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Abstract 

The use of eggshell-based foamed concrete represents a 
sustainable approach to enhancing environmental 
friendliness in construction materials. This study 
investigates the predictive modelling of the compressive 
strength of eggshell-based foamed concrete through a 
deep learning model, fine-tuned via Bayesian 
optimization. Utilizing a dataset of 360 samples with 
diverse input parameters, the model was optimized with 
four hidden layers (28, 21, 28, and 21 neurons) and the 
Rectified Linear Unit (ReLU) activation function. The 
model demonstrated excellent predictive accuracy, 
achieving a mean squared error of 0.0522, a mean 
absolute error of 0.0382, and an R² value of 0.9548 over 
200 epochs. Notably, the water/cement ratio emerged as 
the most influential factor in prediction accuracy. This 
research provides a robust, AI-driven method for 
predicting the compressive strength of sustainable 
construction materials, contributing to advancements in 
environmental technology and the optimization of eco-
friendly construction practices. 

Keywords: Waste eggshell powder, compressive strength, 
deep learning, hyperparameter tuning 

1. Introduction 

Lightweight foamed concrete (LFC) has a variety of uses as 
low-density concrete in the construction industry (Mydin 

et al. 2022; Suhaili et al. 2021; Pirah et al. 2022). LFC 
performs well in compression but poorly in bending and 
tensile stresses because it develops multiple microcracks 
and cannot sustain the further stress brought on by 
applied forces without additional reinforcing elements. To 
improve the mechanical properties of LFC, researchers 
have looked into the use of a variety of materials, 
including oil palm spikelets, empty fruit bunch fibre, 
fibreglass mesh netting, and alkali-resistant woven fibre 
mesh (Mydin et al. 2022; Suhaili et al. 2021; Pirah et al. 
2022; Mydin, 2023; Serudin et al. 2022). There are many 
benefits to using LFC in construction. According to Villiers 
and Petrus (2016), LFC is a low-density concrete that uses 
the entrapment of air produced by a protein-based foam 
mix constituent to make it lighter than conventional 
concrete. LFC can be made by foaming the mortar to 
produce porous and lightweight concrete (Sumiati et al. 
2020). According to Sumiati et al. (2020), the lightweight 
nature of LFC provides some advantages, including 
reducing bending moments and helping to mitigate 
earthquakes. However, cement is used in the creation of 
foamed concrete as a binding agent, which has a 
significant amount of carbon footprint (Othman et al. 
2023). Therefore, there has been a rise in interest in 
researching cement alternatives to enhance resource 
efficiency, energy efficiency, and overall foamed concrete 
properties (Othman et al. 2023). 

To explore the possibilities for cement alternatives, the 
waste materials can be used as a substitute for cement in 
foamed concrete. Soil, for instance, can be utilised as a 
filler in foamed concrete, a novel lightweight construction 
material made of cement, soil, water, and a foaming agent 
(Kavya et al. 2020). Red mud magnesium oxysulfate 
cement, mussel shell, palm oil fuel ash, and used cooking 
oil foaming agents were a few other waste materials that 
have been investigated for usage in LFC (Rahman et al. 
2021; Shah et al. 2021; Hafiz et al. 2014). Likewise, the LFC 
can be considered a sustainable construction material that 
uses waste by-products as lightweight coarse aggregates, 
including oil palm shells and crushed clay bricks (Sumiati 
et al. 2020; Liu et al. 2014). The mechanical properties of 
LFC can be improved by the inclusion of reinforcing 
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materials, such as fibreglass mesh netting and empty fruit 
bunch fibre from oil palms (Mydin et al. 2022; Mydin, 
2023). Overall, the usage of LFC may contribute to natural 
resource conservation, the reduction of environmental 
issues, and increased concrete construction durability. 

Eggshell waste is a common by-product of daily living that 
can be recycled to help with waste disposal issues and to 
encourage the use of LFC (Tiong et al. 2018). Eggshell 
powder is used as a partial replacement for standard 
Portland cement in Eggshell-based Foamed Concrete 
(EFC), a type of lightweight concrete. EFC is recognized as 
an environmentally friendly and sustainable building 
material due to its use of eggshell waste and other agro-
industrial wastes, such as palm oil fuel ash, as 
supplementary cementitious ingredients. According to 
studies, the ideal range for eggshell powder inclusion in 
EFC is between 5% and 15% (Tiong et al. 2022; Jhatial et 
al. 2021b; Lim et al. 2021; Jhatial et al. 2020; Rahman et 
al. 2019). The optimum mixture of EFC varies depending 
on the desired properties and application. According to 
previous studies, adding 5% eggshell powder as a partial 
cement replacement material enhances the initial surface 
absorption, sorptivity, and dimensional stability of LFC 
(Tiong et al. 2022; Lim et al. 2021). In another study, it 
was discovered that adding supplementary cementitious 
materials to foamed concrete, such as 5% – 15% eggshell 
powder and 30% – 35% palm oil fuel ash, produced 
favourable results in terms of thermal insulation and 
mechanical strength (Jhatial et al. 2021b; Jhatial et al. 
2020). In addition, a study discovered that the LFC mixture 
with 5% eggshell powder produced optimal results for 
assessing its acoustic qualities at a water-to-cement ratio 
of 0.6 (Tiong et al. 2022). The optimal EFC mixture will 
therefore rely on the specific application and desired 
properties. Additionally, using eggshell powder as a 
supplementary cementitious material in foamed concrete 
may aid sustainability efforts by minimising waste and 
carbon impact (Rahman et al. 2019; Jhatial et al. 2021a). 
The pozzolanic property of eggshell powder can help to 
generate C-S-H gels, which can boost the strength of 
foamed concrete. Eggshell powder is also a less expensive 
alternative to ordinary Portland cement (Jhatial et al. 
2021a). 

Numerous studies have been conducted to develop 
prediction models for the compressive strength of foamed 
concrete. Some of these models take into account 
variables like the composition of the mix, the duration of 
the curing process, and porosity (Zhao et al. 2018), 
whereas other models employ artificial neural networks 
to forecast compressive strength based on input variables 
like density, water-cement ratio, and sand-cement ratio 
(Singh et al. 2021). Another study uses an adaptive neuro-
fuzzy inference system, optimized with nature-inspired 
algorithms, to predict compressive strength (Sharafati et 
al. 2021). These studies aim to improve the accuracy and 
precision of predicting the compressive strength of 
foamed concrete, which can help optimize the mix 
composition and casting density of the concrete. Several 
factors affect the performance of foamed concrete 

strength prediction. According to Falliano et al. (2018), 
foamed concrete can achieve some degree of strength 
depending on the density, foaming agent, and water-
cement ratio. Ghahremani et al. (2023) examined the 
impact of pore size and shape on the prediction model for 
the compressive strength of foamed concrete. According 
to Retamal and Rougier (2021), density has a major 
influence on the compressive strength of foamed 
concrete, followed by the water-to-cement and sand-to-
cement ratios. The compressive strength of high-porosity 
cast-in-situ foamed concrete was also found to be 
influenced by the curing time, mix composition, and 
porosity (Zhao et al. 2018; Wong et al. 2019). Therefore, 
to accurately predict the compressive strength of foamed 
concrete, it is necessary to consider factors such as 
density, water-cement ratio, foaming agent, curing time, 
mix constitution, and porosity. 

Recent research has looked into the application of deep 
learning methods to concrete compressive strength 
prediction. Ali et al. (2024) conducted comprehensive 
studies on AI-based prediction methods for self-
compacting, geopolymer, and other eco-friendly concrete 
types. Falah et al. (2022) utilized a deep learning neural 
network to model the compressive strength of eco-
friendly concrete incorporating recycled aggregates. De-
Prado-Gil et al. (2022) applied deep learning techniques to 
predict the splitting tensile strength of self-compacting 
recycled aggregate concrete. Mahmood et al. (2023) used 
both machine learning and deep learning techniques to 
enhance the compressive strength prediction of self-
compacting concrete containing rice husk ash and marble 
powder. Similarly, Gao and Ma (2024) predicted and 
simulated the compressive strength of concrete in which 
cement and fine aggregate were replaced with waste 
materials such as eggshell powder (ESP) and waste glass 
powder (WGP) for sustainable construction. In addition, 
Khan et al. (2023) developed machine learning-based 
models to predict the water absorption capacity of 
cement mortar with eggshell powder as a cement 
replacement. The effectiveness of deep learning in 
predicting concrete strength has been shown in these 
studies. However, to date, no study has explored the use 
of deep learning for predicting the compressive strength 
of EFC. Accordingly, this paper presents a deep learning 
model optimized through Bayesian optimization for 
predicting the compressive strength of EFC. Various mix 
proportions of EFC were prepared as training, validation 
and testing data for the deep learning model to predict 
the compressive strength. The hyperparameters of the 
model were tuned to achieve optimal performance, which 
can be utilized as a prediction tool for researchers in 
designing EFC in future studies. 

2. Material and methods 

2.1. Preparation of materials 

The materials used for the EFC included ordinary Portland 
cement (OPC), fine sand, eggshell powder, foam, and 
water. The OPC used was a locally branded Type I 
Portland Cement in accordance with ASTM C 150 (2012) 
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and MS EN 197-1 (2014), with a strength of 52.5 N. The 
designation 52.5 N refers to the strength class, indicating 
that the OPC paste is expected to achieve a compressive 
strength of 52.5 MPa at 28 days. The cement was sieved 
at a size of 300 micrometers to ensure consistency and 
uniformity in the mixture. The eggshell powder was 
prepared by cleaning and drying the eggshells under the 
hot sun, followed by crushing, grinding, and sieving to a 
size of less than 63 µm. The fine sand used complied with 
ASTM C 778 (2021), BS EN 12620 (2013) and ASTM C33 
(2023), and was dried in an oven at 105 °C for 24 hours 
before being sieved to a size not more than 600 µm (Lim 
et al. 2015). Tap water was used as the mixing water, and 
a synthetic foaming agent, poly-oxyethylene alkyether 
sulfate, was used to create the stable foam at the density 
of 45 kg/m3 required for the foamed concrete. These 
materials were carefully selected and prepared to ensure 
consistency and accuracy in the mixture, resulting in a 
high-quality EFC suitable for deep learning prediction 
model training, validation and testing. Figure 1 illustrates 
the material preparation, casting, and compressive 
strength testing process. First, the dry materials, including 
OPC, sieved sand, and ground eggshell powder, were 
thoroughly mixed until uniform. Water was then gradually 
added to the dry mix and stirred continuously until fully 
incorporated, forming a slurry cement paste. Meanwhile, 
the foaming agent and water were introduced into the 
foam generator, with the pressure set to 0.5 MPa. Once 
the pressure stabilized at 0.5 MPa, foam was extracted 
and transferred to a bucket. The foam was then gently 
mixed into the slurry to avoid damage. After achieving a 
uniform mix, the concrete was poured into a 1-litre 
container to check the fresh density and ensure it met the 
target density. The slurry foamed concrete was then 
poured into oiled moulds and left to set for 24 hours. 
After setting, the hardened foamed concrete was 
demoulded and cured in a water tank for 7 and 28 days. 
Upon completion of curing, the foamed concrete was 

tested for compressive strength according to BS EN 
12390-3 (2002), using a constant loading rate of 0.1 kN/s. 

 

Figure 1. Process of Material, Casting and Compressive Strength 

Test 

2.2. Mix design for eggshell-based foamed concrete 

A total of 360 EFC cubes (100 mm x 100 mm x 100 mm) 
were prepared for training and validating the deep 
learning model. The mix design of the specimens was 
varied based on the density of the concrete, the 
replacement percentage of eggshell to replace cement, 
and the water-to-cement ratio. Four different densities, 
namely 800 kg/m3, 1000 kg/m3, 1200 kg/m3, and 1400 
kg/m3, were tested. For each density, five different 
percentages of eggshell replacements were tested, 
ranging from 0%  

to 10% at an increment of 2.5%. Furthermore, for each 
eggshell replacement percentage, three different water-
to-cement ratios were tested, which were 0.56, 0.60, and 
0.64. For each water-to-cement ratio, three samples were 
tested at both 7 days and 28 days, resulting in a total of 
360 samples. The mix design was carefully planned to 
ensure that a comprehensive dataset was generated for 
training, validation and testing the deep learning model. 
The results obtained from the mix design experimentation 
on the EFC cubes are presented in Table 1, which 
highlights a selection of five datasets randomly chosen 
from the total pool of 360 datasets. 

 

Table 1. Randomly Selected Datasets from the Mix Design 

Day Density, kg/m3 
Percentage of 
eggshells, % 

Water/Cement 
Ratio 

Cement, kg/m3* Sand, kg/m3* Water, kg/m3* 
Compressive 

Strength, MPa 

28 800 0.0 0.64 303 303 194 1.14 

7 1000 7.5 0.56 391 391 219 1.26 

28 1000 7.5 0.64 379 379 242 1.83 

7 1200 10.0 0.56 469 469 263 2.62 

28 1400 10.0 0.60 538 538 323 5.98 

*The weight of material used in producing 1 m3 foamed concrete. 

 

2.3. Statistical and descriptive analysis on the datasets 

This section presents the statistical and descriptive 
analysis of the EFC datasets. Table 2 summarizes the 
statistical analysis of key parameters measured in the 
eggshell foamed concrete samples, providing an overview 
of the maximum, minimum, mean, median, mode, 
standard deviation, and variance values. These 
parameters include curing days, density, eggshell 
replacement percentage, water/cement ratio, cement, 
sand, water, and compressive strength. The curing period 

ranged from 7 days to 28 days, with a mean of 17.5 days. 
Density values varied from 800 kg/m³ to 1400 kg/m³, with 
an average of 1100 kg/m³. Eggshell replacement was 
tested from 0% to 10%, averaging at 5%, while the 
water/cement ratio ranged from 0.56 to 0.64, placing 
around a mean of 0.60. Cement content ranged from 331 
kg/m³ to 547 kg/m³, sand from 294 kg/m³ to 547 kg/m³, 
and water content from 194 kg/m³ to 339 kg/m³. The 
compressive strength values show considerable variation, 
with a maximum strength of 8.69 MPa and a minimum of 
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0.53 MPa, averaging at 3.05 MPa. Standard deviation and 
variance values indicate the distribution and variability 
within each parameter, highlighting the spread across the 
dataset. For better visualization, Figures 2 and 3(a) show 
the statistical analysis of input and output parameters, 

whilst Figure 3(b) illustrates the frequency distribution of 
compressive strengths. It provides an essential baseline 
for understanding the material properties of the eggshell 
foamed concrete samples across various mix designs. 

 

Table 2. Statistical Characteristics of the Datasets 

Parameters Unit Maximum Minimum Mean Median Mode Standard Deviation Variance 

Days Day 28 7 17.5 17.5 7 10.5 110.6 

Density kg/m3 1400 800 1100 1100 800 223.9 50139.3 

Percentage of eggshells % 10.00 0.00 5.00 5.00 0.00 3.54 12.53 

Water/cement ratio - 0.64 0.56 0.60 0.60 0.56 0.03 0.00 

Cement kg/m3 547.0 331.0 430.9 423.0 346.0 76.5 5848.0 

Sand kg/m3 547.0 294.0 421.0 423.0 303.0 89.3 7979.2 

Water kg/m3 339.0 194.0 258.3 252.5 194.0 46.9 2198.3 

Compressive Strength MPa 8.69 0.53 3.05 2.05 1.23 2.18 4.74 

 

 

Figure 2. Statistical Characteristics of Input Parameters 

 

Figure 3. Statistical Characteristics of (a) Output Parameter and 

(b) Frequency Distribution of Output 

This study further provides an analysis of the compressive 
strength data obtained from EFC samples with different 
densities, ranging from 800 kg/m³ to 1400 kg/m³, and 
tested over curing periods of 7 days and 28 days. The 
samples were mixed with eggshell replacement levels of 
0%, 2.5%, 5%, 7.5%, and 10%, with mean compressive 
strengths measured by averaging the compressive 
strengths of three water/cement ratios of 0.56, 0.6, and 
0.64, as shown in Table 3. A total of 360 experimental 

samples were tested, and the results include mean 
compressive strength, standard deviation, maximum, and 
minimum compressive strengths for each density. At the 
lowest density of 800 kg/m³, the mean compressive 
strengths range from 0.67 MPa to 1.41 MPa (7 days) and 
1.02 MPa to 1.80 MPa (28 days). As the density increases 
to 1000 kg/m³, the mean compressive strengths also 
increase, with values between 1.23 MPa to 1.51 MPa and 
1.54 MPa to 1.79 MPa for the curing periods of 7-day and 
28-day, respectively. At a density of 1200 kg/m³, the mean 
compressive strength improves further, ranging from 2.32 
MPa to 2.97 MPa (7 days) and 3.05 MPa to 3.81 MPa (28 
days). The 1400 kg/m³ density exhibits the most 
significant gain in compressive strength, with values 
ranging from 5.11 MPa to 5.83 MPa (7 days) and 6.62 MPa 
to 7.96 MPa (28 days). 

These results show the substantial influence of density on 
the compressive strength of EFC, where higher densities 
consistently produce stronger concrete. The variability in 
compressive strength, as indicated by the standard 
deviation, also increases with density. For the 800 kg/m³ 
samples, the standard deviation ranges from 0.04 MPa to 
0.11 MPa (7 days) and 0.04 MPa to 0.14 MPa (28 days), 
whereas for the 1400 kg/m³ samples, it increases to 
ranges of 0.47 MPa to 0.72 MPa (7 days) and 0.45 MPa to 
0.87 MPa (28 days). This tendency implies that while 
compressive strength improves with density, there is also 
greater variability in the results for higher concrete 
density. Maximum and minimum compressive strengths 
similarly follow this trend, with the highest range of values 
recorded for the 1400 kg/m³ density. These findings 
emphasize the strong influence of density on both the 
compressive strength and the variability of eggshell 
foamed concrete. 

Likewise, the influence of the water-to-cement ratio on 
compressive strength plays a significant role in the 
performance of eggshell foamed concrete based on the 
different densities, as shown in Figure 4. The influence of 
water/cement ratios on the 28-day compressive strength 
of eggshell foamed concrete becomes more pronounced 
as the density increases. At lower densities (800 kg/m³, 
1000 kg/m³ and 1200 kg/m³), the w/c ratio has a relatively 
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minor effect on compressive strength. This indicates that 
at lower densities, the mix is more influenced by other 
factors such as the foamed structure or eggshell 
replacement percentage, with the cement content playing 
a less dominant role. However, as the density increases to 
1400 kg/m³, the differences between the w/c ratios 
become more evident. In particular, the eggshell foamed 
concrete with a w/c ratio of 0.56 (red bars) achieved 

higher compressive strengths at 1400 kg/m³. Conversely, 
the w/c ratio of 0.64 (blue bars) shows a noticeable 
decline in strength at this density. This can be attributed 
to the higher water content, which weakens the eggshell 
foamed concrete by increasing porosity and reducing the 
bonding efficiency between the cement paste and the 
eggshell powers. 

 

Table 3. Summary of Eggshell Foamed Concrete at Different Densities, Eggshell Replacements and Curing Ages 

Density, kg/m3 
Percentage of 
Eggshells, % 

Days 
Mean 

Compressive 
Strength, MPa 

Standard 
Deviation, MPa 

Maximum 
Compressive 

Strength, MPa 

Minimum Compressive 
Strength, MPa 

800 

0 7 0.73 0.10 0.89 0.55 

 28 1.02 0.14 1.22 0.87 

2.5 7 0.67 0.09 0.77 0.53 

 28 1.14 0.07 1.25 1.03 

5 7 0.76 0.07 0.84 0.61 

 28 1.20 0.08 1.28 1.01 

7.5 7 1.23 0.11 1.34 1.01 

 28 1.70 0.04 1.74 1.60 

10 7 1.41 0.04 1.47 1.35 

 28 1.80 0.09 1.91 1.67 

1000 

0 7 1.51 0.34 2.00 1.08 

 28 1.79 0.39 2.42 1.23 

2.5 7 1.39 0.19 1.56 1.04 

 28 1.69 0.25 2.22 1.46 

5 7 1.32 0.23 1.78 0.97 

 28 1.60 0.30 2.01 1.25 

7.5 7 1.51 0.21 1.76 1.25 

 28 1.54 0.33 1.89 1.09 

10 7 1.23 0.20 1.51 0.89 

 28 1.70 0.44 2.16 0.98 

1200 

0 7 2.71 0.44 3.17 2.02 

 28 3.64 0.49 4.23 3.00 

2.5 7 2.32 0.66 3.29 1.45 

 28 3.05 0.85 4.26 2.27 

5 7 2.97 0.23 3.27 2.51 

 28 3.56 0.56 4.29 2.88 

7.5 7 2.57 0.34 3.04 2.21 

 28 3.81 0.68 4.61 2.77 

10 7 2.86 0.15 3.13 2.62 

 28 3.64 0.31 3.98 3.13 

1400 

0 7 5.78 0.47 6.33 4.91 

 28 7.96 0.72 8.69 6.77 

2.5 7 5.39 0.69 6.29 4.45 

 28 7.28 0.87 8.42 6.31 

5 7 5.83 0.50 6.61 4.99 

 28 7.39 0.64 8.36 6.55 

7.5 7 5.66 0.72 6.86 4.77 

 28 6.81 0.64 7.75 5.74 

10 7 5.11 0.63 5.88 4.05 

 28 6.62 0.45 7.36 5.98 

 

2.4. Design of deep learning model 

A deep learning model was designed to predict the 
compressive strength of EFC. Figure 5 illustrates the 
architectural design of the deep learning model developed 
for this investigation, showcasing its various components 

and connections. The dataset utilized in this study 
comprised a total of 360 samples of EFC.  The numerical 
input data encompassed crucial parameters, including the 
concrete age, density, eggshell replacement percentage, 
water/cement ratio as well as the weights assigned to 



UNCORRECTED PROOFS

6  LIM et al. 

cement, sand, and water. Subsequently, an in-depth 
hyperparameter tuning process was conducted, 
systematically varying and assessing the number of hidden 
layers and neurons across multiple configurations, as 
detailed in Section 2.5. The output data was the 
compressive strength of the EFC.  

 

Figure 4. 28-Day Compressive Strength of Eggshell Foamed 

Concrete at Different Densities and Water/Cement Ratios (Note: 

Three colours are used to indicate the water/cement ratios of 

0.56, 0.60, and 0.64, while each group of similarly coloured 

histograms consists of five columns to indicate different eggshell 

replacement levels from 0% to 10%.) 

 

Figure 5. Design of Deep Neural Network Architecture 

Before commencing the training phase, all numerical data 
underwent a normalization procedure to ensure uniform 
scaling, and the dataset was randomly shuffled to ensure 
the representativeness and randomness of the samples. 
The dataset was divided into 70% for training, 15% for 

validation, and 15% for testing (see Table 4). The deep 
learning model was trained using the training dataset, 
validated with the validation dataset, and subsequently 
evaluated with the testing dataset to determine the 
model's performance. The main objective of this deep 
learning model was to deliver precise predictions of the 
compressive strength of EFC, leveraging the available 
input variables as the basis for robust inference. To 
facilitate the development of this model, Python 
programming and hyperparameter tuning were 
conducted using the Google Colaboratory platform. 

2.5. Bayesian optimization for hyperparameter tuning 

Bayesian optimization was employed as the methodology 
for hyperparameter tuning. Bayesian optimization is a 
powerful technique that enables efficient exploration of 
the hyperparameter space by iteratively evaluating the 
model performance and updating the search strategy 
based on the obtained results. It offers distinct 
advantages such as the ability to handle noisy and 
expensive-to-evaluate black-box functions, adaptability to 
various types of hyperparameters, and the ability to 
converge to the global optimum with limited evaluations 
(Candelieri, 2021). The objective of the optimization is to 
identify the highest value within a given sampling point 
for an unknown function f, as expressed by Equation 1 
(Wu et al. 2019). 

( )+ =     X argarg f X
 

(1) 

( ) ( )( | )P M E P M P M
 

(2) 

Bayesian optimization is rooted in Bayes' theorem, which 
states that the posterior probability P(M|E) of a model M, 
given evidence data E, is directly proportional to the 
likelihood P(E|M) of observing E given model M, 
multiplied by the prior probability P(M), as depicted in 
Equation 2 (Wu et al. 2019). Here, A represents the search 
space of X. 

 

Table 4. Hyperparameters Tuning in the Deep Learning Model 

Hyperparameter Configuration 

Data split (training: validation:test) 70%:15%:15% 

Number of inputs 7 

Number of hidden layers 1/2/3/4/5/6/7/8 

Number of neurons 7/14/21/28/35 

Number of outputs 1 

Learning rate 0.01/0.001/0.0001 

Activation function Sigmoid/tanh/ReLU 

Batch size  32 

Optimizer Adam 

Epochs 100 to 1000 (increments of 100) 

 

The specific configurations of the hyperparameters 
employed in the deep learning model as shown in Table 4. 
The hyperparameters tuning for Bayesian optimization 
encompassed the number of neurons, number of hidden 

layers, activation functions, and learning rate. The number 
of neurons was explored across the values of 7, 14, 21, 28 
and 35, while the number of hidden layers varied between 
1, 2, 3, 4, 5, 6, 7 and 8. Different activation functions, 
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including sigmoid, tanh, and ReLU, were investigated. The 
learning rate, a critical hyperparameter influencing the 
speed and convergence of the model, was examined at 
values of 0.01, 0.001, and 0.0001. The training process 
was conducted for a fixed number of epochs (100), 
utilizing the Adam optimizer and a batch size of 32. After 
determining the optimal architecture for the deep 
learning model using Bayesian Optimization, subsequent 
hyperparameter tuning focused on varying the number of 
epochs. This was investigated across a range of values 
from 100 to 1000, in increments of 100. By exploring this 
diverse set of epoch values, the model's performance was 
further optimized. 

2.6. Performance evaluation metrics 

The performance of the deep learning model was 
evaluated through a comprehensive assessment of its 
hyperparameter tuning. The evaluation metrics employed 
for measuring the model's performance included the R-
squared (R2) coefficient of determination, Mean Squared 
Error (MSE) and Mean Absolute Error (MAE) (Harishkumar 
et al. 2020). The MSE was utilized as a metric to quantify 
the average squared difference between the predicted 
and actual values of the compressive strength (see 
Equation 3). It provides insight into the overall accuracy of 
the model's predictions, with lower MSE values indicating 
a closer fit to the true values. Likewise, the MAE was 
employed as an additional evaluation metric to measure 
the average absolute difference between the predicted 
and actual values (see Equation 4). This metric provides a 
measure of the model's precision and ability to capture 
the magnitude of the errors. Similar to MSE, lower MAE 
values signify better performance. Furthermore, the R2 
coefficient of determination was calculated to assess the 
goodness-of-fit of the model (see Equation 5). R2 
represents the proportion of the variance in the output 
variables that can be explained by the input variables. It 
ranges from 0 to 1, where a value closer to 1 indicates a 
stronger correlation and higher predictive power of the 
model (Huang et al. 2022). 
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Where m is the total number of samples, xi and yi are the 
actual and predicted values, xi̅ and ȳi are the means of xi 
and yi (Ahmad et al. 2021). 

Sensitivity analysis is a valuable tool for assessing a 
model's robustness by determining how uncertainties in 
inputs affect the output (Silva et al. 2023). It offers key 
insights into the relative importance of input parameters, 
helping researchers identify which factors most 
significantly influence the model results. Several recent 

studies have applied this technique. Silva et al. (2023) 
used sensitivity analysis to explore the relationship 
between input variables and the mechanical properties of 
steel, providing a comprehensive assessment of each 
variable's impact on material behaviour. Liu et al. (2020) 
employed sensitivity analysis to evaluate the effect of 
input variables on frost durability in recycled aggregate 
concrete using soft computing methods. Similarly, Kumar 
et al. (2022) applied sensitivity analysis to identify key 
parameters affecting groundwater potential zones, 
revealing lithology as the most influential and soil type as 
the least. Overall, sensitivity analysis proves to be a robust 
and reliable method for examining the relative 
significance of model inputs. 

In this study, a sensitivity analysis was conducted to assess 
the relative impact and importance of the input features 
on the output predictions of the developed deep learning 
model. Milne's method was employed to quantify the 
Relative Influence (RI) of the seven input parameters on 
the prediction of compressive strength. The RI was 
determined based on the magnitude of the connection 
weights between the neural networks within the model. 
Equation 6 was utilized to calculate the RI, providing a 
comprehensive measure of the contribution of each input 
feature to the prediction accuracy of the model (Getahun 
et al. 2018). 
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(6) 

Where ninp and nhid are the numbers of input and hidden 
layers, w is the weight of connection, i and o are the input 
and output units. 

3. Results and discussion 

3.1. Best-performing deep learning infrastructure 

Bayesian optimization was used to fine-tune the 
hyperparameters of the deep learning model for 
predicting the compressive strength of EFC. This 
optimization process successfully identified the optimal 
set of hyperparameters, resulting in the best-performing 
model. The optimized hyperparameters included an input 
layer with 7 units, indicating the number of features used 
as input for the model. Four hidden layers were employed 
with the layers consisting of 28, 21, 28 and 21 neurons. 
The ReLU activation function was applied to these 
neurons, renowned for its effectiveness in handling non-
linearity and mitigating the vanishing gradient problem 
(Hu et al. 2021). This contributed to the model's improved 
performance by facilitating the efficient propagation of 
information through the network. Additionally, a learning 
rate of 0.01 was chosen to determine the step size for 
adjusting the model's parameters during the training 
process. The selection of these hyperparameters was 
based on their ability to maximize the predictive 
performance of the model. By striking the right balance 
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between the number of hidden layers, the number of 
neurons, and the learning rate, the model achieved a high 
level of accuracy in predicting the compressive strength of 
EFC.  

To determine the optimal number of epochs for training 
the deep learning model, an investigation was conducted 
where the number of epochs was varied from 100 to 1000 
in increments of 100. The performance of the model was 
evaluated based on metrics as shown in Table 5, such as 
the MAE, MSE and R2 values. The results of the 
investigation revealed that the model achieved its best 
performance when trained for 200 epochs. The model 
trained for 200 epochs exhibited a MAE of 0.0.0382, with 
a range of values in the investigated epochs ranging from 

0.0382 to 0.0483. The MSE for the 200-epoch model was 
0.0522, within the range of 0.0522 to 0.0723 observed 
across the investigated epochs. Additionally, the R2 value 
for the 200-epoch model was 0.9548, which fell within the 
range of 0.9256 to 0.9548 observed throughout the 
investigation. The selection of 200 epochs as the optimal 
number was based on achieving the lowest values for 
MAE and MSE, along with the highest R2 value (Huang et 
al. 2022). These metrics indicate the model's accuracy, 
precision, and fit quality. The results show that the 
model's predictive performance improved with an 
increase in the number of epochs up to 200, beyond 
which further training offered diminishing returns. 

 

Table 5. Evaluation Performance of Different Numbers of Epochs 

Evaluation 
Epochs 

100 200 300 400 500 600 700 800 900 1000 

MAE 0.0450 0.0382 0.0436 0.0418 0.0477 0.0477 0.0483 0.0472 0.0472 0.0469 

MSE 0.0613 0.0522 0.0641 0.0658 0.0667 0.0624 0.0692 0.0718 0.0723 0.0682 

R2 0.9466 0.9548 0.9415 0.9390 0.9409 0.9449 0.9319 0.9290 0.9256 0.9336 

 

In this study, the utilization of Bayesian optimization in 
developing the deep learning model contributes 
significantly to the concrete properties’ prediction field. It 
enhances the predictive accuracy of the model by 
efficiently exploring the hyperparameter space and 
identifying the optimal hyperparameter settings (Turner 
et al. 2021). This optimization process leads to the 
selection of hyperparameter configurations that minimize 
errors to ensure the model's ability to accurately predict 
the compressive strength of EFC. It facilitates efficient 
model training, addressing the resource-intensive nature 
of deep learning models. By narrowing down the search 
space for optimal hyperparameters, the computational 
burden and time required for model training are 
significantly reduced (Snoek et al. 2012). This efficiency 
not only expedites the research process but also enables 
the scalability of the deep learning model. Researchers 
can easily apply the developed model to larger datasets or 
extend its applicability to other concrete research studies, 
improving the overall productivity and effectiveness of the 
field. 

3.2. Learning curve for the best-performing model 

The learning curve was plotted to explore in more detail 
the training process of the best-performing model, which 
was trained for 200 epochs. The learning curve, depicted 
in Figure 6, showcased the relationship between the loss 
values (MSE) and the number of epochs. The curve 
encompassed two distinct lines, such as the training loss 
line represented in red and the validation loss line 
represented in blue. Both the training and validation loss 
lines displayed a similar trend throughout the training 
process. Initially, at the early stages of training, both lines 
exhibited higher loss values, indicating the model's 
inability to accurately predict the compressive strength of 
the EFC. However, as the training progressed, the loss 
values decreased, suggesting that the model was 
effectively learning from the training data and making 

improvements in its predictive capabilities (Tsehay et al. 
2017). As the number of epochs increased, both the 
training and validation loss lines reached a plateau, 
indicating that the model had trained to a stable state. 

 

Figure 6. Learning Curve for the Best Performance Model with 

200 Epochs 

3.3. Regression analysis for the predicted and testing 
datasets 

Regression analysis was conducted to assess the 
performance of the top-performing model in predicting 
the compressive strength of EFC. The results of the 
regression analysis are presented in Figure 7, which 
showcases the relationship between the predicted and 
testing datasets. The scatter plot visually represents the 
testing data points as blue dots, while the regression line 
is depicted in red. The equation of the regression line, y = 
0.97x + 0.03, highlights a strong positive correlation 
between the predicted and testing datasets. Notably, the 
regression line closely aligns with the data points, 
indicating the model's ability to provide accurate 
estimations of the compressive strength. This regression 
analysis provides additional evidence, further reinforcing 
the reliability of the developed deep learning model in 
accurately predicting the compressive strength of EFC. 
Accurate prediction of compressive strength in EFC plays a 
crucial role in ensuring effective quality control 
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throughout the production process. By employing a 
reliable predictive model, manufacturers can confidently 
verify that the concrete meets the desired strength 
requirements and exhibits the expected density. This level 
of control and consistency in construction materials is 
essential for minimizing the risk of structural failures and 
ensuring the durability of built structures 
(Magudeaswaran et al. 2020). 

 

Figure 7. Regression Analysis for the Best-Performing Model 

3.4. Sensitivity analysis 

To gain insights into the relative influence of input 
features on the output, a sensitivity analysis was 
conducted using Milne's method to calculate the RI. The 
RI values were then converted to percentages to provide a 
clearer understanding of the impact of each input feature 
on the compressive strength of EFC. Figure 8 illustrates 
the RI percentages of the input features on the 
compressive strength. The results of the sensitivity 
analysis revealed that the water/cement ratio had the 
highest RI, accounting for 31% of the variation in 
compressive strength. This suggests that the water-to-
cement ratio plays a significant role in determining the 
strength of the concrete. Following closely, the amount of 
sand in the mixture exhibited RI of 26%, highlighting its 
importance in influencing compressive strength. Cement 
content contributed to 14% of the variation, while water 
content and the number of days of curing each accounted 
for 7% of the overall influence. The density of the 
concrete exhibited a RI of 9%. Surprisingly, the percentage 
of eggshell replacement had a relatively lower influence at 
6%. 

The observed percentages in the sensitivity analysis shed 
light on the critical factors that affect the compressive 
strength of EFC. The significant influence of the 
water/cement ratio highlights the importance of 
maintaining an appropriate balance in the mix design. 
Consistent with Zhao et al. (2018) and Retamal and 
Rougier (2021), the water/cement ratio was identified as 
the most influential factor, highlighting the necessity of 
carefully controlling this parameter to achieve desired 
strength levels. The high influence of sand suggests its 
role in providing structural integrity and stability to the 
concrete. Cement content directly affects the binding 
properties and contributes to the overall strength. 

Nevertheless, the relatively lower influence of the 
eggshell replacement percentage observed in this study 
contradicts the findings of Ghahremani et al. (2023), 
highlighting the need for further investigation into the 
role of eggshell content in predicting the compressive 
strength of foamed concrete. Despite its lower impact, the 
inclusion of eggshells in the mix design remains significant 
due to its potential for enhancing sustainability and waste 
utilization. Overall, the sensitivity analysis provides 
valuable insights into the relative importance of different 
input features on the compressive strength of EFC. 

 

Figure 8. Relative Influence Percentages of Input Features on the 

Outputs 

4. Conclusions 

This study successfully developed and optimized a deep 
learning model for predicting the compressive strength of 
eggshell-based foamed concrete. The key findings are as 
follows: 

• The best-performing model, identified through 
Bayesian optimization, has four hidden layers 
with 28, 21, 28 and 21 neurons and ReLU 
activation functions.  

• The model was trained with a learning rate of 
0.01, achieving high predictive accuracy. 

• Optimal performance was observed with 200 
epochs, showcasing the lowest MSE and MAE, as 
well as the highest R2 value. 

• Learning curve analysis indicated the model's 
ability to generalize without overfitting or 
underfitting. 

• Regression analysis showed a strong positive 
correlation between predicted and actual 
compressive strength, confirming the model's 
accuracy. 

• Sensitivity analysis revealed that the 
water/cement ratio had the highest influence on 
compressive strength, accounting for 31% of the 
variation. The percentage of eggshell 
replacement had a lower impact but is important 
for sustainability and waste utilization. 

Overall, the developed deep learning model contributes 
significantly to the field of construction materials by 
providing a robust and reliable tool for accurately 
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predicting the compressive strength of eggshell-based 
foamed concrete. The insights from the sensitivity analysis 
guide future efforts in mix design optimization and quality 
control. Last but not least, the integration of advanced 
prediction models based on deep learning not only 
enhances the understanding of concrete properties but 
also paves the way for transformative changes in 
construction practices. By leveraging the power of data-
driven modelling and optimization techniques, 
researchers can drive innovation, improve decision-
making processes, and ultimately contribute to the 
sustainable development of the construction industry. The 
accurate prediction of compressive strength in eggshell-
based foamed concrete is a critical step towards achieving 
these goals, as it empowers engineers and stakeholders to 
make informed choices that lead to safer, more efficient, 
and environmentally conscious construction practices. 
Future research may further explore the applicability of 
the developed model to different concrete compositions 
and expand its capabilities to include other concrete 
properties of interest.  
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Supplementary Data: Mix Design 

Day Density, kg/m3 Eggshell replacement, % Water/cement Ratios Cement, kg/m3 Sand, kg/m3 Water, kg/m3 

7 800 0 0.56 346 303 194 

7 800 0 0.56 346 303 194 

7 800 0 0.56 346 303 194 

28 800 0 0.56 346 303 194 

28 800 0 0.56 346 303 194 

28 800 0 0.56 346 303 194 

7 800 0 0.6 338 299 203 

7 800 0 0.6 338 299 203 

7 800 0 0.6 338 299 203 

28 800 0 0.6 338 299 203 

28 800 0 0.6 338 299 203 

28 800 0 0.6 338 299 203 

7 800 0 0.64 331 294 212 

7 800 0 0.64 331 294 212 

7 800 0 0.64 331 294 212 

28 800 0 0.64 331 294 212 

28 800 0 0.64 331 294 212 

28 800 0 0.64 331 294 212 

7 800 2.5 0.56 346 303 194 

7 800 2.5 0.56 346 303 194 

7 800 2.5 0.56 346 303 194 

28 800 2.5 0.56 346 303 194 

28 800 2.5 0.56 346 303 194 

28 800 2.5 0.56 346 303 194 

7 800 2.5 0.6 338 299 203 

7 800 2.5 0.6 338 299 203 

7 800 2.5 0.6 338 299 203 

28 800 2.5 0.6 338 299 203 

28 800 2.5 0.6 338 299 203 

28 800 2.5 0.6 338 299 203 

7 800 2.5 0.64 331 294 212 

7 800 2.5 0.64 331 294 212 

7 800 2.5 0.64 331 294 212 

28 800 2.5 0.64 331 294 212 

28 800 2.5 0.64 331 294 212 

28 800 2.5 0.64 331 294 212 

7 800 5 0.56 346 303 194 

7 800 5 0.56 346 303 194 

7 800 5 0.56 346 303 194 

28 800 5 0.56 346 303 194 

28 800 5 0.56 346 303 194 

28 800 5 0.56 346 303 194 

7 800 5 0.6 338 299 203 

7 800 5 0.6 338 299 203 

7 800 5 0.6 338 299 203 

28 800 5 0.6 338 299 203 

28 800 5 0.6 338 299 203 
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28 800 5 0.6 338 299 203 

7 800 5 0.64 331 294 212 

7 800 5 0.64 331 294 212 

7 800 5 0.64 331 294 212 

28 800 5 0.64 331 294 212 

28 800 5 0.64 331 294 212 

28 800 5 0.64 331 294 212 

7 800 7.5 0.56 346 303 194 

7 800 7.5 0.56 346 303 194 

7 800 7.5 0.56 346 303 194 

28 800 7.5 0.56 346 303 194 

28 800 7.5 0.56 346 303 194 

28 800 7.5 0.56 346 303 194 

7 800 7.5 0.6 338 299 203 

7 800 7.5 0.6 338 299 203 

7 800 7.5 0.6 338 299 203 

28 800 7.5 0.6 338 299 203 

28 800 7.5 0.6 338 299 203 

28 800 7.5 0.6 338 299 203 

7 800 7.5 0.64 331 294 212 

7 800 7.5 0.64 331 294 212 

7 800 7.5 0.64 331 294 212 

28 800 7.5 0.64 331 294 212 

28 800 7.5 0.64 331 294 212 

28 800 7.5 0.64 331 294 212 

7 800 10 0.56 346 303 194 

7 800 10 0.56 346 303 194 

7 800 10 0.56 346 303 194 

28 800 10 0.56 346 303 194 

28 800 10 0.56 346 303 194 

28 800 10 0.56 346 303 194 

7 800 10 0.6 338 299 203 

7 800 10 0.6 338 299 203 

7 800 10 0.6 338 299 203 

28 800 10 0.6 338 299 203 

28 800 10 0.6 338 299 203 

28 800 10 0.6 338 299 203 

7 800 10 0.64 331 294 212 

7 800 10 0.64 331 294 212 

7 800 10 0.64 331 294 212 

28 800 10 0.64 331 294 212 

28 800 10 0.64 331 294 212 

28 800 10 0.64 331 294 212 

7 1000 0 0.56 391 391 219 

7 1000 0 0.56 391 391 219 

7 1000 0 0.56 391 391 219 

28 1000 0 0.56 391 391 219 

28 1000 0 0.56 391 391 219 

28 1000 0 0.56 391 391 219 

7 1000 0 0.6 385 385 231 

7 1000 0 0.6 385 385 231 

7 1000 0 0.6 385 385 231 

28 1000 0 0.6 385 385 231 

28 1000 0 0.6 385 385 231 

28 1000 0 0.6 385 385 231 

7 1000 0 0.64 379 379 242 

7 1000 0 0.64 379 379 242 

7 1000 0 0.64 379 379 242 

28 1000 0 0.64 379 379 242 
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28 1000 0 0.64 379 379 242 

28 1000 0 0.64 379 379 242 

7 1000 2.5 0.56 391 391 219 

7 1000 2.5 0.56 391 391 219 

7 1000 2.5 0.56 391 391 219 

28 1000 2.5 0.56 391 391 219 

28 1000 2.5 0.56 391 391 219 

28 1000 2.5 0.56 391 391 219 

7 1000 2.5 0.6 385 385 231 

7 1000 2.5 0.6 385 385 231 

7 1000 2.5 0.6 385 385 231 

28 1000 2.5 0.6 385 385 231 

28 1000 2.5 0.6 385 385 231 

28 1000 2.5 0.6 385 385 231 

7 1000 2.5 0.64 379 379 242 

7 1000 2.5 0.64 379 379 242 

7 1000 2.5 0.64 379 379 242 

28 1000 2.5 0.64 379 379 242 

28 1000 2.5 0.64 379 379 242 

28 1000 2.5 0.64 379 379 242 

7 1000 5 0.56 391 391 219 

7 1000 5 0.56 391 391 219 

7 1000 5 0.56 391 391 219 

28 1000 5 0.56 391 391 219 

28 1000 5 0.56 391 391 219 

28 1000 5 0.56 391 391 219 

7 1000 5 0.6 385 385 231 

7 1000 5 0.6 385 385 231 

7 1000 5 0.6 385 385 231 

28 1000 5 0.6 385 385 231 

28 1000 5 0.6 385 385 231 

28 1000 5 0.6 385 385 231 

7 1000 5 0.64 379 379 242 

7 1000 5 0.64 379 379 242 

7 1000 5 0.64 379 379 242 

28 1000 5 0.64 379 379 242 

28 1000 5 0.64 379 379 242 

28 1000 5 0.64 379 379 242 

7 1000 7.5 0.56 391 391 219 

7 1000 7.5 0.56 391 391 219 

7 1000 7.5 0.56 391 391 219 

28 1000 7.5 0.56 391 391 219 

28 1000 7.5 0.56 391 391 219 

28 1000 7.5 0.56 391 391 219 

7 1000 7.5 0.6 385 385 231 

7 1000 7.5 0.6 385 385 231 

7 1000 7.5 0.6 385 385 231 

28 1000 7.5 0.6 385 385 231 

28 1000 7.5 0.6 385 385 231 

28 1000 7.5 0.6 385 385 231 

7 1000 7.5 0.64 379 379 242 

7 1000 7.5 0.64 379 379 242 

7 1000 7.5 0.64 379 379 242 

28 1000 7.5 0.64 379 379 242 

28 1000 7.5 0.64 379 379 242 

28 1000 7.5 0.64 379 379 242 

7 1000 10 0.56 391 391 219 

7 1000 10 0.56 391 391 219 

7 1000 10 0.56 391 391 219 
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28 1000 10 0.56 391 391 219 

28 1000 10 0.56 391 391 219 

28 1000 10 0.56 391 391 219 

7 1000 10 0.6 385 385 231 

7 1000 10 0.6 385 385 231 

7 1000 10 0.6 385 385 231 

28 1000 10 0.6 385 385 231 

28 1000 10 0.6 385 385 231 

28 1000 10 0.6 385 385 231 

7 1000 10 0.64 379 379 242 

7 1000 10 0.64 379 379 242 

7 1000 10 0.64 379 379 242 

28 1000 10 0.64 379 379 242 

28 1000 10 0.64 379 379 242 

28 1000 10 0.64 379 379 242 

7 1200 0 0.56 469 469 263 

7 1200 0 0.56 469 469 263 

7 1200 0 0.56 469 469 263 

28 1200 0 0.56 469 469 263 

28 1200 0 0.56 469 469 263 

28 1200 0 0.56 469 469 263 

7 1200 0 0.6 462 462 277 

7 1200 0 0.6 462 462 277 

7 1200 0 0.6 462 462 277 

28 1200 0 0.6 462 462 277 

28 1200 0 0.6 462 462 277 

28 1200 0 0.6 462 462 277 

7 1200 0 0.64 455 455 291 

7 1200 0 0.64 455 455 291 

7 1200 0 0.64 455 455 291 

28 1200 0 0.64 455 455 291 

28 1200 0 0.64 455 455 291 

28 1200 0 0.64 455 455 291 

7 1200 2.5 0.56 469 469 263 

7 1200 2.5 0.56 469 469 263 

7 1200 2.5 0.56 469 469 263 

28 1200 2.5 0.56 469 469 263 

28 1200 2.5 0.56 469 469 263 

28 1200 2.5 0.56 469 469 263 

7 1200 2.5 0.6 462 462 277 

7 1200 2.5 0.6 462 462 277 

7 1200 2.5 0.6 462 462 277 

28 1200 2.5 0.6 462 462 277 

28 1200 2.5 0.6 462 462 277 

28 1200 2.5 0.6 462 462 277 

7 1200 2.5 0.64 455 455 291 

7 1200 2.5 0.64 455 455 291 

7 1200 2.5 0.64 455 455 291 

28 1200 2.5 0.64 455 455 291 

28 1200 2.5 0.64 455 455 291 

28 1200 2.5 0.64 455 455 291 

7 1200 5 0.56 469 469 263 

7 1200 5 0.56 469 469 263 

7 1200 5 0.56 469 469 263 

28 1200 5 0.56 469 469 263 

28 1200 5 0.56 469 469 263 

28 1200 5 0.56 469 469 263 

7 1200 5 0.6 462 462 277 

7 1200 5 0.6 462 462 277 
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7 1200 5 0.6 462 462 277 

28 1200 5 0.6 462 462 277 

28 1200 5 0.6 462 462 277 

28 1200 5 0.6 462 462 277 

7 1200 5 0.64 455 455 291 

7 1200 5 0.64 455 455 291 

7 1200 5 0.64 455 455 291 

28 1200 5 0.64 455 455 291 

28 1200 5 0.64 455 455 291 

28 1200 5 0.64 455 455 291 

7 1200 7.5 0.56 469 469 263 

7 1200 7.5 0.56 469 469 263 

7 1200 7.5 0.56 469 469 263 

28 1200 7.5 0.56 469 469 263 

28 1200 7.5 0.56 469 469 263 

28 1200 7.5 0.56 469 469 263 

7 1200 7.5 0.6 462 462 277 

7 1200 7.5 0.6 462 462 277 

7 1200 7.5 0.6 462 462 277 

28 1200 7.5 0.6 462 462 277 

28 1200 7.5 0.6 462 462 277 

28 1200 7.5 0.6 462 462 277 

7 1200 7.5 0.64 455 455 291 

7 1200 7.5 0.64 455 455 291 

7 1200 7.5 0.64 455 455 291 

28 1200 7.5 0.64 455 455 291 

28 1200 7.5 0.64 455 455 291 

28 1200 7.5 0.64 455 455 291 

7 1200 10 0.56 469 469 263 

7 1200 10 0.56 469 469 263 

7 1200 10 0.56 469 469 263 

28 1200 10 0.56 469 469 263 

28 1200 10 0.56 469 469 263 

28 1200 10 0.56 469 469 263 

7 1200 10 0.6 462 462 277 

7 1200 10 0.6 462 462 277 

7 1200 10 0.6 462 462 277 

28 1200 10 0.6 462 462 277 

28 1200 10 0.6 462 462 277 

28 1200 10 0.6 462 462 277 

7 1200 10 0.64 455 455 291 

7 1200 10 0.64 455 455 291 

7 1200 10 0.64 455 455 291 

28 1200 10 0.64 455 455 291 

28 1200 10 0.64 455 455 291 

28 1200 10 0.64 455 455 291 

7 1400 0 0.56 547 547 306 

7 1400 0 0.56 547 547 306 

7 1400 0 0.56 547 547 306 

28 1400 0 0.56 547 547 306 

28 1400 0 0.56 547 547 306 

28 1400 0 0.56 547 547 306 

7 1400 0 0.6 538 538 323 

7 1400 0 0.6 538 538 323 

7 1400 0 0.6 538 538 323 

28 1400 0 0.6 538 538 323 

28 1400 0 0.6 538 538 323 

28 1400 0 0.6 538 538 323 

7 1400 0 0.64 530 530 339 
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7 1400 0 0.64 530 530 339 

7 1400 0 0.64 530 530 339 

28 1400 0 0.64 530 530 339 

28 1400 0 0.64 530 530 339 

28 1400 0 0.64 530 530 339 

7 1400 2.5 0.56 547 547 306 

7 1400 2.5 0.56 547 547 306 

7 1400 2.5 0.56 547 547 306 

28 1400 2.5 0.56 547 547 306 

28 1400 2.5 0.56 547 547 306 

28 1400 2.5 0.56 547 547 306 

7 1400 2.5 0.6 538 538 323 

7 1400 2.5 0.6 538 538 323 

7 1400 2.5 0.6 538 538 323 

28 1400 2.5 0.6 538 538 323 

28 1400 2.5 0.6 538 538 323 

28 1400 2.5 0.6 538 538 323 

7 1400 2.5 0.64 530 530 339 

7 1400 2.5 0.64 530 530 339 

7 1400 2.5 0.64 530 530 339 

28 1400 2.5 0.64 530 530 339 

28 1400 2.5 0.64 530 530 339 

28 1400 2.5 0.64 530 530 339 

7 1400 5 0.56 547 547 306 

7 1400 5 0.56 547 547 306 

7 1400 5 0.56 547 547 306 

28 1400 5 0.56 547 547 306 

28 1400 5 0.56 547 547 306 

28 1400 5 0.56 547 547 306 

7 1400 5 0.6 538 538 323 

7 1400 5 0.6 538 538 323 

7 1400 5 0.6 538 538 323 

28 1400 5 0.6 538 538 323 

28 1400 5 0.6 538 538 323 

28 1400 5 0.6 538 538 323 

7 1400 5 0.64 530 530 339 

7 1400 5 0.64 530 530 339 

7 1400 5 0.64 530 530 339 

28 1400 5 0.64 530 530 339 

28 1400 5 0.64 530 530 339 

28 1400 5 0.64 530 530 339 

7 1400 7.5 0.56 547 547 306 

7 1400 7.5 0.56 547 547 306 

7 1400 7.5 0.56 547 547 306 

28 1400 7.5 0.56 547 547 306 

28 1400 7.5 0.56 547 547 306 

28 1400 7.5 0.56 547 547 306 

7 1400 7.5 0.6 538 538 323 

7 1400 7.5 0.6 538 538 323 

7 1400 7.5 0.6 538 538 323 

28 1400 7.5 0.6 538 538 323 

28 1400 7.5 0.6 538 538 323 

28 1400 7.5 0.6 538 538 323 

7 1400 7.5 0.64 530 530 339 

7 1400 7.5 0.64 530 530 339 

7 1400 7.5 0.64 530 530 339 

28 1400 7.5 0.64 530 530 339 

28 1400 7.5 0.64 530 530 339 

28 1400 7.5 0.64 530 530 339 
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7 1400 10 0.56 547 547 306 

7 1400 10 0.56 547 547 306 

7 1400 10 0.56 547 547 306 

28 1400 10 0.56 547 547 306 

28 1400 10 0.56 547 547 306 

28 1400 10 0.56 547 547 306 

7 1400 10 0.6 538 538 323 

7 1400 10 0.6 538 538 323 

7 1400 10 0.6 538 538 323 

28 1400 10 0.6 538 538 323 

28 1400 10 0.6 538 538 323 

28 1400 10 0.6 538 538 323 

7 1400 10 0.64 530 530 339 

7 1400 10 0.64 530 530 339 

7 1400 10 0.64 530 530 339 

28 1400 10 0.64 530 530 339 

28 1400 10 0.64 530 530 339 

28 1400 10 0.64 530 530 339 

 

 




