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ABSTRACT 

Water quality prediction and classification plays a crucial role in ecosystem sustainability, 

agriculture, aquaculture and environmental monitoring. The nonlinearity and nonstationarity 

of water quality are challenging for traditional prediction techniques to adequately capture. The 

rapid advancement of deep learning in recent decades has made it a hot topic for predicting 

water quality and classification. In this paper, a new Optimization driven Deep Differential 

RecurFlowNet (ODD-RecurFlowNet) model with feature selection is proposed for predicting 

and categorizing the water quality. Preprocessing methods are utilized to evaluate the collected 

data to predict the water quality class and water quality index. Before deploying feature 

selection algorithm, preprocessing procedures such as data cleaning and robust scalar 

normalization are carried out. A logistic based giant armadillo optimization algorithm (GArO) 

algorithm is used for optimal feature selection. Next, the water quality index is predicted using 

global attention (GA) based RecurFlowNet model. Subsequently, a deep differential 

convolution neural network (DDiff-CNN) model is employed for the classification of different 

levels of water quality. In addition, the hyper-parameters of ODD-RecurFlowNet is tuned using 

the crested porcupine optimization algorithm (CPoOA). For simulation, python platform is 

used and the standard water quality dataset from Kaggle library is used to validate the 

experiment. The finding shows that the proposed ODD-RecurFlowNet model obtains the 

overall accuracy of 98.01% and RMSE value of 0.039. Thus, the obtained results prove the 

superiority of proposed model to the existing methods. 

Keywords: Water quality index; Feature selection; Giant armadillo optimization; 

RecurFlowNet; Differential convolution; Crested porcupine optimizer; Water quality 

classification 

1. Introduction 



 

 

Water is the fundamental resource that all living things on Earth share, including animals, 

plants, and humans Gavrilescu, M., (2021).  It is required for every kind of creature to survive. 

Water makes up the majority of the earth's surface and is vital to the existence of every animal 

and human being Mishra, R.K., (2023). Around 326 cubic meters, equivalent to 71% of the 

planet's entire area are made up of water, and the remaining 97% is ocean. Only half of the 

world's potable water is usable; the other two-thirds either reside deep below the planet's 

surface beyond human access or are locked in icebergs, ice caps on the polar regions, the 

atmosphere, the ground, or other places Varotsos, C.A et al., (2023). Therefore, one of the 

biggest ecological issues is water quality contamination. To control water pollution and alert 

consumers when low water quality is detected Venkatraman, M. and Surendran, R., et al 

(2023), it is imperative to develop a technique for estimating water quality Patel, P.S et al., 

(2023). A balanced existence on Earth and sustainability are dependent on the forecast of water 

quality on a worldwide scale Koranga, M., et al., 2022. 

Conventional methods of water quality estimation mostly depend on a multitude of manual 

tasks, such as choosing the river's monitoring locations to be examined and periodically 

gathering data to be sent to a lab for detection and evaluation Ahmed, U.,et al (2022). Yet, the 

conventional methods are error-causing, and early detection is not achievable. Therefore, in 

recent times, the water quality evaluation requirements have been raised by the expansion of 

artificial intelligence (AI) and computer technology Hmoud Al-Adhaileh, M., et al (2021). The 

introduction of Internet of Things (IoT) equipment has made the computations and 

measurements regarding the overall condition of the water simpler to compute and more 

accurate Shin, H., et al., (2024). Consequently, AI is only a supporting tool for computerizing 

water quality assessments with the incorporation of IoT devices Wiryasaputra, R., et al., (2024). 

Water consumers can lessen the adverse effects of water quality pollution by becoming aware 

of abrupt occurrences of pollution through an accurate forecast of metrics for water quality. 



 

 

Recent research has shown that deep learning techniques, with their significant capacities for 

tracing highly nonlinear connections at an acceptable computation speed, are being extensively 

used for the prediction of water quality Chhipi-Shrestha, G., et al (2023). 

Moreover, time series data-based prediction methods like Long Short-Term Memory (LSTM) 

Manocha, A., et al (2023). neural networks Islam, M.M., et al., (2023). encoder-decoders Jatoi, 

G.M., et al (2023). and hybrid models have been extensively applied in recent works. But as 

the amount of information on water quality rises, it becomes more unstable and extremely 

nonlinear, making good prediction more difficult Baek, S.S., et al (2020). Furthermore, it is 

maintained that the inability of physical mechanics to adjust for the predicted outcomes of 

variations in water quality limits the use of deep learning techniques Prasad, D.V.V., et al 

(2022). There is an absence of information in the justification of the deep learning results for 

the forecasts of water quality Dodig, A., et al (2024). Therefore, a novel model to water quality 

prediction and classification is developed for various regions of water resources. The data 

cleaning and normalization technique is used by the proposed model as a pre-processing step. 

The metaheuristic optimization algorrithn is employed to select the optimal features and reduce 

the dimensionality issues Mokarram, M., et al (2024). In addition, optimizer-based 

hyperparameter tuning is utilized for water quality parameter/index forecast and classify water 

quality. The key contribution of this proposed model is articulated as: To propose a novel 

optimization driven deep differential RecurFlowNet (ODD-RecurFlowNet) model to achieve 

highly accurate water quality metrics prediction and classification Zhao, Z., et al (2024).  

To select the optimal features using logistic based giant armadillo optimization algorithm 

(GArO) algorithm, which uses the advantages chaotic mapping and metaheuristic optimizer for 

minimizing the dimensionality issues Bi, J., Lin, Y., et al (2021). To introduce a combined 

global attention (GA) based RecurFlowNet and deep differential convolution neural network 

(DDiff-CNN) model for predicting the water quality indices and categorizing the levels of 



 

 

water with maximum performance Barzegar, R., et al (2020).  To tune the hyper-parameters of 

the prediction and classification model using crested porcupine optimization algorithm 

(CPoOA) Ewuzie, U., et al (2022). 

Several criteria are crucial for the prediction and classification of water quality include physical 

parameters includes temperature, turbidity, color, pH value, electrical conductivity. Chemical 

parameters include dissolved oxygen, biochemical oxygen demand, total dissolved solids, 

alkalinity, and Chloride (Cl-), Sulfate (SO4 2-), Fluoride (F-). Biological parameters such as 

total organic carbon, algal biomass, and contamination level Periasamy, S., et al., (2024). 

Evaluating water quality is essential for safeguarding human health and promoting 

environmental sustainability. Conventional techniques for water quality assessment are often 

laborious, time-consuming, and susceptible to human error. Motivation for this study Precise 

and timely water quality evaluation to create a model capable of precisely predicting and 

classifying water quality in real-time, facilitating prompt intervention and decision-making. 

Scope of the research aims to design and assess a new deep learning model, the ODD-

RecurFlowNet, for predicting and classifying water quality. The key contributions of this 

research are Novel Model Architecture that proposed ODD-RecurFlowNet architecture 

effectively captures complex patterns in water quality data, leading to improved prediction and 

classification accuracy. 

The primary objective of this project is to create a reliable and precise deep learning model, 

the ODD-RecurFlowNet, for the effective prediction and classification of water quality. Utilize 

sophisticated methodologies such as attention mechanisms, differential recurrent neural 

networks, and optimization algorithms to achieve the model's objectives. Enhance Water 

Quality Forecast Precision: To precisely forecast water quality indicators, including pH, 

temperature, turbidity, and dissolved oxygen levels, using both historical and real-time data. 



 

 

Improve Water Quality Categorization: To precisely categorize water quality into distinct 

classifications (e.g., excellent, good, bad, extremely poor) based on forecasted indicators and 

other pertinent criteria. 

A variety of measures, comprising accuracy, recall, mean square error (MSE), R-squared (R2) 

and others, are utilized to assess the performance of designed model Prasad, D.V.V., et al 

(2022). The rest of this article is summarized as follows: The recent research works related to 

this article are explained in Section 2. The proposed methodology and algorithm steps are 

detailed in Section 3. The research findings, discussion and comparison are provided in Section 

4. In Section 5, the article is terminated with the conclusion part. 

2. Related Works 

A brief overview of the latest studies on this issue is given in this section. The reliability and 

efficiency of deep learning techniques in water quality calculations has recently been 

demonstrated by researchers. A Deep Neural Network (DNN) framework was built to 

anticipate water quality index depending on variables chosen for both wet and dry periods 

across the year, according to research by Bi, J., Lin, Y., et al (2021). The Principal Component 

Analysis/Factor Analysis (PCA/FA) modelling along with Hierarchical Cluster Analysis 

(HCA) were used to analyse seasonal variations and the origins of the springs. According to 

the analysis's findings, the designed DNN model has a high accuracy, low Mean Square Error 

metric, and a high R-Squared (R2) value El-Shebli., et al (2024). Still, its computational 

complexity is high. The combined multivariate long and short-term memory-based network 

(LSTM) was implemented by Wang, J. et al. (2024) in semi-arid river basins to anticipate the 

primary pollutants used in successful water quality monitoring and prediction analytic 

methodologies. When the forecast period was one day, the best outcomes were attained. 

Prediction accuracy consistently exceeded 85–89%. The accuracy of this model was very low 

over the other measures. 



 

 

A unique gated graph neural network (GGNN) model was proposed by Li, Z., et al. (2024) for 

real-time water quality forecasting in WDNs. To describe the structure and dynamics of the 

system, the GGNN algorithm incorporates hydraulic flow routes and WQ data. The model was 

trained using a masking operation for improving the prediction accuracy. But when it comes to 

increasing forecast accuracy, the sensor's position contributes more than its amount. The water 

quality time series were predicted using a hybrid prediction technique termed VBAED, 

according to Bi, J., et al., (2024). VBAED was defined as an encoder-decoder framework that 

combines a bidirectional attention mechanism with BiLSTM and employs VMD as mode 

decomposition. By lowering the input information nonlinearity and instability, VBAED 

increases prediction accuracy. However, processing times vary depending on the volume of 

data. 

Zheng, H. et al., (2023). developed an accessible deep learning architecture to forecast the 

spatiotemporal fluctuations of water quality metrics in a significant geographic area of China.  

The incorporation of socioeconomic as well as land-use indicators with hydrological data might 

enhance the model's forecast accuracy. The R2 values for the prediction approach were close 

to 0.80, indicating that the deep learning algorithm performed satisfactorily in the case area 

when it came to these parameters' predictions Selvanarayanan, R., et al (2024). The Savitzky-

Golay (SG) filter method, Variational Mode Decomposition (VMD) model, an Attention 

mechanism with BiLSTM, an ED framework, and a hybrid algorithm known as Genetic 

Simulated annealing-based Particle Swarm Optimization (GSPSO) were all combined in the 

hybrid water quality prediction technique known as SVABEG, which was proposed by Bi, J. 

et al., (2023). The SVABEG attained better accuracy in predicting than the state-of-the-art 

techniques as shown by experimental findings using real-world datasets.  Unbalanced datasets 

have a higher potential for inaccuracy. 



 

 

Khullar, S. and Singh, N., (2022). presented a deep learning methods of Bi-LSTM approach 

(DLBL-WQA) to predict the Yamuna River, India, water quality variables. The proposed 

approach demonstrated a unique technique that applies optimal loss function to minimalize 

training error, creates feature maps for a Bi-LSTM design to enhance learning, and adds 

missing value imputation. Consequently, the suggested model lowers error rates and increases 

predicting accuracy. However, this research was data dependent, lacks real-time execution, and 

has a significant computational cost. An improved deep learning method for predicting the 

WQ index (WQI), which is essential for evaluating the health of water bodies, was presented 

in the research of Ehteram et al., (2024). By efficiently detecting intricate patterns of water 

quality, this model combines Convolutional Neural Networks (CNN), clockwork Recurrent 

Neural Networks (CRNN), and M5 Tree methods to improve prediction accuracy. The 

superiority of the CNN-CRNN-M5T model for both temporal and spatial WQI forecasts in 

Malaysia in terms of lowering MAE and raising efficiency. Although deep learning advances 

for predicting water quality are encouraging, real-time evaluations still face difficulties, 

especially when certain parameters are missing. 

A CNN-BiLSTM model was used in the work by Geetha et al., (2024). to provide a unique 

method of river water quality monitoring over the Kaveri River. This approach addresses the 

rising demand for effective environmental control by using deep learning methods to improve 

the reliability and efficacy of water quality evaluations. However, there were still issues with 

handling environmental unpredictability and sensor imperfections, which would distress the 

accuracy of data and the performance of models. Zamani et al., (2024) highlighted the 

significance of spatiotemporal aspects in water quality monitoring by presenting a hybrid WT-

CNN-GRU framework for evaluating reservoir water quality parameters. To improve 

prediction accuracy, this novel method combines gated recurrent units (GRU) and CNN with 

wavelet transform (WT). The model efficacy was validated using statistical measures including 



 

 

the correlation coefficient along with Nash-Sutcliffe efficiency , which showed improved 

performance in both the training as well as testing stages. But in terms of combining various 

data sources and guaranteeing model resilience in the face of changing environmental 

circumstances. A unique deep learning ensemble approach to predicting WQ is introduced in 

the study of Liu et al., (2023) highlighting the significance of choosing features and 

optimization. This strategy is in line with current developments in machine learning methods 

for environmental monitoring, especially when it comes to evaluating water quality. Hybrid 

models, includes LSTM networks have shown potential in modelling changes in water quality 

over 70% accuracy in important metrics. Subsequent studies suggest to concentrate on 

improving these models for wider use in other environmental scenarios.  

Advanced methods for forecasting water quality characteristics utilizing network models and 

deep learning were investigated in the study of Zamani et al., (2023). For efficient management 

of water resources and pollution control, this strategy was essential. The subsequent segments 

accentuate pivotal perspectives from important studies that strengthen and elaborate on their 

results. Models based on deep learning can be less accurate in dynamic situations because of 

their tendency to have difficulties with irregular data circumstances. This means that models 

would need to be continuously improved and adjusted. Han, Su, and Na., et al., (2023) work 

employed an enhanced deep learning technique that includes spatiotemporal characteristics to 

forecast the water quality in the Tanghe Reservoir. In order to progress the accuracy, this 

method emphasized the use of sophisticated algorithms, particularly a deep network that 

combines a generative adversarial network layer together with a backpropagation (BP) 

based neural network layer. The results indicated that the enhanced deep learning technique 

not only tackles the intricacies of evaluating water quality but also advances better control of 

water resources, especially in areas where pollution is a problem Santhanaraj., et al (2024). 



 

 

Problem statement: In recent times, several methods have been employed to predict and 

classify the water quality, However, the efficiency of existing techniques for assessing and 

forecasting water quality is hampered by a several issues. The usage of conventional statistical 

methods, which might not be adequate to capture the intricate, non-linear correlations exist in 

environmental data, is one of the primary challenges. The deep learning techniques have 

problems with overfitting or underfitting and this lead to minimize the accuracy. Besides, many 

existing models produced erroneous forecasts owing to their failure to account for temporal 

variations in water quality. Moreover, the completeness and quality of the input data can have 

a big impact on how well these models function since the missing or noisy data might generate 

biased findings. Thereby, a new deep learning based method needs to be focused to address the 

limitations of the existing methods by capturing complex patterns in water quality.  

 

 

3. The proposed model 

In this section, a novel ODD-RecurFlowNet model is discussed to detect water quality index 

and effectively classify the water quality into distinct classes with maximum accuracy. The 

steps involved in ODD-RecurFlowNet model are data collection, pre-processing, feature 

selection, water quality index forecast and water quality classification. At first, the data 

collection stage collects the input data from different sensors. The collected raw input data 

normally desires to be pre-processed to enhance the data representation using data cleaning and 

robust scalar normalization. Next, a feature selection method based on logistic based GArO 

algorithm is utilized to select the features representing the water quality. Then, the selected 

features are fed to GA based RecurFlowNet model to achieve enhanced prediction. Further, the 

predicted water quality parameters are used for classifying the water quality using DDiff-CNN 



 

 

model. The hyper-parameters are tuned using an efficient optimization algorithm called 

CPoOA. The block diagram of ODD-RecurFlowNet model is presented in Figure 1.  
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Figure 1. Block diagram of ODD-RecurFlowNet model 

 

3.1 Data pre-processing 

Data pre-processing is regarded as a crucial step in the framework of water quality prediction 

and classification since it supports in preparing the raw data for analysis and modelling. In the 

proposed ODD-RecurFlowNet method, data pre-processing encompasses data cleaning and 

robust scaler normalization Sadoune, Hadjer., et al., (2023). 

Data cleaning: To deal with outliners and missing numbers, the proposed ODD-RecurFlowNet 

model employs a data cleaning procedure. As the dataset has a marginally greater percentage 

of missing values, the proposed ODD-RecurFlowNet model preserves the dataset's instances 

by using the replacement strategy. In order to replace the missing value, the average of five 

nearest samples present, previous, and next to the missing values is calculated.  



 

 

Robust scaler normalization: The robust scaler method of normalizing data is same as the min-

max normalization method. It scales the data depending on the quintile range, which is the only 

difference. The below equation resembles the robust scaler, with y  resembling for the scalar 

values as well as Q1 and Q3 for the 25th and 75th quantiles, considerably. 
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 After performing pre-processing, the significant features are selected using the optimization 

strategy.   

3.2 Feature selection  

Feature selection is the process of recognizing the ideal subset of features. Developing high-

performance models and reducing computational complexity require feature selection strategy.  

In the proposed ODD-RecurFlowNet model, the Logistic based giant armadillo optimization 

algorithm (GArO) algorithm is employed to select the optimal features. GArO 38. Alsayyed, 

Omar., et al., (2023) is a bioinspired metaheuristic algorithm designed to mimic the actions of 

giant, wild armadillos. The main inspiration came from the way giant armadillos hunt, visiting 

specific regions and excavating termite mounds. There are two stages to GArO’s mathematical 

modelling and theory: exploration and exploitation. In the exploration stage, the giant 

armadillos are simulated to be moving in the direction of termite mounts, and in the exploitation 

stage, they are simulated to be digging in order to discover and destroy termite mounds. The 

GArO algorithm exhibit strong exploration, exploitation and balancing abilities at the search 

process. Thereby, the optimization issues can be effectively handled by GArO algorithm. 

Owing to these benefits, the proposed water quality prediction technique chose logistic based 

GArO for key selection. However, sometimes the GArO fell into local optimal issues. 

Therefore, the chaotic logistic map Abdel-Salam., et al., (2024) is incorporated with GArO. 



 

 

Giant armadillos are referred to as features in this context. The steps involved in logistic based 

GArO for optimal feature selection are as follows: 

Initialization: Giant armadillos are in charge of populating the GArO algorithm. The values 

that each member of GArO chooses for the problem's decision variables establish where the 

problem falls in the problem-solving space. Thereby, the giant armadillo in the population 

describes a possible solution for the issue characterized by a vector. Using the following 

equation, the primary position of giant armadillo is randomly initialized at the commencement 

of algorithm execution. 

).(, ddddk LoBoUpBoTLoBoz −+=
                                               (2) 

where, djz ,  characterizes the 
thd  dimension of 

thk  GArO member in search space (decision 

variable), dLoBo
 and  dUpBo

 specifies the lower and upper bounds of 
thd  decision variable, 

andT  designates a random number between ]1,0[ . 

Fitness function:  

As each giant armadillo's position in the problem-solving space resembles a potential solution, 

it is possible to compute each giant armadillo's fitness function value. The typical dimensions 

of a dataset are Sf RR 
, where fR

 indicates the number of features  and SR
symbolizes the 

total number of samples. To accomplish its task, initially the feature selection process splits the 

entire feature set  into smaller subsets (V ) whose sum of dimensions is lesser than fR
. The 

below equation provides the expression of fitness function based on the member of GArO for 

selecting the feature subsets Surendram R., et  al., (2023). 
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where, kG
 characterizes the computed fitness function depending on 

thk  GArO member,   

has chosen in the interval ]10[ −  and is applied to balance between 
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indicates the picked features, while V
 exemplifies the classification error. The highest value 

determined for the fitness function indicates the best candidate solution (optimal member), 

while the worst value obtained for the fitness function resembles the worst candidate solution 

(worst member) . 

Exploration phase (Termite mound attack): In the exploration phase of hunting, the population 

members' position is updated depending on the giant armadillo's simulated attack on termite 

mounds. As it gets nearer to the termite mounds, the giant armadillo moves to update the 

location of population members. The molding of this attack process tends to location change 

of giant armadillo, which improves the exploration potentiality. For every individual in the 

population, the set of possible termite mounds is characterized as follows: 

},:{ kmandGGYTMou kmmk =
 where Qk ..,3,2,1=  and }..,3,2,1{ Qm         (4) 

where, kTMou
 characterizes the set of candidate termite mound positions for 

thk  giant 

armadillo, mZ
 signifies the population member with maximum fitness value than 

thk  giant 

armadillo, mG
 denotes its fitness value. For each population member, the new location is 

calculated based on the migration of giant armadillo in the direction of termite mounds using 

the below equation. 
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Then, the previous position of resultant member is interchanged based on the following 

equation if this new position maximizes the fitness as resembled by the above equation. 
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where, kCTMou
 designates the preferred termite mound for 

thk  giant armadillo, 
1Q

jY
 resembles 

the new position designed for 
thk  giant armadillo using the attacking phase, 

1

,

R

lkz
 represents its 

thk dimension, 
1R

kz
 characterizes its fitness value, lkT ,  designates the random numbers between 

[0, 1], and lkK ,  implies the numbers that are randomly picked as 1 or 2 

In GArO, the chaotic mapping is used to update the parameter lkT , . A relatively frequent 

phenomenon is recognized as chaos in nonlinear systems. One traditional mapping 1D maps is 

called as logistic mapping Demir, Fahrettin Burak., et al., (2024) and it is elected as follows: 

)1(..1 ppp ZZZ −=+ 
                                                 (7) 

where,   designates the chaotic factor, ]4,0( . Now, the expression for parameter updation 

based on logistic map in GArO is offered below as follows: 

)1.(4
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here,   is set to 4.  

Exploitation phase (Digging in termite mounds): In the exploitation step, a replication of a 

giant armadillo breaking into termite mounds to feed on termites is employed to update the 

population members' location. This minimizes fluctuation in giant armadillo location and 



 

 

maximizes the capability to influence local search. By simulating giant armadillo's ability to 

excavate in termite mounds, the following equation is utilized to determine a new location. 
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If the value of fitness is enhanced with the expression below, then this new location 

interchanges the earlier one. 
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where, 
2R

kZ
 characterizes the new location calculated for 

thk  giant armadillo using the digging 

stage, 
2

,

R

lkz
 indicates its 

thl dimension, 
2R

kG
 denotes the value of its fitness function, and v  

suggests the iteration counter. The pseudocode of GArO is presented in Algorithm 1.  

Algorithm 1: Pseudocode of GArO algorithm for feature selection 

Start 

Initialize the population size ( Q ),fitness function, dimension, maximum 

iteration (V ) 

Determine the initial random population matrix 

).(, ddddk LoBoUpBoTLoBoz −+=
 

Express the fitness function 

  For 1=v  to V  

   For 1=k  to Q  



 

 

        Stage 1: Exploration 

            Calculate the termite mounds’ set for 
thk  GArO member 

              
},:{ kmandGGYTMou kmmk =

 

            Select the termite mounds randomly for 
thk  GArO member 

            Determine new location of 
thk  GArO member using 
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      Update 
thk  member of GArO using 
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       Stage 2: Exploitation 

            Calculate new position of 
thk  GArO member 

              v
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            Update 
thk  member of GArO using 
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     End 

        Store the best solution acquired so far 

   End 

 Output the best solution (optimal features) 



 

 

End 

3.3 Water quality prediction and classification 

Water quality prediction encompasses predicting the future values of water quality parameters 

depending on historical data. The proposed ODD-RecurFlowNet model has employed global 

attention (GA) based RecurFlowNet to effectively predict the water quality parameters for 

agricultural purposes Zhao, Jinghua,, et al., (2021). The water quality parameters are significant 

to evaluate the water suitability for irrigation and ensuring the crops health and soil. After 

prediction process, the classification process is performed to categorize the water quality into 

predefined classes. A deep differential convolution neural network (DDiff-CNN) model is used 

in the proposed ODD-RecurFlowNet model for water quality classification. In addition, the 

hyper-parameter of the prediction and classification model is tuned using crested porcupine 

optimization algorithm (CPoOA). The design of water quality prediction and classification is 

given in Figure 2.  

X1

A
tt

e
n
ti

o
n
 m

e
c
h
a
n
is

m

GRU GRUGRU

GRU GRUGRU

Forward 

layer

Backward 

layer

GRU GRUGRU

GRU GRUGRU

Forward 

layer

Backward 

layer

X1 X2 X3 Xn

Y1 Y2 Y3 Yn

...

...Encoder

Decoder

Differential 

convolution 

operation

Max 

pooling 

layer

FC 

layer

Output 

layer

Excellent

Good

Poor

Very poor

 

Figure 2. Architecture of water quality prediction and classification 

3.3.1 Attention based RecurFlowNet 

 The attention based RecurFlowNet is a novel architecture that incorporates GA and 

bidirectional gated recurrent unit (BiGRU) with an encoder-decoder structure. It is designed to 



 

 

effectively acquire the and model sequential data for predicting the water quality parameters. 

Besides, the RecurFlowNet redirects the recurrent nature of BiGRU She, Daoming., et al., 

(2021) and smooth information flow between encoder and decoder. The ability of the model to 

process sequential data in backward and forward directions permit it to capture complex 

temporal patterns in water quality.  

The RecurFlowNet architecture is currently based on a learning model being utilized as the 

most advanced sequence prediction architecture. Variant-length sequences are read and 

generated by two learning networks, termed as the encoder and the decoder. An encoder–

decoder structure is the building block of an attention mechanism Niu, Zhaoyang., et al., 

(2021). From the input, the encoder creates an attention vector, which it then fed to the decoder. 

The encoder's output is fed into the decoder, which creates a hidden state. The components of 

encoder and decoder used in RecurFlowNet architecture are BiGRU. Based on the preceding 

historical data and the temporal context, future data are predicted by the encoder component. 

The BiGRU encoder's responsibility is to encode the input data such that the context vector 

(CV) can be generated. A CV is a vector with a fixed length that signifies the incoming data's 

temporal representation. After decoding the CV, the BiGRU accomplishes prediction. To 

calculate the probability of prediction sequence, the formula below is employed: 
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where, 
),.....,,,( 321 txxxx

 represents the input features. The encoder component of encoder-

decoder structure compresses every historical information’s hidden representations into a CV 

Feltane, Amal., (2016). The encoding and decoding stages are interfaced by means of the 

temporal attention layer. By using BiGRU as an encoder, it preserves the hidden internal state 



 

 

of H  by accepting the time series 
),.....,,,( 321 tXXXX
 as input. The GRU reads TX  and 

updates the hidden mode TH  for each step T  in the following ways:  

),( 1−= TTT HXBiGRUH                                                (12) 

Next, the BiGRU outcome is utilized to construct the temporal context vector jc
 in 

thj  

decoding phase, which is the weighted sum of encoder network's hidden states and signifies 

the overall weight of hidden state. The hidden representation of best encoder that map the 

decoder's attention to these representations are chosen using these vectors. The temporal 

context attention vector jc
 is calculated as follows: 


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The weight jT
 of each hidden state TH  is computed as: 
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                                                     (14) 

The below equation designates the general GA computation between 1−js
 and kH

, 

),( 1 kjjT HsA −=
                                                        (15) 

where, the hidden states of encoder layer and decoder layer are designated by kH
 and 1−js

, 

considerably. The architecture of GA based RecurFlowNet is offered in Figure 3.  
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Figure 3. Architecture of GA based RecurFlowNet model 

The relationship of the input value at position T  and the output value at position j  is 

designated by jT
, which also specifies the scoring function that is employed to calculate the 

correlation value. The scoring function in RecurFlowNet is general GA, which is established 

using the below equation Lei, Baiying., et al (2018). 

TAjjT Hwms 1−=
                                                         (16) 

where, the scoring function’s weight matrix is characterized by Awm . In order to predict the 

output at time j , attention weights are designed using Equation (13), which is associated to 

the time series at time T . Over the input time series, the vector jTE
, whose length is t , is 

utilized as the attention mask. The attention layer’s final state is considered as jc
. The jTE

 

vector normalization is accomplished using the softmax function. Together, the decoder and 

encoder are trained to optimize the sequence of water quality parameter outputs, which are: 
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where,   implies the model parameter, comprising weight  and bias A  of each layer, N  

represents the training dataset size, and   specifies the regularity of loss function or the 

significance of penalty. The MSE is employed by the model as the loss function of training 

process. To prevent overfitting, the early stop is used to end the training procedure if the 

validation loss stops reducing. 

3.3.2 Deep differential convolution network 

CNN is a neural network architecture that outperforms the traditional neural networks with its 

fast and precise method in detection and classification tasks. It has been used to enhance the 

classification accuracy of several standard databases. Even with improved accuracy, the 

complexity of convolution network remains challenging. Thereby, the proposed ODD-

RecurFlowNet model has employed deep differential convolution neural network (DDiff-

CNN) model to classify the water quality. The DDiff-CNN model contains several convolution 

layers that can analyze water samples’ data representation for determining the patters 

associated to the quality indices. The feature maps are produced in DDiff-CNN by applying a 

differential factor and pre-defined hyperactivity values. To extract more detail for water 

classification, the DDiff-CNN utilizes more differential features maps instead of adding more 

convolution layers or parameters. In compliance with the need of computing approaches, the 

DDiff-CNN model reduced the convolutional network structures’ complexity without losing 

the values. 

Convolution layer: Several pooling layers, convolutional layers, and fully connected (FC) 

layers are present in basic CNN model. Identifying the local connection features of existing 



 

 

layer is the function of convolution layer. The below expression describes the formula for 

describing a single output matrix a: 
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where, J  resembles the input vector, kBias
 indicates the bias value, and L  specifies the 

resultant convolution kernel with a size of kBias p
 ( p   input size). Next, the sum of every 

convoluted matrices is calculated. A bias value kBias
 is added to each element of resultant 

matrix. To create the output matrix B , a non-linear activation function g , operates on each 

element in the preceding matrix. 

Activation function: In order to evaluate the learning rate and CNN’s classification 

performance, a polished linear function is used as activation function. The equation below 

defines the formula as follows: 

( ) max(0, )(Re )g y y LU=                                                 (19) 

In order to minimize the feature maps’ fidelity, the pooling layer integrates linguistically 

related features. 

Deep differential convolutional feature map: Convolution is deliberated as the key component 

of the deep learning architecture, wherein the input predicted water quality indices are passed 

through several filters. Nevertheless, when there are more feature maps present in the model’s 

feature extraction layers, more number of features are classified. In standard CNN, the feature 

maps are produced by transferred knowledge or random initialization. By employing pre-

defined hyperactive values as well as the differential operator Sarıgül, Mehmet., et al (2019) 

traditional convolution feature maps are employed to create the feature maps in DDiff-CNN. 

An addition variation is computed using differential convolution maps to examine the patterns 



 

 

related to water quality indices and their neighbourhood areas. The difference between the data 

is calculated through mathematical differentiation to account for the sequence change. The 

difference is computed by using each feature map, as shown in Figure 4.  
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Figure 4. Structure of predefined filters 

The difference in one direction is counted for every feature map. Further, the additional feature 

maps with variations in various directions are obtained. Conversely, in order to extract more 

features for water quality classification, one static filter is added to the original algorithm. Here, 

a fixed filter Abdel-Basset., et al., (2024) is added and the feature maps are added directly. 

Consider, the initial feature map produced using classical neural networks is 1g
. The five 

feature maps that occurred by applying the differential operator are 2 3 4 5, , ,g g g g
 and 6g

. Using 

the below equations, the neurons in these maps are computed. 

2, , 1, , 1, 1,j k j k j kg g g += −                                                         (20) 

3, , 1, , 1, , 1j k j k j kg g g += −                                                          (21) 

4, , 1, , 1, 1, 1j k j k j kg g g + += −                                                        (22) 

5, , 1, 1, 1, , 1j k j k j kg g g+ += −                                                        (23) 

6, , 1, 1, 1 1, , 1j k j k j kg g g+ + += −                                                        (24) 

where, j  and k  indicate the neuron coordinates in the feature maps of convolution. Consider 

that the size of 1g
 is m n , and size of 2 3 4 5, , ,g g g g

 and 6g
 are ( 1)m n−  , ( 1)m n − , 

( 1) ( 1)m n−  − , ( 1) ( 1)m n−  − , ( 1) ( 1)m n−  −  considerably. Using the differential operators, 

the differential convolutional feature maps are computed from the initial feature map as soon 



 

 

as the first feature map is produced by classic convolution feature map. The feature maps of 

differential convolution are employed to determine the variations in data. From the above 

derivation procedure, DDiff-CNN extracts additional details from the data representation of 

water samples without adding more convolution layers by using more differential feature maps. 

Therefore, the complexity of convolution network structure is reduced by the DDiff-CNN, 

which lowers the computing requirements. 

3.3.3 Hyper-parameter tuning 

The proposed ODD-RecurFlowNet model has used CPoOA to tume the hyper-parameters of 

the prediction and classification model. CPoOA Islam, Nazrul., et al (2022) is one of a meta-

heuristic optimization algorithm inspired by nature that has established to precisely solve a 

range of optimization problems. The defense tactic of crested porcupine's (CPoP) encourages 

CPoOA. From least to most aggressive, the crowned porcupine employs sight, odor, sound, 

and physical attack as its four main defense strategies. The first and second defensive tactics 

that mimic the CPoP’s exploring activity are sight and sound. On the other hand, the third and 

fourth defense tactics that mimic the exploitative actions of CPoP are the smell and physical 

assault. Experiments conducted on various test suites demonstrate that the CPoOA can perform 

competitively and has unique stability qualities on high-dimensional benchmarks and real-

world problems. In addition, the CPoOA boosts the efficiency of optimization computations 

and promotes the continuous advancement and expansion of artificial intelligence applications. 

It also progresses into a powerful tool for handling difficult problems in the actual world. 

Thereby, the proposed ODD-RecurFlowNet model has selected CPoOA to tune the 

hyperparameters of the prediction and classification model. Here, the crested porcupine is 

considered as the tunable parameter Surendran R., et al (2023) and the physical attack behavior 

of the exploitation phase is imitated to update the optimal hyperparameter values as follows: 
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where, 
u

jZ
 characterizes the location of 

thj
 individual at iteration u  (resembles the predator 

position),   designates a random value between [0,1],   states a convergence speed factor,    

implies the parameter employed to manage the search direction, 
u

jH
 states the average force of 

CPoP that affected the 
thj

predator and 
u

CPoPZ
 suggests the best-attained solution and describes 

the CPoP.  

4. Results and discussion 

The experimental evaluation to compare the results of proposed ODD-RecurFlowNet model 

with other methods is covered in this section. The graphical representation of the simulated 

results, the performance evaluation, and the comparison are provided in the subsections below. 

The propose method’s performances are examined using the PYTHON platform. The proposed 

ODD-RecurFlowNet model has used water quality dataset acquired from Kaggle repository for 

experimentation. For accomplishing the research, the data collected have been derived from 

various locations in India, which included 1679 samples taken from 666 lake and river 

foundations. Data for the dataset has gathered from the year 2005 to 2014. Eight significant 

variables such as nitrate, pH, temperature, DO, fecal coliform, total coliform, and conductivity 

are comprised in the dataset. The class distribution of the dataset used in proposed ODD-

RecurFlowNet model is given in Table 1. 

Table 1. Investigation of class distribution 

Name of class Total samples 

Good 726 

Poor 273 



 

 

Excellent 324 

Very poor 355 

Total count 1678 

Further, the collected data from dataset is divided into 70% and 30% for training and testing. 

The ODD-RecurFlowNet is set up with an Intel CoreI i5-4760S CPU @ 3.10 GHz processor 

with 16.00 GB of main memory running 64-bit Windows 10 operating system. Table 2 shows 

the proposed model's parameter configuration. In this case, the proposed ODD-RecurFlowNet 

model uses the size of the epoch, which is set to 25, and the hyper-parameters are efficiently 

tuned using crested porcupine optimization algorithm (CPoOA). The hyper-parameter setup of 

the proposed ODD-RecurFlowNet model is offered in Table 2.  

Table 2. Hyper-parameter setup of ODD-RecurFlowNet model 

Parameter Values 

Maximum epoch 25 

Drop out 0.2 

Learning rate  0.01 

Optimizer CPoOA 

4.1 Performance indicators 

The proposed ODD-RecurFlowNet model has used deep learning based regression and 

classification model for the prediction and classification of water quality. In this subsection, 

the performance metrics like MSE, root MSE (RMSE), R-squared error (R2), precision, 

accuracy, recall, and f1-score, are considered to assess the performance of proposed ODD-

RecurFlowNet model.  



 

 

Mean square error: The average squared difference between the predicted and actual values is 

dignified by the MSE metric.  It is more widely utilized and highlights greater errors. The 

equation MSE is given below: 


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where, L  represents the number of samples, jz
 indicates the actual value of 

thj  sample, and 

jz


 resembles the expected value of 
thj  sample.  

Root mean square error: RMSE takes the square root of RMSE in order to obtain an 

understandable metric in the same unit as the dependent variable. The RMSE equation is given 

below as follows: 
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R-squared error: The coefficient of determination or R2 is deliberated as a statistical measure 

that computes the variance portion in the dependent variable described by the independent 

variables in a regression model. It gives a suggestion of how well the data fit the regression 

model. The expression of R2 is given below as follows: 
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where, jz~  signifies the mean of actual values.  

Accuracy: One metric that's generally utilized for classification tasks is accuracy. It evaluates 

the percentage of accurate predictions among all the predictions made by a model. This formula 

is used to calculate accuracy is given below as follows: 
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Precision: The ratio of true positive (TP) estimates to every positive prediction a model makes 

is termed as precision. By computing the ratio of anticipated positive values that are really 

positive, it assesses the accuracy of positive predictions. The equation of precision is given 

below as follows: 

FPTP

TP
ecision

+
=Pr                                                   (30) 

where, FP  indicates false positive.  

Recall: The proportion of TP predictions to every actual positive values is measured by a 

performance measure called recall. It evaluates how well the proposed classification model can 

distinguish among all of the actually positive cases. The expression of recall is given below as 

follows:  

FNTP

TP
call

+
=Re                                                      (31) 

where, FN  specifies false negative.  

F1-score: By computing the harmonic mean of recall and precision, the F1 score delivers a fair 

assessment of model's performance. It is mainly useful if there is an unequal distribution 

between the negative and positive classes since this statistic takes both the model's capability 

to capture all positive instances (recall) and the proficiency to reliably identify positive 

instances (precision). The expression of F1-score is given below as follows: 
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4.2 Analysis in terms of MSE, RMSE and R2 metrics 



 

 

In this section, the results of ODD-RecurFlowNet are assessed to determine the efficacy of 

water quality index prediction. A proportionate results analysis of ODD-RecurFlowNet model 

with existing models in terms of RMSE is exposed in Figure 5. The existing modes such as 

feedforward neural network (FFNN), artificial neural network (ANN), random forest (RF), 

logistic regression (LR), polynomial regression (PR), support vector machine (SVM), gradient 

boosting (GB), and optimal stacked BiLSTM (OSBiGRU) [48]. According to the figure, the 

proposed ODD-RecurFlowNet model produced effective results with the lowest RMSE value 

of 0.039, while the ANN, FFNN, and OSBiGRU models recognized somewhat enhanced 

RMSE of 0.7158, 0.5967, and 0.0436, respectively. These values guaranteed the proposed 

ODD-RecurFlowNet model's effective outcomes on water quality index prediction.  

 

Figure 5. Analysis of RMSE for the proposed and existing methods 

A comparative analysis of ODD-RecurFlowNet with other models in terms of R2 is shown in 

Figure 6. From the graphical representation, it is perceived that the proposed ODD-

RecurFlowNet model has a maximum R2 value of 98.3% showing better performance than the 

ANN, FFNN, PR, LR, GB, RF, SVM models, and OSBiGRU, which exhibit slightly lower R2 

of 89.87%, 83.66%, 82.50%, 91.17%, 86.44%, 84%, 80.93%, and 96.48%, respectively. 

Among the existing methods, OSBiGRU has achieved close to the proposed ODD-

RecurFlowNet model. The usage of enhanced architecture in the proposed ODD-



 

 

RecurFlowNet model effectively capture the temporal dependencies in water quality data. 

Besides, the use of CPoOA for hyper-parameter tuning permits the model to boost the 

performance.    

 

Figure 6. Analysis of RMSE for the proposed and existing methods 

Similarly, when considering the MSE metric, the proposed ODD-RecurFlowNet model has 

demonstrated superior performance against the existing methods. The MSE value achieved by 

the proposed ODD-RecurFlowNet model is 0.0014 and it significantly outperforms the state-

of-the-art methods such as FFNN, ANN, LR, RF, PR, SVM, GB, and OSBiGRU. The existing 

OSBiGRU records lower MSE value of 0.0019, which is close to the proposed ODD-

RecurFlowNet model. The traditional ANN and FFNN attained 0.5123 and 0.356. SVM and 

LR exhibited maximum MSE values of 6.88 and 7.36. The RF, PR and GB have attained 8.5, 

7.86 and 6.83 of MSE value. Other existing models including RF, PR and GB have attained 

8.5, 7.86 and 6.83 of MSE value, demonstrating that they are less effective in predicting the 

quality index of water. The significantly lower MSE of proposed ODD-RecurFlowNet model 

highlights its efficacy in acquiring the underlying pattern in data, creating it more reliable for 

evaluating the water quality over the existing methods. This performance underscores the 

benefits of advanced deep learning methods in environmental monitoring applications. 



 

 

4.3 Analysis in terms of accuracy, precision, recall and f1-score 

In this section, the performance of the classification model is accessed in terms of accuracy, 

recall, precision, and f1-score. The existing methods such as multi-layer perceptron (MLP), 

stochastic gradient descent (SGD), k-nearest neighbor (KNN), and decision tree (DT) gaussian 

naïve bayes (GNB), and artificial ecosystem optimization with improved elman neural network 

(AEO-IENN) are used for comparison. A confusion matrix is deliberated as a statistic utilized 

to assess the accuracy of classification model. In contrast to the actual outcomes, a visual 

representation of the model’s prediction is provided in the confusion matrix. This permits to 

analyze the model performance across different classes. Typically, the confusion matrix 

comprises of four components such as TP, FP, true negative (TN), and FN.  

 

Figure 7. Analysis of confusion matrix 

Figure 7 provides the confusion matrix of proposed ODD-RecurFlowNet model. The confusion 

matrix in the graphical representation reveals how the samples are accurately classified into 

good, excellent, poor and very poor. Here, the correctly predicted values are presented along 

the diagonal of matrix, and other values indicates the misclassification, where the samples are 

wrongly dispensed to various category. On the total of 99 excellent samples, one is 

misclassified as poor and very poor. Considering the 220 good samples, 217 are correctly 



 

 

classified and only three is misclassified as very poor. The poor class has a total of 84 samples 

among that one is misclassified as poor. In the same way, the very poor class has a total of 108 

samples among that 106 samples are correctly identified as very poor class and two is 

misclassified as good.  

 

Figure 8. Analysis of accuracy for the proposed and existing methods 

The comparative analysis of ODD-RecurFlowNet with the dominant models in terms of 

accuracy is exposed in Figure 8. The graphical depiction suggests that the existing methods of 

the SGD, LR, and DT representations has been reported to be lower, with respective accuracy 

rates of 83.44%, 84.57%, and 84.35%. Followed by this, KNN has established a marginally 

superior outcome with an accuracy of 86.81%. The GNB and MLP models produced results 

with respectable accuracy of 90.98% and 90.46%, respectively. The proposed ODD-

RecurFlowNet model has demonstrated superior performance, with a maximum accuracy of 

98.01%. When compared to other existing models, AEO-IENN has attained accuracy value of 

97.42%, which is near to the proposed ODD-RecurFlowNet model.   



 

 

 

Figure 9. Analysis of precision, recall and f1-score for the proposed and existing methods 

Figure 9 portrays a thorough analysis of the proposed and most recent models in terms of 

several metrics such as recall, precision, and f1-score. In comparison to other models, the 

implication is that the SGD, MLP, and DT representations have revealed the least values. 

Besides, there has been a minor improvement in the classifier outcomes of LR model. In 

addition, there has been a moderate improvement in classification performance between the 

KNN and GNB models. On the other hand, the proposed ODD-RecurFlowNet model has 

demonstrated significantly greater values with a maximum recall of 96.9%, precision of 

96.78%, and an f1-score of 98.01%. The existing AEO-IENN also achieved better performance 

with recall of 94.4%, precision of 94.97%, and f1-score of 94.54%, which are slightly lower to 

the proposed ODD-RecurFlowNet model. Overall, when compared to alternative methods, the 

proposed ODD-RecurFlowNet model has achieved favorable results with regard to the 

classification of water quality.  

4.4 Analysis in terms of accuracy-loss curve  

 Initially, the performance obtained by the proposed ODD-RecurFlowNet for water 

quality prediction and classification is compared with various existing studies in terms of 

difference evaluation metrics. In this section, the detailed analysis of experimental outcome in 



 

 

terms of accuracy and loss based on training and validation data is designated.  Figure 10 

exemplifies the accuracy-loss curve of proposed ODD-RecurFlowNet model. In the accuracy 

curve, the analysis is performed with training and validation data, as exposed in Figures. The 

findings ensured that accuracy increases with increasing epochs. Furthermore, it appears that 

training accuracy is superior to testing accuracy. Considering the loss curve, loss percentage of 

proposed ODD-RecurFlowNet model is highly minimized, and if the number of epochs is 

maximized, the resultant value is very low.  

 

 

(a) Training and validation accuracy (b) Training and validation loss 

Figure 10. Analysis of accuracy and loss 

 

4.5 ROC analysis 

The receiver operating characteristic analysis or ROC analysis is employed in the proposed 

ODD-RecurFlowNet model to determine the performance of classification by plotting TP rate 

against the FP rate. This performance is evaluated by the area under the curve (AUC), which 

has values between 0 and 1. An AUC of 0.5 implies no discrimination while an AUC of 1 

describes perfect classification. The ROC evaluation of proposed ODD-RecurFlowNet model 

for water quality classification is exposed in Figure 11. The graphical depiction suggested that 

the samples has been effectively classified into four distinct classes with maximum ROC values 



 

 

by the proposed classification model due to the use of differential features with optimal 

parameter tuning. 

 

Figure 11. Analysis of ROC 

5. Conclusion 

A unique ODD-RecurFlowNet model for accurately classifying water quality by using 

predicted water quality index is proposed in this paper. The ODD-RecurFlowNet model 

automatically and successfully recognizes water quality by selecting the best features and 

adjusting classifier hyperparameters. The ODD-RecurFlowNet use logistic basedGArO to 

select important features. While the GA based RecurFlowNet network handles water quality 

index prediction, DDiff-CNN classifies the water quality as good, excellent, poor and very 

poor. Furthermore, CPoOA is applied to optimize the model's hyperparameters. The Python 

platform is used to train and assess the model using the publicly available dataset from kaggle 

repository. On the water quality prediction dataset, the ODD-RecurFlowNet model's overall 

accuracy is 98.01%, and R2 of 98.3% respectively. Despite achieving a high performance and 

maximum accuracy, the ODD-RecurFlowNet model necessitates greater computational 

resources because of its complexity during both the training and testing stages. Besides, the 

diversity of real-world scenarios cannot be adequately reflected in the datasets used to test the 

model's performance. Future direction focus on hybrid feature selection techniques that 



 

 

integrate filter-based, wrapper-based, and embedding approaches to identify the most 

informative features. Gather statistical information from various geographical regions and 

environmental contexts to enhance model predictability. 
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