin(degC), ppt(mm), ws(mps), srad(W/m2), vap(kPa), Inflow 

(Mm3), Outflow (Mm3), Sediment Load (MT) and Runoff (Mm3) 

Target variable Sediment Load (MT) 

Data source location Vaigai Reservoir 

Coordinates 10.0128° N, 78.1583° E 

 

The Vaigai reservoir is located in the Madurai district of 
Tamil Nadu, India. Its coordinates are approximately 
10.0128°N, 78.1583° E. The reservoir intercepts a 
catchment area of 2,253 square kilometers and consists of 
a 3,243-meter-long earthen dam and a 232-meter-long 
masonry dam with a maximum height of 33.83 meters. It 
has a gross storage capacity of 194.78 million cubic 
meters and can irrigate an area of 9,650 hectares. 

 The Vaigai River basin is characterized by hard crystalline 
rock masses of Archaean age on its western side, while 
the eastern side is composed of sedimentary rocks of 
upper Gondwana, Tertiary, and Quaternary age. The basin 
has a tropical climate with an average rainfall of about 
850 mm, which varies from region to region. The 
temperature varies with the region and ranges from 
around 25° C in January to 27.5° C to 35° C in May. The 
accurate prediction of sedimentation volume in the Vaigai 
reservoir is crucial for proper reservoir management and 
sustainable water resource use (Guerrero et al. 2016; 
Shangle, A. K. 1991). Figure 1 illustrates the study area 
map of the Vaigai reservoir. 

3. Experimental design, materials and methods 

This section includes the overall flow of the proposed 
work. The overall flow depicted in Figure 2 compares two 
approaches for predicting sediment volume: RNN-based 
and Autoencoder-based. RNNs (including LSTMs) capture 
temporal patterns in sediment data, while FCNNs learn 
complex relationships. The Autoencoder pre-trains on the 
data to extract informative features fed to an FCNN for 
prediction. Both approaches aimed to improve sediment 
volume prediction accuracy. 

3.1. Statistical analysis of datasets 

Effective statistical analysis is essential for extracting 
valuable insights from the dataset and forms the 
backbone of this study's approach to understanding 
sediment dynamics in reservoirs. By conducting 
comprehensive statistical analysis, researchers can 

identify key patterns, relationships, and trends within the 
data, which are essential for developing accurate 
sedimentation models and informed management 
strategies. Descriptive statistics are a fundamental tool in 
this process, providing a clear overview of the data's main 
characteristics and guiding subsequent analyses. In this 
study, thorough statistical analysis is crucial for improving 
our understanding of sediment behavior and its impact on 
reservoir performance. Several statistical analyses must 
be performed on the dataset before it is used in deep 
learning algorithms to ensure data quality and integrity. 
Data preprocessing techniques, such as cleaning the data 
and addressing missing values, are applied to prepare the 
dataset for accurate model training and prediction. 

 

Figure 1. Study area map of Vaigai reservoir 

3.2. Data distribution 

The importance of data distribution lies in the fact that it 
allows to understand the underlying patterns and 
characteristics of the data. By examining the distribution of 
each feature, we can identify any outliers or skewed 
distributions that may need to be addressed. Outliers may 
indicate data entry errors or extreme values that can affect 
the accuracy of the analysis, and skewed distributions of 
reservoir data can affect the validity of certain statistical 
tests (Vente et al. 2005; Francesco et al. 2016). Measures 
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like histograms, density plots, and quantiles help us 
visualize the shape and distribution of the data. 

3.3. Correlation analysis 

Correlation analysis is a non-parametric test based on 
Spearman's Rank. It can be used with ordinal data where 
the difference between ranks is more important than the 
actual values. This is one of the valuable techniques for 
identifying the relationships between pairs of features in 
dataset. By analyzing the correlation matrix, we can gain 
insights into which features are strongly correlated and 
which are weakly correlated which can inform the 
selection of appropriate deep learning algorithms and 
feature selection techniques. For instance, characteristics 
exhibiting significant correlation might be redundant and 
thus could be eliminated to enhance both the efficacy and 
comprehensibility of the model. (Hassan et al. 2022; 
Srinivasulu et al. 2006; Sharma et al. 1991). The heat map 
is used to visualize the correlations between multiple 
variables using color intensity. 

 

Figure 2. Deep Learning Architectures for Reservoir 

Sedimentation Prediction 

3.4. Descriptive statistics: 

Descriptive statistics are a fundamental tool in analyzing 
and summarizing large datasets. They are especially 
important in hydrology and environmental science, where 
vast amounts of data are collected from various sources, 
including reservoirs. Descriptive statistics allow us to 
evaluate central tendency measures (mean, median, 
mode) and variability (range, standard deviation, 
coefficient of variation, variance, interquartile range, 
standard error, skewness, and kurtosis) within the data. 
Additionally, they help to identify and handle missing data 
by implementing strategies such as imputing with the 
mean or median. This information is essential for 
developing accurate models and making informed 
decisions related to water resource management, 
sedimentation control, and other environmental issues. In 
this context, descriptive statistics are used to summarize 
and analyze reservoir sediment datasets, providing 
valuable insights into the dataset's characteristics. These 
insights play a critical role in informing strategies to 
mitigate the impacts of reservoir sedimentation. 

3.5. Principal Component test: 

The Principal Component Analysis (PCA) helps identify and 
address issues with multicollinearity in the dataset. This 

occurs when input features are highly correlated with 
each other, which can negatively impact model 
performance. This application should perform before 
training the models. It can help to reduce dimensionality 
by identifying a smaller set of uncorrelated features that 
capture most of the relevant information from the original 
data. This can improve model training efficiency and 
potentially reduce overfitting. 

4. Deep learning algorithms for sedimentation 
prediction 

Deep learning algorithms, with their capacity for handling 
complex, non-linear relationships in large datasets, offer a 
powerful solution for predicting sediment volume in 
reservoirs. The challenge in sedimentation prediction lies 
in capturing the intricate interactions between 
environmental variables and sediment accumulation. 
Deep learning models excel in addressing this complexity 
by learning from vast amounts of data, continuously 
refining their predictions over time. This makes them 
highly valuable for long-term sedimentation forecasting 
and reservoir management. However, the use of deep 
learning algorithms presents specific challenges. These 
models require large quantities of high-quality data to 
perform optimally, and expertise in data preprocessing 
and model selection is critical to their success. Moreover, 
model interpretability can be particularly demanding. The 
black-box nature of deep learning often makes it difficult 
to understand how predictions are made, complicating 
the task of explaining the model’s reasoning. To overcome 
these challenges—such as data scarcity and the need for 
transparent predictions—researchers must focus on 
curating robust datasets and employing techniques that 
enhance model interpretability. Despite these hurdles, 
deep learning remains a promising approach for 
advancing sedimentation prediction efforts (Hassan et al. 
2022; Olden et al. 2004). 

To overcome these challenges, researchers are exploring 
new approaches to deep learning, such as transfer 
learning and explainable Artificial Intelligence (AI). 
Transfer learning refers to the practice of utilizing pre-
trained models for a similar problem and fine-tuning them 
for sedimentation prediction, thus minimizing the need 
for extensive amounts of data. This aims to improve the 
interpretability of deep learning models by providing 
explanations for the model’s predictions. Another area of 
research is the integration of statistical analysis and deep 
learning algorithms to improve sedimentation prediction. 
By combining these two approaches, researchers can 
leverage the strengths of both techniques, such as 
identifying critical variables through statistical analysis 
and using deep learning algorithms to model complex 
relationships and make accurate predictions. Moreover, 
deep learning algorithms can also help in predicting 
sediment transport patterns, which can aid in predicting 
sedimentation volumes. These algorithms can analyze 
complex sediment transport models and identify patterns 
in sediment transport, which can be used to predict 
sedimentation volumes accurately (Raghuwanshi et al. 
2006; Sarangi et al. 2005). Finally, while deep learning 
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algorithms have shown great potential for sedimentation 
prediction, more research is needed to fully explore their 
capabilities and limitations and develop reliable and 
interpretable models for reservoir management. The four 
standalone algorithms RNN, RNN-LSTM, RNN-FCNN and A-
FCNN were explained below 

4.1. Recurrent Neural Networks (RNN):  

RNN offer a great approach for analyzing and modeling 
water resources data that involves temporal sequences. 
However, their suitability depends on the specific task, 
data availability, and computational resources. RNN can 
capture temporal relationships within these sequential 
data. This allows the model to perform past events might 
influence future water resources conditions, like 
prediction. 

4.2. Long Short-Term Memory Networks (LSTM): 

LSTM (Long Short-Term Memory) is one of the RNN 
variants. It can effectively learn long-term dependencies. 
These models were predicting the long-term reservoir 
sedimentation based on historical sediment loads. This 
leads modeling the impact of climate change on water 
availability patterns over extended periods. LSTMs are 
concentrated for handling time series data with complex 
patterns and dependencies (Lee et al. 2019). 

4.3. Autoencoders Networks 

Autoencoders networks are a type of neural network that 
is trained to reconstruct its input data, and has become a 
widely used method in various fields of research including 
processing sediment data. It can be used for 
dimensionality reduction, anomaly detection, and even 
time series prediction. In the case of time series data, the 
autoencoders would be trained to predict the next time 
step in the sequence, which can then be used as a basis 
for predicting sediment load. The suitability of each 
algorithm depends on the specific characteristics of the 
reservoir data and the problem we are trying to solve. The 
experiments in this study need to experiment with 
different models and hyper parameters to find the best 
approach. 

4.4. Fully Connected Neural Network (FCNN): 

In deep learning, FCNN are stacked together with multiple 
hidden layers to create deep neural networks capable of 
handling complex problems. It can handle various input 
and output data types, making them adaptable to 
different prediction tasks. They can discover intricate 
relationships between various input features and the 
target variable. This allows them to predict sediment 
volume in an efficient way. 

4.5. Integration of standalone algorithms: 

This integrated architecture of RNN-LSTM leverages the 
strengths of both RNNs and LSTMs. It can capture 
sequential information and handle long-term 
dependencies within the sequence data. Integration of 
RNN for capturing temporal dependencies and FCNN 
(RNN-FCNN) for learning spatial features offers a 
comprehensive approach for sediment load prediction, 
leveraging both temporal and spatial information. Utilizing 

Autoencoders for feature extraction and FCNN (A-FCNN) 
for prediction enables an end-to-end learning framework, 
facilitating efficient representation learning and accurate 
sediment load estimation. 

4.6. Integrated Approaches: 

These novel combinations enhance sediment load 
prediction models by harnessing the strengths of different 
architectures, leading to improved accuracy and 
robustness in reservoir sedimentation management. 

4.6.1. RNN-LSTM 

The combined RNN-LSTM followed by an FCNN for 
predicting the output can be represented in Figure 3. 

 

Figure 3. RNN-LSTM 

ŷ =gc(Wg⋅hT + bg)  

where: 

ŷ is the predicted output. gc is the activation function of 
the output layer and 𝑊𝑔 is the weight matrix for the RNN-
LSTM layer. bg is the bias vector and ℎ𝑇 is the hidden state 
output from the LSTM. 

4.6.2. RNN-FCNN 

The combined RNN-FCNN model for prediction can be 
represented in Figure 4. In this architecture, the 
integration directly models the temporal evolution of data 
(RNN) and captures complex non-linear relationships 
(FCNN) between influencing factors. 

ŷ =gc(Wg⋅gT(Wm⋅h0 + Wn⋅Y)+bg)  

Here, 𝑔𝑐 is the activation function of the output layer, and 
𝑊𝑔 and 𝑏𝑔 are the FCNN's weight matrix and bias vector. 
The RNN iterates the function 𝑔 over the input sequence 
𝑌 using weight matrices 𝑊𝑚 and 𝑊𝑛 and an initial hidden 
state ℎ0. This structure allows the model to capture 
temporal dependencies in the input data before making 
the final prediction. 

 

Figure 4. RNN-FCNN 

4.6.3. A-FCNN 

Autoencoders is used for dimensionality reduction. It first 
learns a compressed representation of the sediment 
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volume data, focusing on the most informative features. 
This compressed representation is then fed to an FCNN 
for prediction. 

The FCNN takes the encoded representation (z) from the 
autoencoder and performs the final prediction task. The 
simplified representation of A-FCNN as follows.  

ŷ=gc(z) 

ŷ   - is the predicted output  

z - is the encoded representation from the autoencoder. 

gc - FCNN function, typically consisting of multiple hidden 
layers with activation functions and a final output layer. 

 

Figure 5. A-FCNN 

Figure 5 showcased an Autoencoder integrated with a 
Fully Connected Neural Network (A-FCNN). The 
Autoencoder compresses the input data, capturing key 
features in the bottleneck layer. This compressed 
representation is then fed into the FCNN for the final 
prediction task. This two-stage approach leverages the 
autoencoder's ability to learn efficient data 
representations, potentially improving the FCNN's 
performance. 

5. Performance metrics 

R2: R2 is a statistical measure used in regression analysis to 
evaluate a model explains the variance in the dependent 
variable based on the independent variables. It ranges 
from 0 to 1. 

R2 = 1 - Σ (yi - ^yi)2 / Σ (yi - y̅)2  

RMSE and MSE: Both measure the average magnitude of 
the errors between predicted and actual values. RMSE 
takes the square root of MSE, making it easier to interpret 
in the same units as per dataset. 

RMSE = sqrt( (1/n) * Σ (yi - ^yi)^2 )  

MSE = (1/n) * Σ (yi - ^yi)^2  

MAE: Measures the average of the absolute differences 
between predicted and actual values. It's less sensitive to 
outliers compared to RMSE and MSE. 

MAE = (1/n) * Σ |yi - ^yi|  

MAPE: Represents the error as a percentage of the actual 
value. It's useful for comparing errors across different 
data ranges, but it can be problematic for zero or near-
zero actual values. 

MAPE = (1/n) * Σ | (yi - ^yi) / yi | * 100%  

Where: 

n = number of data points 

yi = actual value for the i-th data point 

^yi (pronounced "y-hat i") = predicted value for the i-th 
data point by the model 

y̅ (pronounced "y bar") = average of all the actual values 
(yi) 

6. Nemenyi test 

The Nemenyi test, a non-parametric as well as a statistical 
method, is utilized for comparing multiple groups. Its 
application is pertinent when dealing with more than two 
groups, aiming to ascertain whether there exist 
statistically significant distinctions among them. In the 
case of our reservoir data, we have multiple algorithms 
used to predict sedimentation volume. Here it is used to 
test the validation set results to statistically compare the 
performance of these models. This helps identify which 
models perform significantly better or worse than others. 

6.1. Algorithms used for Sedimentation Prediction 

There are two algorithms have been presented for 
predicting sedimentation such as prediction with RNN and 
prediction with FCNN. The algorithms are provided as 
Listing 1 and Listing 2. 

6.2. Sedimentation Prediction using RNN: 

The Sedimentation Prediction algorithm using RNN 
aims to predict the sedimentation volume in a reservoir 
based on various reservoir data inputs such as water 
level, storage, temperature, precipitation, wind speed, 
solar radiation, vapor pressure, inflow, outflow, 
sediment load, and runoff (Sarangi et al. 2005; Haykin 
et al. 1999; Lee et al. 2006; Licznar et al. 2003). The 
algorithm involves splitting the dataset into training 
and testing sequences, training the RNN with the 
training data, and evaluating the performance of the 
network using the testing data. The algorithm also 
includes applying Nemenyi and PCA tests to compare 
the performance of the networks and identify the most 
significant features for sedimentation prediction. 
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The Listing 1 presented here is for predicting 
sedimentation volume using RNN and Autoencoders 
network. The algorithm takes as input the reservoir data, 
which includes water level, storage, temperature, 
precipitation, wind speed, solar radiation, vapor pressure, 
inflow, outflow and runoff. The sediment data has been 
fragmented into training and testing sequences. Then, the 
RNN and Autoencoders network are trained with the 
training sequence and the corresponding sedimentation 
volume. The RNN and Autoencoders network are then 
evaluated with the testing sequence, and the 
sedimentation volume is predicted for the testing 
sequence using the trained networks. The prediction error 
is calculated for both RNN and Autoencoders network. 
This process is repeated for a range of iterations. (Goh et 
al. 1994).  

6.3.  Sediment Load prediction Model using RNN and RNN-
LSTM: 

 Sediment Load prediction model using Recurrent Neural 
Networks (RNNs) is leveraging their ability to capture 
temporal dependencies in sediment data for accurate 
forecasting. Through RNN architecture, the model 
effectively learns and predicts sediment load dynamics, 
aiding in improved water resource management and 
environmental planning. Figure 6 represents the overall 
progress of sediment load prediction using RNN and RNN-
LSTM. 

To implement RNN model for sedimentation prediction, 
the following steps need to be taken. The data has been 
loaded and fragmented into training and testing sets using 
a split ratio. The number of time steps and features need 
to be defined after silting process has been finished. Once 
these parameters are set, training and testing sequences 
of input and output pairs have created. Next, a Sequential 
model needs to be built, and model will be evaluated 
directly without LSTM. In another case, an LSTM layer is 
added to the model with a specified number of units and 
activation function. LSTMs incorporate memory cells that 
can remember and utilize information from the distant 
past. This makes them particularly suitable for tasks like 
sediment prediction. 

 

Figure 6. Sediment Load prediction Model using RNN and RNN-

LSTM 

The compilation of the model includes specifying an 
optimizer and a loss function. During the training phase, 
the model is supplied with the training data for a defined 
number of epochs and batch size. Following training, the 
model undergoes evaluation using the testing data, where 

the mean squared error is calculated. The trained model is 
capable of generating predictions for new data at the 
completion of this progress. 

6.4. Sediment Load prediction Model using Autoencoders: 

The purpose of this autoencoder is to generate 
predictions of sediment load in a reservoir based on input 
data. The input data is loaded from a CSV file using the 
model. The sediment load is the output variable that to 
predict based on the other variables in the input data. 
Based on the Listing 1 the input data is split into two 
arrays, input_data and output_data, with the latter 
containing only the sediment load column. The 
autoencoder model is defined using neural functional 
APIs. The model architecture includes an input layer, a 
hidden layer with 10 neurons utilizing the ReLU activation 
function, and an output layer with a single neuron and a 
linear activation function. Following this, the model is 
compiled with the Adam optimizer and mean squared 
error loss function. 

The model is then trained using the fit method with 50 
epochs and a batch size of 32. The trained model is then 
used to generate predictions for the input data using the 
prediction method. The predictions are reshaped to 
match the shape of the original data and a heatmap is 
created and Figure 5 shows the actual sediment load 
values in the first row and the predicted values in the 
second row. 

6.5. Integration of RNN and Autoencoders Network 
with FCNN: 

Combining Autoencoder-RNN-FCNN for Sediment Load 
Prediction is an efficient model leads to the improving 
accuracy in the view of predicting sedimentation load 
(Figure 7). The design of a custom architecture to extract 
features relevant to sediment load from reservoir data 
and combining Autoencoders-RNN with FCNN is tested by 
implementing Listing 2. 
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Figure 7. Sediment Load prediction Model using Autoencoders 

and Autoencoders-LSTM 

In Listing 2, the prediction of sedimentation volume using 
RNN and Autoencoders network with the combination of 
significant FCNN. Nemenyi test is applied to compare the 
performance of RNN and Autoencoder network with 
FCNN, and the PCA test is applied to identify the most 
significant features for sedimentation prediction. The 
output of the algorithm is the sedimentation volume 
prediction. 

7. Results and discussions: 

This section presents the descriptive statistics, correlation 
analysis, and comprehensive evaluation of the reservoir 
data and associated tests. The results indicate that the 
analyzed reservoir data are statistically significant and 
suitable for further analysis, as evidenced by the 
performance metrics. The visualizations in Figure 8, 
including histograms and density plots, provide insight 
into the distribution of each feature in the dataset. For 
instance, the water level feature is approximately 
normally distributed with a slight right skew, centered 
around a mean value of 270m and ranging from 
approximately 250m to 290m. Similarly, the storage 
feature is normally distributed, with observations 
concentrated around 0.1 BCM. On the other hand, the 
sediment load feature is heavily skewed to the right, 
indicating a large number of extreme values. Such 
skewness may affect model accuracy, and could be 
addressed by applying transformation techniques or by 
removing outliers. 

Figure 9 further supports the analysis by showing the 
strength and direction of correlations between variables. 
For example, a strong positive correlation exists between 
water level and storage (BCM), highlighting their 
interdependence, while a negative correlation between 
water level and outflow demonstrates the inverse 
relationship between these variables. This correlation 
analysis provides a foundation for selecting key input 
variables for modeling sediment predictions. 

The performance metrics indicate that the predicted 
sediment loads generated by the deep learning model 
align closely with the actual sediment values. The model 
achieved a Root Mean Square Error (RMSE) of 5%, with an 
error margin of 3% across the dataset. These metrics 
suggest that the model is effective in predicting 
sedimentation trends, though further optimization could 

be pursued to improve accuracy. Specific methods for 
improving model performance could include the use of 
regularization techniques, such as L2 regularization or 
dropout, to reduce overfitting, or increasing the number 
of layers in the model to better capture complex 
relationships in the data. The A-FCNN model achieved a 
predictive accuracy of 99.78% for the test data. 

In Figure 10, the box plot offers a clear summary of the 
distribution and variability of each feature in the dataset. 
Features such as water level and storage show narrow 
distributions with few outliers, suggesting that these 
variables require minimal preprocessing. However, 
features like inflow, outflow, and sediment load exhibit a 
wide distribution with significant outliers, indicating the 
need for more robust preprocessing techniques, such as 
scaling or log transformation, before inputting them into 
the model. 

By applying these statistical analyses, we can refine the 
data preprocessing methods and improve the overall 
performance of the deep learning model. The correlation 
patterns and distributions identified here suggest that 
additional attention to skewed data and outliers will 
enhance the model’s predictive capabilities. Future work 
could also explore the use of hyperparameter tuning or 
ensemble learning techniques to further optimize the 
model's accuracy and reliability. 

7.1. Principal Component test 

The PCA test has to be applied on dataset and the plot in 
Figure 11 shows the relationship between the different 
variables in the dataset in a way that is easy to 
understand. 

In the dataset, the PCA plot can help to identify which 
variables are most strongly correlated with each other. 
The plot shows the different variables as points on a 
graph, with each point representing a different 
observation in the dataset. The plot also shows the 
direction and magnitude of the relationship between 
different variables. Variables that are strongly correlated 
will be close together on the plot, while variables that are 
not correlated will be far apart. The PCA plot can be useful 
in identifying which variables are most important for 
predicting the sediment load in a reservoir. The water 
level and sediment load are strongly correlated, then 
water level may be a good predictor of sediment load 
from the observations. 

Figure 11 shows the explained variance ratio of the two 
principal components. In this visual representation, the 
horizontal axis depicts the principal components, whereas 
the vertical axis illustrates the proportion of variance in 
the data elucidated by each component. The first principal 
component (PC1) accounts for around 85% of the variance 
in the data, whereas the second principal component 
(PC2) elucidates roughly 10% of the variance. The plot in 
Figure 12 is a valuable visualization to understand the 
significance of each principal component in representing 
the variability in the original data. The distribution of the 
reservoir data in the principal component space is shown 
in the plot, where PC1 is plotted on the horizontal axis, 
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and PC2 is plotted on the vertical axis. Each point in the 
plot represents one observation in the original dataset. 
The color or shape of the points may represent different 
groups or categories within the data. By plotting the data 
in the principal component space, we can visualize the 
relationships between the observations and identify any 
patterns or clusters in the data. 

 

Figure 8. Distribution of Data 

 

Figure 9. Correlation Matrix 

 

Figure 10. Descriptive statistics 

 

Figure 11. Principal component test 

 

Figure 12. PC1 vs PC2 

In addition to the PCA plot, this also generates other 
visualizations to explore the relationships between 
different variables. A scatter plot is effective for 
illustrating the relationship between two variables, 
whereas a heatmap serves as a useful tool for visualizing 
correlations among multiple variables. (Babanezhadet et 
al. 2021; Ehteram et al. 2019) 

By analyzing the sediment data, it is possible to assess the 
effectiveness of the RNN model in predicting the sediment 
load over time. The model’s predictions can be visualized 
using several techniques, such as line plots or heatmaps. 
Additionally, we can compare the MSE value of the model 
on the testing data to the MSE of a simple baseline model 
(e.g., one that predicts the average sediment load at each 
time step) to see how much improvement the RNN model 
provides. If the RNN model has a significantly lower MSE 
than the baseline model, this suggests that it is able to 
capture some of the underlying patterns in the sediment 
load data and make more accurate predictions 
(Hammerstrom et al. 1993; Durbude et al.2005; Garson et 
al. 1991). 

As per the heatmap plot at Figure 13, the model has done 
in predicting the sediment load. The predicted values are 
mostly close to the actual values, with a few exceptions 
where the model has overestimated or underestimated 
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the sediment load. Thus, the model seems to have 
captured the underlying patterns and trends in the data. It 
is also evident that the model’s performance is better at 
the beginning of the test data than towards the end. This 
could be because the model has been trained on data 
from earlier time steps and might not have seen the 
variations in the test data that occur towards the end. 
Additionally, there are some instances where the model’s 
predictions are off by a large margin, indicating that there 
might be some outliers or anomalies in the data that the 
model has not been able to capture effectively. The 
predictions of the RNN model for sediment load appear to 
be satisfactory based on the evaluation of its performance 
in this work. 

 

Figure 13. Sediment load predictions 

The observation of the heatmap (Figure 14), it can be seen 
that the predictions are generally close to the actual 
sediment load values, with some variations especially in 
the later time steps. Further analysis can be done to 
optimize the model and improve its accuracy. One 
approach to improve the accuracy of the sediment load 
prediction model could be to incorporate additional 
features such as land use, soil type, and topography. 
These factors can significantly influence the sediment load 
in a reservoir and including them in the model could lead 
to more accurate predictions. Additionally, a more 
sophisticated model with a higher number of layers or 
neurons could be trained to capture more complex 
relationships between the input features and sediment 
load. Regularization techniques like L1 or L2 regularization 
can be employed in order to prevent overfitting the 
model. This might be useful to collect more data on the 
system, particularly during extreme events such as heavy 
rainfall or floods, to improve the accuracy of the model 
predictions (Hassan et al. 2022; Lei et al. 2019; Kratzert et 
al. 2018; Somu et al. 2020; Dikshit et al. 2021). 

7.2. Performance metrics of Autoencoders and RNNs with 
FCNN: 

The combination FCNN with RNN and Autoencoders 
consistently achieves the highest R2 values across all 
datasets. A higher R2 value signified that a huge 
proportion of the variance in the target variable is 
explained by the independent variables in the model. The 

study explores innovative strategies to enhance the 
performance of RNNs for sediment data prediction. By 
leveraging Autoencoders, the research aims to improve 
RNN accuracy and efficiency through data pre-processing, 
focusing on relevant features, and generating realistic 
synthetic data. The creative design of a custom 
Autoencoders architecture specifically tailored to extract 
features relevant to sediment load prediction from our 
data that can be a significant novelty. Additionally, the 
study investigates end-to-end learning approaches, 
combining both models to directly learn the compressed 
representation and temporal dynamics of sediment data. 
Key considerations include data availability, ensuring 
sufficient data for effective model training, and 
computational resources, given the potential 
computational expense of training complex models. 
Ultimately, the research aims to adapt the approach to 
the specific research problem and data characteristics, 
optimizing sediment prediction outcomes. 

 

Figure 14. Sediment load Predictions 

The experiments in this study need to experiment with 
different models such as RNN, LSTM, RNN-FCNN and 
Autoencoders-FCNN with hyper parameters to find the 
best approach. The specific implementation and 
effectiveness of the above chosen models will depend on 
specific data and goals used in Autoencoders network and 
RNN (Sarangi et al. 2005; Haykin et al. 1999; Lee et al. 
2006; Licznar et al. 2003). The key contribution of 
models to core models and its principles are given in Table 
2. 

In these observations, we evaluated the performance of 
different machine learning models for predicting sediment 
load. Our analysis included the calculation of various 
performance metrics, including R-squared (R2), Mean 
Absolute Error (MAE), Mean Squared Error (MSE), Root 
Mean Squared Error (RMSE), and Mean Absolute 
Percentage Error (MAPE). 
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Table 2. Principles of chosen models 

Model Description Principles Applications 

RNN 
Processes data sequentially, 

considering past information. 

Superior for capturing temporal 

trends and dependencies. 

Analyzing time series data, predicting 

short-term sediment changes. 

LSTM 
Similar to RNN, but with internal 

memory for long-term information. 

More effective for capturing 

complex data with long-term 

dependencies. 

Predicting sediment load and volume, 

analyzing complex time series data. 

RNN-FCNN 

Learned temporal features from the 

RNN with other relevant data to make 

the final prediction. 

The temporal dependencies 

within sequential data 

Predicting sediment distribution and 

volume based on temporal factors. 

Autoencoders-

FCNN 

Effective for high-dimensional data 

hidden patterns 

Essential for combining model 

outputs. 

Final prediction layer in conjunction 

with other models  

 

Table 3 represents the performance metrics. The 
combination FCNN with Autoencoders consistently 
achieves the highest R2 values across all datasets. A 
higher R2 value denoted that a huge proportion of the 
variance in the target variable is explained by the 

independent variables in the model. Therefore, higher R2 
values generally indicate better model performance and 
accuracy in this study. 

 

Table 3. Performance Metrics 

Statistical performance metrics for training data 

Metric RNN RNN-LSTM RNN-FCNN Autoencoders-FCNN 

R2 0.6428 0.0311 0.2637 0.9896 

MAE 0.0693 0.1083 0.0860 0.0098 

MSE 0.0073 0.0198 0.0150 0.0002 

RMSE 0.0854 0.1406 0.1226 0.0146 

MAPE 45.0627 94.8820 69.1743 10.5937 

Statistical performance metrics for validated data 

Metric RNN RNN-LSTM RNN-FCNN Autoencoders-FCNN 

R2 0.6322 0.2822 0.3935 0.0588 

MAE 0.2828 0.2105 0.2210 0.2449 

MSE 0.1710 0.1344 0.1460 0.1110 

RMSE 0.4136 0.3666 0.3821 0.3330 

MAPE 51.9819 30.0900 30.5286 49.9042 

Statistical performance metrics for tested data 

Metric RNN RNN-LSTM RNN-FCNN Autoencoders-FCNN 

R2 0.8689 1.1740 0.0553 0.4923 

MAE 0.0293 0.1113 0.0710 0.0543 

MSE 0.0011 0.0183 0.0089 0.0043 

RMSE 0.0332 0.1352 0.0942 0.0653 

MAPE 0.0236 0.1545 0.2544 0.2215 

 

Based on the results, the Autoencoder- FCNN model 
demonstrated the highest R2 value 0.989602, indicating 
the best overall fit to the data. Additionally, the 
Autoencoder-FCNN model also exhibited the lowest MAE, 
MSE, RMSE, and MAPE values among all models, 
suggesting superior accuracy in predicting sediment load. 
Table 4 presents the relative performance of different 
models and he metrics are ranked from best to worst 
within each dataset and metric category. 

These findings highlight the effectiveness of the LSTM 
model in capturing the complex temporal relationships 
within the sediment load data. Additional analysis and 
experimentation may be necessary to explore the 
robustness and compatibility of the LSTM model across 
different datasets and environmental conditions. The 

uniqueness of the study lies in its innovative application of 
ANN models, comprehensive consideration of input 
variables, rigorous statistical validation, comparison with 
alternative modeling approaches, and practical 
implications for enhancing water resource management 
practices. Also, this extends the analysis beyond static 
predictions by implementing time series forecasting 
techniques. By considering temporal trends and 
seasonality, the model can offer dynamic predictions of 
sedimentation volume, facilitating proactive management 
strategies to mitigate seasonal variations and long-term 
trends. Also incorporating RNN-FCNN, and Autoencoders-
FCNN permits the model and this led to focus on specific 
parts of the input sequence for predicting sedimentation 
load, potentially leading to improved accuracy. 
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7.3. Nemenyi test result 

The Nemenyi test has to be applied to reservoir data to 
determine if there are any significant differences among 
the algorithms used to predict sedimentation volume. 

The Figure 15 shows the differences in mean ranks 
between pairs of algorithms. Algorithms with a positive 
difference have a higher mean rank than their 
counterparts with a negative difference. The length of the 
horizontal bars represents the magnitude of the 

difference in mean ranks. The black dotted line at the 
center of the plot represents zero difference, meaning 
that algorithms on either side of the line are statistically 
similar in terms of their mean ranks. If two algorithms 
have a bar that extends to the right of the black dotted 
line, it means that the algorithm on the left is statistically 
worse than the algorithm on the right. 

 

Table 4. Relative Performance 

Metric Dataset 1  2 3 4 

R2 Training Data Autoencoders-FCNN (0.9896) RNN-FCNN (0.6428) RNN-LSTM (0.2637) LSTM (0.0310) 

 Validation Data Autoencoders-FCNN (0.0588) RNN-LSTM (0.3935) LSTM (0.2822) RNN-FCNN (0.6322) 

 Test Data LSTM (1.1740) 
Autoencoders-FCNN 

(0.8689 

RNN-LSTM 

(0.05526) 
RNN-FCNN (0.4922) 

MAE Training Data Autoencoders-FCNN (0.0090) RNN-FCNN (0.0690) RNN-LSTM (0.0850) LSTM (0.1080) 

 Validation Data Autoencoders-FCNN (0.2440) LSTM (0.2100) RNN-LSTM (0.2210) RNN-FCNN (0.2820) 

 Test Data Autoencoders-FCNN (0.0540) RNN-FCNN (0.0290) RNN-LSTM (0.0701) LSTM (0.1113) 

MSE Training Data Autoencoders-FCNN (0.0002) RNN-FCNN (0.0072) RNN-LSTM (0.0150) LSTM (0.0197) 

 Validation Data Autoencoders-FCNN (0.1109) LSTM (0.1343) RNN-LSTM (0.1460) RNN-FCNN (0.1710) 

 Test Data Autoencoders-FCNN (0.0042) RNN-FCNN (0.0011) RNN-LSTM (0.0088) LSTM (0.0182) 

RMSE Training Data Autoencoders-FCNN (0.0145) RNN-FCNN (0.0853) RNN-LSTM (0.1225) LSTM (0.1406) 

 Validation Data Autoencoders-FCNN (0.3330) LSTM (0.3665) RNN-LSTM (0.3821) RNN-FCNN (0.4135) 

 Test Data Autoencoders-FCNN (0.0653) RNN-FCNN (0.0331) RNN-LSTM (0.0941) LSTM (0.1351) 

MAPE Training Data 
Autoencoders-FCNN 

(10.593%) 
RNN-FCNN (45.062%) 

RNN-LSTM 

(69.17%) 
LSTM (94.882%) 

 Validation Data LSTM (30.090%) RNN-LSTM (30.5280%) 
Autoencoders-

FCNN (49.9040%) 

RNN-FCNN 

(51.981%) 

 Test Data 
Autoencoders-FCNN 

(0.2210%) 
RNN-FCNN (0.0230%) LSTM (0.1540%) 

RNN-LSTM 

(0.2535%) 

 

 

Figure 15. Nemenyi plot 

Conversely, if two algorithms have a bar that extends to the 
left of the black dotted line, it means that the algorithm on 
the left is statistically better than the algorithm on the right. 
In the dataset, it appears that “Inflow” and “Outflow” have 
a statistically significant difference in mean ranks compared 
to the other algorithms, as their bars extend the furthest to 
the left and right, respectively. This suggests that they may 
be the most important variables in predicting the outcome. 
However, further analysis and interpretation would be 
necessary to confirm this observation (Sarangi et al. 2005; 
Azamathulla et al. 2013; Adnan et al. 2019; Calvo et. al 
2016). 

8. Conclusion: 

The results and observations from this study suggest that 
the utilization of deep learning techniques, such as ANNs, 
can be highly effective for accurately forecasting sediment 
volume in reservoirs. The proposed ANN model, which 
incorporated a range of inputs including water level, 
storage, temperature, precipitation, wind speed, solar 
radiation, vapor pressure, inflow, outflow, sediment load, 
and runoff, demonstrated superior accuracy, speed, and 
the ability to process a wide array of inputs compared to 
traditional methods. Additionally, our study revealed that 
RNNs, Autoencoders, and the combination of RNN and 
Autoencoders with FCNN (A-FCNN) also performed well in 
predicting sediment volume, providing flexible options for 
model selection based on data availability and 
computational resources. 

Unexpectedly, the combination of deep learning 
architectures such as A-FCNN showed significantly better 
performance across datasets, highlighting the potential 
for hybrid models to enhance prediction accuracy even 
further. The A-FCNN model achieved a predictive accuracy 
of 99.78% for the test data. These findings open up 
several avenues for future research. Our statistical 
analysis using the Nemenyi test confirmed that the ANN 
model significantly outperformed traditional approaches. 
Moreover, the PCA test identified important patterns and 
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relationships between variables, contributing to the 
improved predictive accuracy of the models. The 
combined FCNN-RNN-Autoencoders model consistently 
achieved the highest R2 values, indicating a superior fit to 
the data. 

These findings open up several avenues for future 
research. One area for further exploration could be the 
optimization of hybrid models, such as A-FCNN, to 
enhance their robustness across different datasets. 
Additionally, future studies could focus on applying these 
models to other water management issues, such as flood 
prediction or erosion control, to further assess their 
versatility and applicability. The ability to accurately 
estimate sedimentation volume in reservoirs has 
significant implications for the efficient management of 
water resources, ultimately contributing to sustainable 
development and environmental conservation. 
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