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GRAPHICAL ABSTRACT 

 

ABSTRACT 

Floods are a major contributor to the destruction of infrastructure and the overall economy of afflicted 

countries, leading to loss of life and significant damage. Remote sensing, satellite imagery 

photography, global positioning system, and geographic information system (GIS) are commonly used 

to identify floods and analyze the associated damages. The research presented here integrates Sentinel-

2 satellite images, VANET with Multi-Agent Reinforcement Learning (MARL), and a deep neural 

RNN for early flood prediction. Sentinel-2 imaging delivers extensive geographical and temporal data 

regarding land cover and water bodies, while VANET-MARL provides real-time ground-truth 

information and distributed decision-making capabilities. The Deep Neural RNN efficiently acquires 

intricate patterns from the combined data to forecast the likelihood, intensity, and scope of floods. The 

experimental findings clearly show that the suggested system outperforms standard methods in terms 

of accuracy, precision, recall, and lead time. VANET-MARL integration improves the system's ability 
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to adapt and remain strong in changing circumstances. The results showed that the method was 94.8% 

accurate in early predicting floods. 

Keywords: Flood Prediction, VANET-MARL, Deep Neural RNN, Time Series, Sentinel-2 Image, 

Wireless Vehicle Communication, Weather Report 

 

1. Introduction  

The yearly northeast monsoon in November and December 2015 caused excessive rainfall, leading to 

the 2015 South India floods. The southern Indian states of Andhra Pradesh and Tamil Nadu were hit 

hard by them, particularly the Coromandel Coast region. The death toll was over 500, and over 1.8 

million (18 lakh) people were forced to flee their homes. The floods were one of the most devastating 

natural disasters of 2015, with damages and losses estimated to be between three and thirteen trillion 

rupees (US$3 billion) the most expensive calamity to have ever happened in the country Berlin M. A 

et al., (2017). Due to bad climatic conditions, road accidents are tragic, but safety may significantly 

reduce their impact. Vehicles, motorcycles, bicycles, and pedestrians are all at risk of colliding on the 

road. Several factors can cause these situations. Vehicle conditions such as bad brakes, tires, or lights 

may result in a loss of control due to a controlled climate. Road circumstances such as bad weather, 

poor signage, and uneven surfaces increase the chance of an accident. Road safety is a VANET priority 

Jizhao.W et al., (2024). Vehicles can communicate with each other and roadside infrastructure (V2I) 

about accidents, risks, and abrupt slowdowns. Real-time data exchange reduces crashes and improves 

traffic flow. VANETs are benefiting from strong CPUs and 5G connectivity capabilities. This speeds 

up data transfer, improves network administration, and facilitates ITS integration. Challenges remain 

despite advances, and obstacles remain. Communication methods must be standardized and secure for 

widespread usage. Additionally, infrastructure rollout and older car compatibility are ongoing concerns 
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Arun Mozhi Selvi. S et al., (2024) On the Rise, VANETs are becoming V2X (Vehicle-to-Everything) 

communication. V2V (Vehicle-to-Vehicle) cars exchange data like speed, location, and direction, 

allowing them to be aware of each other's movements and avoid collisions Figure 1. V2I (Vehicle-to-

Infrastructure) vehicles communicate with traffic lights, road signs, and sensors to get updates on 

traffic flow, upcoming hazards, and optimal speed limits. V2P (Vehicle-to-Pedestrian) can improve 

pedestrian safety by allowing cars to detect people (especially helpful at blind spots) and warn them 

of potential danger. V2N (Vehicle-to-Network) communication with cellular networks allows for 

broader data exchange and connection to cloud services. V2N (Vehicle-to-Home) communication is 

to exchange data directly with a home environment using cellular networks (think LTE,5G) instead of 

relying on local connections like Wi-Fi. There are other subcategories like V2D (Vehicle-to-Device) 

for in-car infotainment systems and V2G (Vehicle-to-Grid) for electric vehicles interacting with the 

power grid. Vehicles can communicate with pedestrians, traffic signals, and even flying cars under 

these broad-term Techniques Riya Kumarasamy. S et al., (2023). 
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Figure 1.  Proposed Model Architecture 

(Vehicular Ad-hoc Network) technology and Deep Neural RNN can further optimize message 

dissemination and decision-making for drivers which hold immense potential for creating a real-time 

flood warning system. Vehicles are equipped with On-Board Units (OBUs) that facilitate 

communication, do data processing, and collect real-time data which act as an RL agent. Roadside 

Units (RSUs) are strategically positioned in flood-prone locations to gather data, distribute alerts, and 

transmit information to a central authority Purui. W et al., (2020). A central authority oversees the 

management of real-time data and historical flood data, as well as the distribution of important flood 

alerts to a broader audience, such as emergency services and navigation applications. Each vehicle 

(agent) observes its local data and the shared data from neighbors, forming a comprehensive view of 

the flooding situation in its vicinity. Alotaibi, Y., et al., (2024). Deep Learning for the Time Series 

Forecasting method is utilized to analyze historical water level data and weather patterns to predict 

future water levels. Surendran, R., et al., (2023), this can be particularly useful in capturing complex 

relationships within the data that traditional machine-learning models. Section 2 provides an 

examination of the relevant works concerning flood detection strategies, and the rest of the study is 

structured accordingly. The Proposed VANET-MARL method is detailed in Section 3. Afterwards, in 

Section 4, we examine the Results and discussion, comparing our performance to that of alternative 

approaches. The suggested research's key outcomes are finally concluded in Section 5. 

2. Related Works  

Aldweesh A et al., (2024) "Mlora-CBF uses simulations to evaluate a novel protocol that uses a 

modified location routing algorithm in a cluster-based framework. While flooding inside clusters has 

been used in cluster-based routing, Mlora-CBF addresses resource allocation and network overhead. 
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To evaluate resource allocation and message delivery efficiency, the authors compare their protocol to 

existing methods using a dataset of mobility patterns, and network density. Chen. X et al., (2024), 

explore a quick and practical VANET IDS using Federated Learning (FL). We examine FL-based IDS 

for VANETs' algorithms for training local vehicle models and data collection strategies for generating 

realistic VANET datasets. We contrast centralized versus federated learning methods, emphasizing 

FL's privacy benefits. Finally, we describe our FL-based IDS for VANETs and its accuracy, efficiency, 

and privacy benefits. Hemalatha. D et al., (2024), novel congestion management technologies that 

efficiently manage network traffic. This research provides a queue model-based approach to network 

congestion analysis and a congestion control algorithm. This strategy can optimize data transmission 

and reduce congestion in MANETs through educated decision-making as illustrated in Table 1. 

Table 1.  Provides the Overall Flood Detection Comparison of Exisiting Model  

Author & 

Reference 

Overview of Existing Approach 

Algorithm Methodology Achieved 

M. Adil et 

al., 

Reinforcement 

Learning (RL) with 

ANN 

Agent-based environment, 

reward function, training, 

evaluation 

Real-time detection, high 

accuracy, low false positive rate 

D.Amitrano 

et al., 

Support Vector 

Machine, Random 

Forest, Deep Learning 

Feature extraction, 

classification, change detection 
High accuracy, precision, recall) 

P. Zhong et 

al., 
YOLOv4 

Image preprocessing, data 

augmentation, transfer 

learning 

89.29% mAP for water depth 

recognition 

P.K Jangid 

et al., 
Hybrid (CNN+RNN) 

Combined strengths, 

spatiotemporal analysis, flood 

evolution modeling 

Early flood warning, flood impact 

assessment 

H. Farhadi 

et al., 

Multi-Layer 

Perceptron 

Preprocessing, feature 

extraction, classification, 

evaluation using R2 

Achieved R2 of 0.91 for estimating 

lake area. 

M. Mishra 

et al., 

MADD 

 

Decentralized multi-agent RL 

with communication, 

considering sensing and 

localization constraints. 

Achieved high coverage with 

minimal communication 

overhead. 
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Author & 

Reference 

Overview of Existing Approach 

Algorithm Methodology Achieved 

S. Sean et 

al., 
ResNet-34 

Deep learning, image 

classification 

Accurate road mapping in remote 

areas 

S. Jialin et 

al., 

Segment Anything 

Model (SAM), Random 

Forest 

Automated sample generation, 

crop classification 

Improved crop mapping accuracy 

(F1-score 0.97-0.996) 

D. Aayush 

et al., 

Weakly supervised 

learning 

Encoder-decoder architecture, 

attention mechanism 

Fine-grained textual descriptions 

from satellite images without 

labeled data 

N. Suneth et 

al., 

Geometrical Variation 

Analysis 

Landslides in Different 

Geological Settings Using 

Satellite Images 

Accurate road mapping in remote 

areas 

R.Prathap 

Kumar et 

al., 

clustering, anomaly 

detection 

Features used, training/testing 

data 

Detection accuracy, false positive 

rate, computational overhead 

F. Waqar et 

al., 
Cluster-based Simulation using SUMO, NS-3 

Improved packet delivery ratio by 

20% compared to AODV 

3. The Proposed Model 

  Research presented VANET-MARL, an automated flood monitoring and alerting emergency 

strategy. VANET-MARL predicts and classifies flooding, road, accident, water logging, and traffic 

situations for the public. VANET-MARL involves data standardization, Time series Forecasting-based 

prediction, and hyper-parameter tweaking. Figure 2 shows whole VANET-MARL algorithm flow.  

3.1.  Pattern Recognition and Feature Extraction  

Envision yourself operating a vehicle amidst torrential rainfall. Unexpectedly, your car receives a 

notification indicating a possibility of flooding along the upcoming path. This alert, utilizing VANETs 

(Vehicular Ad-hoc Networks) with pattern recognition and feature extraction, has the potential to 

prevent loss of life. Real-time data like rainfall intensity and duration are fed from nearby weather 

stations. VANET vehicles such as cars, buses, and bikes act as mobile sensors Figure 2. GPS Location 

identifies areas with flooded roads. Wiper Sensor detects increased wiper usage, potentially indicating 

heavy rain. Image/Video from Dash-cams can capture visual evidence of flooding. Patterns are 
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recognized using sudden spikes in rainfall intensity this could indicate a downpour that might 

overwhelm drainage systems correlation between high rainfall and previous flood events in the area. 

Changes in traffic flow patterns sharp drops in speed or unusual congestion could signal road closures 

due to flooding. From the raw data and recognized patterns, the system extracts critical features for 

flood detection. The rate of change of rainfall has a rapid increase suggesting a higher flood risk. 

Combined analysis of rainfall data and GPS location identifying areas with both heavy rain and reports 

of flooded roads. Analysis of dash-cam footage to identify water levels or submerged roads. 

3.2. Time Series Forecasting based Stationarity of Data 

The structure of the data used for flood detection consists of time series measurements, where each 

data point represents a specific observation at a particular time (Past, Present Data). The data could 

include water level sensor readings to indicate the water level at specific locations on the road network. 

The timestamp of each data point should have a corresponding timestamp to indicate the time of the 

observation. Depending on the system's complexity, other sensor data like Rain Gauge, Water level 

sensors such as ultrasonic and pressure sensors, and soil moisture sensors. Road traffic sensors. Radar 

can detect precipitation and even differentiate between rain, hail, and snow. rainfall readings or 

atmospheric pressure measurements might also be included to improve flood prediction accuracy. 

Time series data can be stationary and non-stationary. Stationary data are daily temperature readings 

in a particular city that might show fluctuations around an average temperature, with no consistent rise 

or fall over a long period. Non-stationary data are global average temperatures over several years 

would likely show an upward trend, indicating non-stationarity. The Augmented Dickey-Fuller (ADF) 

test EQ 1 and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test EQ 2 are two common statistical 
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tests used to assess the stationarity of time series data. Unit root detection by ADF Test indicates non-

stationarity. 

𝐴𝐷𝐹 𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 = 𝛼  (𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑊𝑡 − 1)                              (1) 

 𝐿𝑀 𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =  𝐿𝑀(𝛴 𝑒𝑡2)                                                        (2) 

where α is a numerical value, et are the residuals from the regression and LM represents a specific 

Lagrange Multiplier function. Data with a unit root exhibits a trend or random walk pattern, making 

future predictions difficult. ADF tests compare statistics against critical values. Stationarity is 

concluded if the statistic is less negative than the critical value at a particular significance level, 

rejecting the unit root null hypothesis. But the KPSS Test does the reverse. The null hypothesis is 

stationarity, and it seeks trends or seasonality. If the KPSS test statistic is greater than critical, 

stationarity is rejected and trends are present. Suppose the ADF statistic is highly negative (less than 

the critical value for rejection) and the KPSS statistic is low (not exceeding the critical value). In that 

case, it suggests strong evidence for stationarity. Similarly, If the ADF statistic is not significant (fails 

to reject the null hypothesis) or the KPSS statistic is high (indicating trends), the data is likely non-

stationary. Converting Non-Stationary Data into Stationary Data If the data is found to be non-

stationary, it may require preprocessing to transform it into a stationary form using differencing and 

detrending. 

3.3. VANET Technology with Time Series Analysis 

VANET technology can enhance time series analysis for flood detection by facilitating real-time data 

collection and dissemination across vehicles. On-board units (OBUs) in Vehicles are equipped with 

OBUs that have sensors and communication modules that allow vehicles to communicate with each 

other (V2V) and with roadside units (V2I) if deployed. The processing unit can perform basic data 



10 
 

 

analysis and collaborate with the time series analysis system. vehicles share collected data with 

neighboring vehicles, pedestrian, and nearby homes within their communication range as shown in 

Pseudocode 1&2.  

𝑉2𝑉𝑡 = 𝑓𝑉2𝑉(𝑇𝑡, 𝑉𝑡 − 1, 𝑉𝑡, 𝐷𝑡)                                                             (3) 

Where EQ 3, Where V_2Vt represents the communication between vehicles at time t, Tt denotes the 

time series data related to traffic conditions, Vt−1 and Vt represent the states of neighboring vehicles 

at times t−1and t respectively, and Dt represents the distance between vehicles at time t. 

 𝑉2𝐼𝑡 = 𝑓𝑉2𝐼(𝑇𝑡, 𝐼𝑡, 𝐷𝑡)                                                                  (4) 

Where EQ 4, V_2It represents the communication between vehicles and infrastructure at time t, Tt 

denotes the time series data related to traffic conditions, it represents the states of infrastructure (e.g., 

traffic signals, road sensors) at time t, and Dt represents the distance between vehicles and 

infrastructure at time t. 

 

Figure 2.  Wireless Vehicle Communication 

𝑉2𝑃𝑡 = 𝑓𝑉2𝑃(𝑇𝑡, 𝑃𝑡, 𝐷𝑡)                                                                 (5) 

Where EQ 5, V_2Pt represents the communication between vehicles and pedestrians at time t, Tt 

denotes the time series data related to traffic conditions, Pt represents the states of pedestrians (e.g., 
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location, movement patterns) at time t, and Dt represents the distance between vehicles and pedestrians 

at time t. 

 𝑉2𝐻𝑡 = 𝑓𝑉2𝐻(𝑇𝑡, 𝐻𝑡, 𝐷𝑡)                                                               (6) 

Where EQ 6 V_2Ht represents the communication between vehicles and handheld devices at time t, 

Tt denotes the time series data related to traffic conditions, Ht represents the states of handheld devices 

(e.g., smartphones, tablets) at time t, and Dt represents the distance between vehicles and handheld 

devices at time t. 

 𝑉2𝑁𝑡 = 𝑓𝑉2𝑁(𝑇𝑡,𝑁𝑡)                                                                    (7) 

VANET data encryption comprises sensitive real-time information, including vehicle positions, sensor 

data, and inter-vehicle communication. Illegal access to this data could threaten the privacy and 

security of users. The system employs end-to-end encryption (e.g., AES-256) to guarantee that all data 

sent among cars, roadside units, and the central flood prediction system is secured. This makes it very 

unattainable for unauthorized third parties to intercept and decipher the data. The exchange of VANET 

data among cars, roadside units, and the flood prediction system must be secure to prevent man-in-

the-middle assaults. The system employs secure communication protocols, including TLS (Transport 

Layer Security) and IPsec (Internet Protocol Security), for data transmission. This guarantees that data 

remains encrypted throughout transit, so thwarting any unauthorized interception or alteration. 

Pseudocode 1: Vehicle Communication Protocol 

function Vehicle_Transmit(message) // Broadcast the message to all vehicles within range 

broadcast(message) 

end function 

function Vehicle_Receive () // Continuously listen for incoming messages 
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while True: 

message = receive () // Process the received message 

if message.type == "Traffic Update": // Update the local traffic map 

elif message.type == "Hazard Warning": // Display a warning to the driver 

end function 

Pseudocode 2: Vehicle Communication to Road Side Unit Protocol 

function Vehicle_Transmit_to_RSU(message) // Find the nearest RSU 

nearest_rsu = find_nearest_rsu()           // Send the message to the RSU 

send (nearest_rsu, message) 

end function 

function RSU_Receive() // Continuously listen for incoming messages from vehicles 

while True: 

message = receive ()// Process the received message based on its type 

if message.type == "Traffic Update":      // Aggregate traffic data from multiple vehicles, Update a 

centralized traffic management system 

elif message.type == "Vehicle Location":  // Update the location of the vehicle on a digital map 

end function 

3.4. Deep Neural-RNN with Time Series Forecasting 

Data is collected from vehicles equipped with On-Board Units (OBUs) in a VANET network and 

historical data are preprocessed and feature extracted for accurate flood detection. The input layer of 

the neural network with each circle represents a single neuron in the layer Figure 3. In flood prediction, 

these inputs represent factors like past and present rainfall amount, road conditions, climatic 
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conditions, nearby river level, and soil moisture. Single hidden layer with 100 circles. Each circle 

represents a neuron in the hidden layer. Each connection has an associated weight, which determines 

the strength of the signal transmitted between neurons.  

 

Figure 3. Deep Neural-Recurrent Neural Network 

The neural network learns these weights during the training process. The neurons process the signals 

received from the input layer and apply an activation function to determine the output they send to the 

next layer. The number of neurons in the output layer depends on the hidden network. In a binary 

classification task, there would be one neuron for each class (e.g., flood / no flood). With two output 

neurons, the network may be predicting a binary outcome or two separate values.The model is 

initialized with the parameters of weights and biases using pre-trained weights. Feed the training data 

into the network and use backpropagation with an optimization algorithm Adam to adjust the 

parameters iteratively. Monitor the loss function on the training set and the validation set to ensure the 

model is learning effectively. Continue training until convergence or until a predefined stopping 

criterion is met reaching a maximum number of epochs or observing no improvement on the validation 

set. 

3.5. Sentinel – 2 Carries the Multi-Spectral Imager (MSI) of Flooding 
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Earth Observation Platform to access Sentinel-2 data through Earth Observation Platforms which is an 

online portal that allows you to search for, download with 13 different bands, covering visible, near-

infrared, and short-wave infrared ranges. Explore Sentinel-2 imagery of floods on roads Sentinel-2 

data is typically downloaded in TIFF (Tagged  Image File Format) format Figure 4. 

 

Figure 4. Sentinel-2 Captured Flooded Image 

preprocessing the satellite imagery using radiometric and geometric correction, cloud detection and 

removal and image normalization. feature extraction from Sentinel-2 imagery using normalized 

difference water index, temporal analysis, and integration into the deep neural RNN Model. 

4. Implementation and Results 

The research initiative emphasizes on utilizing satellite imagery to identify floods and subsequently 

transferring this data to automobiles through a VANET for prompt cognizance. 

4.1. Collection of Dataset Discussion   

The analysis incorporates Python 3.8, the Keras library, and various additional technologies. The tests 

were conducted on an Intel i5 processor running at a clock speed of 2.20GHz, 12 GB of RAM, and a 

dedicated graphics card with a capacity of 2 GB. The Sentinel-2 captured flooded images trained by 



15 
 

 

utilizing the Keras framework. The application programming interface is widely recognized and can 

function in conjunction with Tensor Flow. The collected 620 datasets are divided into 60:20:20 ratios 

for training, validation, and Testing. 

4.2. Performance Evaluation Compared with Deep Neural RNN 

Accuracy is the proportion of correct flood predictions to total predictions eq 8. Precision is the 

proportion of true positive predictions to all positive predictions eq 9. Recall (Sensitivity) is the 

proportion of true positive predictions to all actual positive cases eq 10. F1-score is the harmonic mean 

of precision and recall eq 11. False Positive Rate (FPR) is the proportion of false positive predictions 

to all negative cases Eq 12. False Negative Rate (FNR) is the proportion of false negative predictions 

to all positive cases Eq 13. Mean Absolute Error (MAE) average absolute difference between predicted 

and actual flood levels Eq 14. Root Mean Square Error (RMSE) square root of the average squared 

difference between predicted and actual flood levels Eq 15 (Table 2). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁
                                        (8) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
                                                      (9) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
                                                        (10) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                                                  (11) 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 +  𝑇𝑁 
                                                                   (12) 

𝐹𝑁𝑅 =
𝐹𝑁

𝑇𝑃 +  𝐹𝑁
                                                                    (13) 

MAE =  Σ                                                                            (14) 

𝑅𝑀𝑆𝐸 =  𝑠𝑞𝑟𝑡(𝛴(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑙𝑒𝑣𝑒𝑙 −  𝑎𝑐𝑡𝑢𝑎𝑙_𝑙𝑒𝑣𝑒𝑙)^2 / 𝑛)                                (15) 

Table 2.  Performance Analysis Using the Proposed Model 
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The proposed method achieves 94.8% accuracy, while Convolutional Neural Network, Recurrent 

Neural Network, Long Short-Term Memory, Generative Adversarial Network, Transformers, and Deep 

Neural RNN obtain 90.4%, 91.1%, 92.2%, 91.2%, and 92.9%. Existing approaches take longer to 

calculate all datasets and the suggested technique detects events better than current methods. Figure 5, 

shows the architecture of the flooded area monitoring system. Environmental data is collected from 

RWI sensors on RSUs. On-board units (OBUs) gather vehicle-related data and location information 

Figure 6. RSUs transfer the gathered data to the governing body. The Data Processing authority 

analyzes the received data to determine probable flood zones by considering factors such as water level 

and meteorological conditions. The body disseminating information sends alerts and warnings to On-

Board Units (OBUs) to inform drivers of flood conditions. RSUs also provide crucial information to 

adjacent vehicles. The Feedback Loop with On-Board Units (OBUs) transmits feedback to the 

Reference Framework Approach 

(Labeled Data in Training, Validation, and Testing Dataset) 

Accuracy Precision Recall 

F1-

Score MAE 

 

RMSE 

60% Training Dataset 

CNN 92.4% 91.7% 93.1% 92.3% 91.1% 91.3% 

RNN 88.5% 87.1% 89.4% 88.1% 87.1% 88.1% 

LSTM 91.1% 91.4% 92.1% 91.1% 91.1% 91.3% 

GAN 90.1% 89.1% 91.7% 90.3% 90.4% 91.1% 

Transformers 96.7% 95.7% 97.1% 96.7% 94.1% 93.1% 

DN-RNN 94.1% 93.4% 95.1% 94.1% 94.1% 93.3% 

20% Validation Dataset 

CNN 90.4% 89.1% 91.1% 90.1% 91.1% 92.1% 

RNN 85.9% 84.4% 86.4% 85.6% 84.3% 86.1% 

LSTM 92.4% 93.7% 91.1% 92.4% 92.7% 91.7% 

GAN 88.0% 87.1% 89.1% 88.1% 88.1% 90.4% 

Transformers 91.2% 91.5% 90.5% 90.5% 90.5% 90.1% 

DN-RNN 94.2% 93.5% 95.5% 94.5% 93.5% 95.1% 

20% Testing Dataset 

CNN 88.3% 87.7% 89.4% 88.7% 88.7% 87.7% 

RNN 83.7% 82.1% 84.1% 83.1% 82.1% 82.3% 

LSTM 90.3% 89.3% 91.5% 90.1% 90.1% 91.1% 

GAN 86.4% 85.5% 87.4% 86.5% 86.5% 87.4% 

Transformers 92.9% 91.7% 93.7% 91.7% 92.7% 91.7% 

DN-RNN 94.8% 92.1% 93.9% 92.3% 93.1% 92.1% 
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governing body regarding road conditions, traffic, and other pertinent data. Authority refers to the 

primary governing body that is accountable for overseeing the comprehensive administration, analysis 

of data, and making decisions for the entire system. A Road Side Unit (RSU) refers to a stationary 

device strategically positioned in certain locations to gather data, establish communication with cars, 

buses, and bikes, and transmit information to the relevant authority. An onboard unit (OBU) is a device 

that is mounted in cars to gather real-time data, such as location, speed, and sensor readings, and 

establish communication with Roadside Units (RSUs). RSUs are equipped with RWI sensors to gather 

environmental data, such as water level, humidity, and temperature Figure 7. 

 

Figure 5. Last 8 Years Flooded Area and Rainfall Observation 
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Figure 6. VANET Connectivity using Satellite (Alert Message Generation) 

 

Figure 7. Historical Flood Report Dataset collected using RWI Sensor 
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Figure 8. Sentinel 2 Captured Flooded Area Are Segmented and Compared between Ground 

Truth and Actual Prediction 

Analyzing Model Performance by analysis of predictions and Ground Truth by conducting a 

comparison between the filtered flooded regions derived from the Sentinel-2 image (prediction) and 

the ground truth data, one can evaluate the precision and efficiency of the image processing and 

segmentation algorithms employed Figure 8. Accurate measurement of training, testing, and validation 

accuracy and loss is essential in the development of flood detection models. Training accuracy 

quantifies the extent to which the model acquires knowledge from the training data, whereas testing 

accuracy assesses its effectiveness in handling unfamiliar data. Validation accuracy, however, is 

utilized to optimize hyperparameters and mitigate overfitting. The training and validation loss 

measures the model's error during the learning and evaluation processes, respectively. Through the 

examination of these measures, researchers can evaluate the effectiveness of the model, uncover any 

problems such as overfitting or under fitting, and make well-informed choices to enhance the flood 

detection system Figure 9. 
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Figure 9. A) Training, Testing, and Validation Accuracy, B) Training, Testing, and Validation 

Loss 

 

Figure 10. Confusion Matrix of the VANET-MARL Approach 

A confusion matrix is a lifeline for assessing the effectiveness of a VANET-MARL strategy in 
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detecting floods. The analysis offers an in-depth examination of accurate and inaccurate forecasts, 

classifying them as true positives (accurately anticipated floods), true negatives (accurately predicted 

absence of floods), false positives (incorrectly projected floods), and false negatives (incorrectly 

predicted absence of floods). Through the examination of the confusion matrix, researchers can 

evaluate the model's accuracy, precision, recall, and F1-score, providing valuable information about 

the model's capabilities and limitations in detecting flood situations in the VANET environment Figure 

10. 

4.3. Compared with Other State of Art Methods 

Figure 11, presents a comparison between the suggested flood detection system and the most advanced 

approaches available. Although it does not achieve the highest level of accuracy, the suggested 

technique effectively identifies flood-affected areas and displays strong performance. Our approach 

provides complete coverage of various flood scenarios, unlike previous methods that are restricted to 

specific regions or flood types. The method's distinctive advantage resides in its capacity to identify 

floods in previously unobserved geographical areas and under varying hydrological circumstances. Its 

capacity to adjust makes it an adaptable solution for a wide range of flood management concerns. On 

the other hand, alternative approaches frequently have difficulties in adapting to unfamiliar flood 

patterns, which restricts their efficacy in practical scenarios. 
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Figure 12. Performance Comparison with Exisiting Model 

Conclusion 

  In this research, early flood prediction which is integrated using Sentinel-2 Imagery with 

VANET-MARL is performed on real-time datasets incorporated with Deep Neural RNN. Deep neural 

RNN increases this framework's sequential data analysis and pattern recognition, making flood 

forecasts more accurate. Local weather stations report rainfall length and severity in real-time. Two 

prominent statistical tests for stationary time series data are the Augmented Dickey-Fuller (ADF) and 

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests. Autos, pedestrians, and surrounding homes can 

interact and share data using VANET technology and time series analysis. The integration of Multi-

Agent Reinforcement Learning (MARL) with Vehicular Ad Hoc Networks (VANET) results in a 

flexible system that can adjust to diverse settings and circumstances, offering a resilient solution for a 

wide range of geographical and climatic situations. The proposed methodology was proven to be 

effective and efficient by thorough testing on real-world datasets, achieving an accuracy rate of 94.8%. 
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In future research, the model's generalizability depends on adding varied geographical regions and 

hydrological variables to the dataset. Additional meteorological data like rainfall and humidity can 

improve prediction accuracy.  
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